首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Response of pendulums to complex input ground motion   总被引:1,自引:0,他引:1  
Dynamic response of most seismological instruments and many engineering structures to ground shaking can be represented via response of a pendulum (single-degree-of-freedom oscillator). In most studies, pendulum response is simplified by considering the input from uni-axial translational motion alone. Complete ground motion however, includes not only translational components but also rotations (tilt and torsion). In this paper, complete equations of motion for three following types of pendulum are described: (i) conventional (mass-on-rod), (ii) mass-on-spring type, and (iii) inverted (astatic), then their response sensitivities to each component of complex ground motion are examined. The results of this study show that a horizontal pendulum similar to an accelerometer used in strong motion measurements is practically sensitive to translational motion and tilt only, while inverted pendulum commonly utilized to idealize multi-degree-of-freedom systems is sensitive not only to translational components, but also to angular accelerations and tilt. For better understanding of the inverted pendulum's dynamic behavior under complex ground excitation, relative contribution of each component of motion on response variants is carefully isolated. The systematically applied loading protocols indicate that vertical component of motion may create time-dependent variations on pendulum's oscillation period; yet most dramatic impact on response is produced by the tilting (rocking) component.  相似文献   

2.
汶川地震强震动地面倾斜研究   总被引:2,自引:1,他引:1       下载免费PDF全文
根据三分量强震动传感器水平摆和竖向摆对倾斜的动力响应差异,利用谱比法计算出汶川MS8.0地震中近断层强震动的断层法线方向和平行方向的同震地面倾斜. 结果表明, 本次地震中强震动观测台处地面倾斜一般小于1deg;,影响频段主要在0.1 Hz以下,发生较大倾斜的台站主要在距地表破裂迹线30 km以内,在100 km之外或水平向加速度幅值均方根在200 cm/s2以下时很少发生0.01deg;以上的同震地面倾斜.总体上看,上盘区域的倾斜值普遍小于下盘区域,法线方向倾斜值一般大于平行线方向倾斜值.位于前山断裂与中央断裂之间区域的绵竹清平台谱比较低但平缓且频带较宽,可能反应了该区域的运动特殊性,而汶川卧龙台则显示了上盘边缘区域地面倾斜较大.逆冲段与走滑段台站倾斜对比显示,地面倾斜可能受局部场地条件影响较大.   相似文献   

3.
《Journal of Geodynamics》2003,35(4-5):541-551
The relationship between the tilts and strains of rocks and air pressure variations is investigated using deformation measurements from the Protvino observatory. Deformations due to air pressure are large in the observation area. The deformation response to the observed air pressure variations is compared with calculated values. In addition, the effective elasticity of the rock is determined from measured deformations in the underground galleries of the observatory after creating a load on the Earth surface. The observed tilts are considerably larger than the calculated values, for local as well as atmospheric loading, and the rock shear modulus determined from the tilt data is anomalously small compared to the mean shear modulus value for the crust. The observed horizontal strain data indicate no anomaly in the rock shear modulus value. The cavity effects at the observatory cannot explain this phenomenon. It may be caused by the rocks high fracturing. It is supposed, that the influence of cracks on the rock horizontal deformations is small if the cracks are closed and have the vertical direction. In case of large wavelength the large tilts correspond to the great displacements. These displacements may worsen the accuracy of geodetic measurements, especially when measuring vertical crustal movements.  相似文献   

