首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The exchange of dissolved nutrients between marshes and the inundating water column was measured using throughflow marsh flumes built, in two microtidal Louisiana estuaries: the Barataria Basin estuary and Fourleague Bay. The flumes were sampled between September 1986 and April 1988, coincident with an extended period of low sea level on the Louisiana coast. The Barataria Basin estuary is in the later, deteriorating stage of the deltaic cycle, characterized by low freshwater inputs and subsiding marshes. Both brackish and saline marshes supplied dissolved organic nitrogen (DON), inorganic nitrogen (ammonium + nitrate + nitrite = DIN), dissolved organic carbon (DOC), and total nitrogen (as total Kjeldahl nitrogen = TKN) to the water column. The export of DIN is probably related to the N accumulated in earlier stages of deltaic development and released as these marshes deteriorate. Coastal brackish marshes of Fourleague, Bay, part of an accreting marsh system in an early, developmental stage of the deltaic cycle, exported TKN to the open water estuary in all samplings. This marsh apparently acted as a short-term buffer of DIN by taking up NH4 + in spring, when baywide concentrations were high, and supplying DIN to the estuary in summer and fall, when concentrations, in the bay were lower. Differences in phosphorus (P), DOC, and DON fluxes between these two estuaries were also observed. The Fourleague Bay site exported soluble reactive phosphorus (SRP) and total phosphorus (TP) and imported DOC. This P export may be related to remobilization of sediment-bound riverine P by the reducing, soils of the marshes. Fluxes of SRP at the Barataria Basin sites were variable and low while DOC was imported. Most imports of dissolved nutrients were correlated with higher upstream [source] concentrations, and flux rates were fairly consistent throughout the tide. Dissolved nutrient exports, did not correlate with upstream concentrations, though, and in many cases the flux was dominated by early, flood tide nutrient release. This pulsed behavior may be caused by rapid diffusion from the sediments early in the tidal cycle, when the sediment-water concentration gradient is largest. Interestuary differences were also seen in particulate organic matter fluxes, as the Fourleague Bay marsh exported POC and PON during all samplings while Barataria Basin imported these nutrients. In general, the magnitude and direction of nutrient exchanges in Louisiana marshes, seem to reflect the deltaic successional stage of the estuary.  相似文献   

2.
Tidal marshes act as a buffer system for nutrients in the pore water and play important roles in controlling the budget of nutrients and pollutants that reach the sea. Spatial and seasonal dynamics of pore water nutrients were surveyed in three tidal marshes (Chongming Island, Hengsha Island, and Fengxian tidal flat) near the Yangtze Estuary and Hangzhou Bay from August 2007 to May 2008. Nutrient variations in pore water closely followed seawater quality in the estuaries, while the average concentration of NH4 +–N, the main form of inorganic nitrogen in pore water, was over two orders of magnitude higher than that in seawater which was dominated by nitrate. NH4 +–N export (13.81 μmol m?2 h?1) was lower than the import of (NO3 ?+NO2 ?)–N (?24.17 μmol m?2 h?1) into sediment over the 1-year period, hence reducing N-eutrophication in coastal waters. The export of SiO3 2?–Si and PO4 3?–P from tidal marshes regulated nutrient level and composition and lifted the ratio beyond potentidal element limitation in the coastal system. Moreover, macrophyte plants (Spartina alterniflora and Phragmites australis) played significant roles in controlling nutrient concentration in pore water and its exchange between marshes and estuaries. Fengxian marsh was characterized by higher nutrient concentrations and fluxes than other marshes in response to the more serious eutrophication in Hangzhou Bay than in the Yangtze Estuary.  相似文献   