4.
Various authors, analysing the set of accelerograms recorded at Gubbio Piana (GBP) (central Italy), have demonstrated that strong amplification occurs at this accelerometric station, which is installed within an alluvial basin. In particular, Ambraseys et al. [(2005a), Bull Earthq Eng 3:1–53; (2005b), Bull Earth Eng 3:55–73] observed that the strong motion peaks at GBP greatly exceed the median values predicted by the attenuation relationships they derived for Europe. In this work, we analyse and discuss some characteristics of the ground motion recorded at the GBP station. We show that the ground motion parameters, such as peak-ground acceleration and peak-ground velocity, are strongly influenced by the presence of locally induced surface waves that produce both a lengthening of the significant shaking duration and an increase in the peak values with respect to a nearby bedrock site. The basin-induced surface waves are observed in the three components of motion and their effects on the peak values are particularly evident in the vertical component. In the frequency domain, the energy of the surface waves is mostly restricted to the frequency band 0.4–0.8 Hz for both the horizontal and vertical components. The horizontal and vertical Fourier amplitudes are also very similar, and this indicates that the H/V spectral ratio technique is not applicable to describing the site response due to the propagation of seismic wave in a complex 2D/3D geological structure. Finally, a preliminary polarization analysis shows that the directions of polarization, as well as the degree of elliptical polarization, exhibit a strong variability with time, that may be related to a complex propagation of Love and Rayleigh waves within the basin.  相似文献   

5.
Linear and non-linear responses of a two-story structural model excited by near-source fault-normal pulse and fault-parallel displacement are investigated. For the considered linear system, the multi-component differential-motion effects amplify the first-story drifts 3.0–4.0 times relative to the excitation by synchronous horizontal ground motion only. The contribution of horizontal differential ground motion to the total drift is about two thirds, and the contribution of vertical and rocking differential ground motions is about one third. For the considered nonlinear system, the effects of vertical and rocking differential ground motions become more significant for the second-story drifts. The horizontal differential ground motion amplifies the first-story drifts, but the simultaneous action of horizontal, vertical, and rocking differential ground motions can amplify the first- and second-story drifts by more than 2.0 times relative to the drifts computed for uniform horizontal ground motion only.  相似文献   

6.
A note on the useable dynamic range of accelerographs recording translation   总被引:2,自引:0,他引:2  
Since the late 1970s, the dynamic range and resolution of strong motion digital recorders have leaped from 65 to 135 dB, opening new possibilities for advanced data processing and interpretation. One of these new possibilities is the calculation of permanent displacement of the ground or of structures, associated with faulting or with non-linear response. Proposals on how permanent displacements could be recovered from recorded strong motion have been published since 1976. The analysis in this paper concludes that permanent displacements of the ground and of structures in the near-field can be calculated provided all six components of strong motion (three translations and three rotations) have been recorded, and the records are corrected for transducer rotation, misalignment and cross-axis sensitivity.  相似文献   

7.
局部山体地形对强地面运动的影响研究   总被引:1,自引:0,他引:1       下载免费PDF全文
王铭锋  郑傲  章文波 《地球物理学报》2017,60(12):4655-4670
基于曲线网格有限差分方法研究了地震波在不同坡度的山体地形及水平地表模型中的传播,得到了各模型速度波形及地表峰值速度特征,从地形自身特征及震源特征两方面出发讨论了地形效应:一是相同的震源模型下地形坡度、形状对地震动的影响;二是同一山体模型下地震动对不同震源机制的点源以及相对复杂的有限断层的响应.主要结论如下:(1)一般情况下,地形放大效应在坡度较大的地方比较明显,并随着坡度的增加而增大,但在某些特定情况下,放大效应与坡度并不满足正相关,且这种情况的发生与震源性质无关,可能仅受地形形态自身的影响;(2)对于不同的震源机制,地面运动各分量受地形影响程度不同,总体上水平分量受地形影响程度更大;(3)震源机制和震源激发的波的频率会影响放大效应最大值出现的位置,放大效应最大值不一定出现在山顶处,有可能会出现在起伏地形的震源对侧,出现位置可能与波的相互作用有关;(4)有限断层模型下,地面运动特征相对更为复杂,地形效应不仅受断层模型几何特征的影响,同时断层破裂过程对其也有着重要的影响.  相似文献   

8.
It might be thought that an empirical ground motion prediction model has only to describe the variations in the input data set as accurately as possible in order to be useful, with the proviso that the data set is reasonably extensive and well-selected. If the model is to be used in probabilistic seismic hazard assessment, however, the model will probably be subject to extrapolation beyond the parameter space within which it was constructed, especially for hazard at low annual probabilities. In this case, features of the model, especially its functional form, may turn out to have unexpected and undesirable implications. The end result can be conclusions about the hazard that are clearly not in accordance with commonsense. In this study, two test cases are used to examine the application of some recent ground motion models to probabilistic hazard studies. Problems are found that suggest that, although a ground motion model may be a correct representation of its data set, the effects of the functional form applied can be such that it becomes doubtful whether the model should be used for probabilistic hazard purposes.  相似文献   

9.
This paper presents a review of the advances in strong motion recording since the early 1930s, based mostly on the experiences in the United States. A particular emphasis is placed on the amplitude and spatial resolution of recording, which both must be ‘adequate’ to capture the nature of strong earthquake ground motion and response of structures. The first strong motion accelerographs had optical recording system, dynamic range of about 50 dB and useful life longer than 30 years. Digital strong motion accelerographs started to become available in the late 1970s. Their dynamic range has been increasing progressively, and at present is about 135 dB. Most models have had useful life shorter than 5–10 years. One benefit from a high dynamic range is early trigger and anticipated ability to compute permanent displacements. Another benefit is higher sensitivity and hence a possibility to record smaller amplitude motions (aftershocks, smaller local earthquakes and distant large earthquakes), which would augment significantly the strong motion databases. The present trend of upgrading existing and adding new stations with high dynamic range accelerographs has lead to deployment of relatively small number of new stations (the new high dynamic range digital instruments are 2–3 times more expensive than the old analog instruments or new digital instruments with dynamic range of 60 dB or less). Consequently, the spatial resolution of recording, both of ground motion and structural response, has increased only slowly during the past 20 years, by at most a factor of two. A major (and necessary) future increase in the spatial resolution of recording will require orders of magnitude larger funding, for purchase of new instruments, their maintenance, and for data retrieval, processing, management and dissemination. This will become possible only with an order of magnitude cheaper and ‘maintenance-free’ strong motion accelerographs. In view of the rapid growth of computer technology this does not seem to be (and should not be) out of our reach.  相似文献   

10.
唐山丰南M4.1级地震强震记录分析   总被引:3,自引:2,他引:1  
2010年4月9日唐山丰南发生M4.1级地震,津冀地区共有36个强震台站获取到强震记录,记录的最大加速度为58.92cm/s2,通过对比强震记录的峰值,发现该地震竖向峰值比水平向大,在三个分量上加速度傅氏谱谱型以多峰为主。通过对强震记录频谱特征进行分析,得出随着震中距的增大,反应谱高频成分衰减快于低频成分,竖向与水平向加速度比值与常规认为的1/2—2/3差别较大。通过对本次强震动记录反应谱标定并结合唐山地区3.5级以上地震记录,获得唐山地区土层场地反应谱谱型参数。  相似文献   

11.
Recent field observations have indicated that water saturation of soils may strongly affect the vertical ground motion. A study is therefore carried out to investigate the effect of saturation on horizontal and vertical motion at an interface of porous soils with potential contributions directed to site evaluation based on field observations of both the horizontal and vertical motion. The problem described in this paper corresponds to an SV wave incident at the interface between the overlying soil and the underlying rock formation. The soils are modeled as partially water-saturated porous material with a small amount of air inclusions, while the rock are approximately regarded as ordinary one-phase solid. Theoretical formulation is developed for the computation of amplitudes of horizontal and vertical interface motion, which are expressed as functions of the degree of saturation, the angle of incidence as well as the frequency. Numerical results are given for a typical sand to illustrate the influence of saturation on the interface motion in two directions and their ratios. The present study demonstrates that the effect of water saturation may be substantial on both the horizontal and vertical motion as well as on their ratios, implying the importance of such effects in the interpretation of field observations.  相似文献   

12.
以北京地铁6号线新华大街站公共区Y型柱地铁车站为工程背景,利用FLAC3D有限差分程序数值模拟分析,研究超浅埋大跨度、高断面、Y形柱地铁车站结构分别在仅输入水平向地震动和同时输入水平向与竖向地震动情况下的地震响应特性。结果表明:(1)与仅输入单向地震动相比,双向地震动耦合作用下车站各测点的峰值加速度和应力值均增大,而相对水平位移减小,且随着输入地震动强度的增加,竖向地震动影响率呈递减趋势;(2)双向地震动作用下,同一工况Y形柱叉支处各测点的竖向位移明显增大,且各测点的竖向位移值较为均匀,而单向水平地震动作用下各测点竖向位移差异较大;(3)与单向水平地震动相比,竖向地震动的输入对各测点间的水平方向地震动特性规律影响较小。  相似文献   

13.
This investigation deals with non‐linear seismic responses of free‐standing rectangular rigid bodies on horizontally and vertically accelerating rigid foundations. The responses are classified into two initial responses and four subsequent responses, accordingly the equations of motion governing the liftoff, slip and liftoff–slip interaction motions and boundary conditions corresponding to commencement and termination of the motions are defined. The time histories of responses presented herein show that the body is sensitive to small changes in the friction coefficient and slenderness, and to the wave properties and intensity of ground motions. Systematic trends are observed: the bodies on the low‐grip foundation avoid overturning while they are allowed to slip regardless of details of ground motions; the long period earthquakes tend to make the body overturn and slip largely. In contrast, the timing when liftoff and slip commences and terminates and their directions do not directly correspond with intensity of ground motions. Moreover, the vertical ground motion adds irregularities on the responses, since it excites or damps the responses. It is concluded that governing equations of motion and boundary conditions in view of discontinuous non‐linear systems are necessary to analyse actual motions of the rectangular rigid bodies subjected to horizontal and vertical ground motion. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
While many cases of structural damage in past earthquakes have been attributed to strong vertical ground shaking, our understanding of vertical seismic load effects and their influence on collapse mechanisms of buildings is limited. This study quantifies ground motion parameters that are capable of predicting trends in building collapse because of vertical shaking, identifies the types of buildings that are most likely affected by strong vertical ground motions, and investigates the relationship between element level responses and structural collapse under multi‐directional shaking. To do so, two sets of incremental dynamic analyses (IDA) are run on five nonlinear building models of varying height, geometry, and design era. The first IDA is run using the horizontal component alone; the second IDA applies the vertical and horizontal motions simultaneously. When ground motion parameters are considered independently, acceleration‐based measures of the vertical shaking best predict trends in building collapse associated with vertical shaking. When multiple parameters are considered, Housner intensity (SI), computed as a ratio between vertical and horizontal components of a record (SIV/SIH), predicts the significance of vertical shaking for collapse. The building with extensive structural cantilevered members is the most influenced by vertical ground shaking, but all frame structures (with either flexural and shear critical columns) are impacted. In addition, the load effect from vertical ground motions is found to be significantly larger than the nominal value used in US building design. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
利用关东盆地及其周边KiK-net台网井上台站记录的2004—2017年15次中强地震(矩震级为5.1~6.9级)构建三分量记录显著持时Ds5-95数据库。针对该数据库,基于残差分析方法和3种水平向地震动持时参数预测方程,计算并给出事件间残差和事件内残差及其随不同类别参数的变化。在此基础上,初步探讨了水平向地震动持时预测方程应用于预测竖向地震动持时的可行性及盆地对三分量地震动持时的影响。研究结果表明,对于震源距和场地VS30相当的情况,盆地内台站持时普遍大于盆地外台站持时,盆地内、外台站竖向地震动持时均大于水平向地震动持时;3种预测方程均可实现对盆地外台站水平向地震动Ds5-95的合理估计,但在一定程度上低估了盆地内台站的水平向地震动Ds5-95;3种预测方程均无法直接应用于竖向地震动持时预测。  相似文献   

16.
This paper describes a study on the influence of water saturation on horizontal and vertical motion at the interface between porous soil and rock formation due to an incident P wave. The soil is modeled as a partially water-saturated porous material with a small amount of air inclusions, while the underlying rock is approximately regarded as an ordinary one-phase solid. Theoretical formulation is developed for the computation of motion amplitudes in both horizontal and vertical components, which are considered as functions of the degree of saturation, the angle of incidence as well as the frequency. Numerical results are provided to illustrate the effect of saturation on displacement amplitudes in both components and their ratios. The results show that even a slight decrease of complete saturation may lead to a substantial change in the motion amplitudes in both horizontal and vertical components. In general, partial saturation may cause lower horizontal-to-vertical ratios over the entire range of incident angles except the normal incidence, implying the potential importance of saturation effects in the interpretation of field observations.  相似文献   

17.
利用土层场地数字化强震动记录,研究适用于东北地区及邻区的强震动包络函数参数衰减关系.数据集由2008年后研究区内发生的29次地震事件的水平向和垂直向强震动记录构成.经过基线校正和滤波处理后,结合三段式包络函数模型,应用能量持时计算t1和t2,通过最小二乘法统计回归确定c值,得到了强震动包络函数参数的衰减关系公式.比较水...  相似文献   

18.
近岸水平场地液化侧向大变形影响因素分析   总被引:2,自引:0,他引:2  
利用改进的软化模量分析方法,对近岸水平场地液化侧向大变形进行数值计算,以研究地震波波形和幅值大小、液化、竖向地震动对侧向大变形的影响。结果表明:不同的地震波作用下,即使峰值加速度相同,液化程度与侧移距离也可能有较大不同,表现了土体变形的强非线性性质,但大地震下液化导致的侧移几乎都在米的量级上;计算区域中无液化区时,岸壁侧向永久位移很小,在几公分左右,随水平峰值加速度及不同地震动输入改变不大;计算区域中有液化区时,岸壁侧向永久位移显著增大,且随输入水平峰值加速度的增大而明显增大,其机理是强地震动使液化范围加大;水平竖向两向地震动输入与单独水平地震动输入相比,前者场地液化范围增大,平均增大42%,侧移量增加,平均增加37%。  相似文献   

19.
Many studies have focused on horizontal ground motion, resulting in many coherency functions for horizontal ground motion while neglecting related problems arising from vertical ground motion. However, seismic events have demonstrated that the vertical components of ground motion sometimes govern the ultimate failure of structures. In this paper, a vertical coherency function model of spatial ground motion is proposed based on the Hao model and SMART 1 array records, and the validity of the model is demonstrated. The vertical coherency function model of spatial ground motion is also compared with the horizontal coherency function model, indicating that neither model exhibits isotropic characteristics. The value of the vertical coherency function has little correlation with that of the horizontal coherency function. However, the coherence of the vertical ground motion between a pair of stations decreases with their projection distance and the frequency of the ground motion. When the projection distance in the wave direction is greater than 800 meters, the coherency between the two points can be neglected.  相似文献   

20.
The influence of vertical ground motions on the seismic response of highway bridges is not very well understood. Recent studies suggest that vertical ground motions can substantially increase force and moment demands on bridge columns and girders and cannot be overlooked in seismic design of bridge structures. For an evaluation of vertical ground motion effects on the response of single‐bent two‐span highway bridges, a systematic study combining the critical engineering demand parameters (EDPs) and ground motion intensity measures (IMs) is required. Results of a parametric study examining a range of highway bridge configurations subjected to selected sets of horizontal and vertical ground motions are used to determine the structural parameters that are significantly amplified by the vertical excitations. The amplification in these parameters is modeled using simple equations that are functions of horizontal and vertical spectral accelerations at the corresponding horizontal and vertical fundamental periods of the bridge. This paper describes the derivation of seismic demand models developed for typical highway overcrossings by incorporating critical EDPs and combined effects of horizontal and vertical ground motion IMs depending on the type of the parameter and the period of the structure. These models may be used individually as risk‐based design tools to determine the probability of exceeding the critical levels of EDP for pre‐determined levels of ground shaking or may be included explicitly in probabilistic seismic risk assessments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号