3.
Field experiments were completed to determine patterns of evapotranspirative water loss from salt and tidal freshwater marshes in Virginia. Water losses from “Mariotte systems” attached to open-water lysimeters and lysimeters vegetated by dominant marsh macrophytes were used to calculate hourly rates of open-water evaporation (Eo) and evapotranspiration (ET), respectively, during low tide. In the tidal freshwater marsh, ET was significantly greater than Eo (p=0.002, n=6); in the salt marsh, there were no differences between mean rates of ET and Eo (p=0.200, n=3). The ratio ET:Eo was highly correlated with leaf area index (LAI) (r2=0.82). In the tidal freshwater marsh, the amount of water loss due to plant transpiration was partitioned from total evapotranspiration by covering the water surface of the lysimeters with styrofoam beads. Measured transpiration rates in the tidal freshwater marsh were strongly correlated with leaf area index according to the following linear regression equation: T=0.355(LAI)?0.084 (r2=0.797, n=10). Because LAI was shown to be a good predictor of the relative increase in ET over Eo, it is likely that in vegetated tidal freshwater marshes with high leaf densities most atmospheric water loss comes from plants, not from the surface of the marsh. In salt marshes, low plant densities do not contribute substantially to atmospheric water loss, suggesting that paths of water transport and patterns of solute concentration in the subsurface environment are different compard to the tidal freshwater marsh.  相似文献   

4.
Transport of ammonium (NH4 +), nitrate + nitrite (NO3 ?), total Kjeldahl nitrogen (TKN), soluble reactive phosphate (SRP), and total suspended solids (TSS) was measured in a freshwater tidal bayou located in a marsh system near the mouth of the Atchafalaya River in Louisiana. Sampling was conducted six times over one year and was timed to assess effects of seasonal variation in river flow and mean sea level of the Gulf of Mexico on material fluxes. Net fluxes of all materials were large and ebb directed in all seasons except fall, when net transport was 2 to 3 orders-of-magnitude smaller than in any other season. These results demonstrate that riverine forcing was the primary influence on materials transport in all seasons except fall when tidal forcing was most important. The range of net fluxes (g s?1) for each nutrient was as follows (a negative sign indicates a net export toward the Gulf): NO3 ?, ?0.006 to ?6.69; TKN, 0.09 to ?10.41; NH4 +, ?0.02 to ?1.36; SRP, ?0.001 to ?0.53; TSS, ?2 to ?81. Analysis of nutrient concentrations indicated the marsh/aquatic system removed NO3 ?, SRP, and TSS from the water column from late spring through early fall and released NH4 + and TKN in summer. The results of this study show that net materials export per unit cross section channel area increased as riverine influence increased.  相似文献   

5.
We examined the effects of seasonal salinity changes on sediment ammonium (NH4 +) adsorption and exchange across the sediment–water interface in the Parker River Estuary, by means of seasonal field sampling, laboratory adsorption experiments, and modeling. The fraction of dissolved NH4 + relative to adsorbed NH4 + in oligohaline sediments rose significantly with increased pore water salinity over the season. Laboratory experiments demonstrated that small (∼3) increases in salinity from freshwater conditions had the greatest effect on NH4 + adsorption by reducing the exchangeable pool from 69% to 14% of the total NH4 + in the upper estuary sediments that experience large (0–20) seasonal salinity shifts. NH4 + dynamics did not appear to be significantly affected by salinity in sediments of the lower estuary where salinities under 10 were not measured. We further assessed the importance of salinity-mediated desorption by constructing a simple mechanistic numerical model for pore water chloride and NH4 + diffusion for sediments of the upper estuary. The model predicted pore water salinity and NH4 + profiles that fit measured profiles very well and described a seasonal pattern of NH4 + flux from the sediment that was significantly affected by salinity. The model demonstrated that changes in salinity on several timescales (tidally, seasonally, and annually) can significantly alter the magnitude and timing of NH4 + release from the sediments. Salinity-mediated desorption and fluxes of NH4 + from sediments in the upper estuary can be of similar magnitude to rates of organic nitrogen mineralization and may therefore be important in supporting estuarine productivity when watershed inputs of N are low.  相似文献   

6.
Herbivory is a common process in salt marshes. However, the direct impact of marsh herbivory on nutrient cycling in this ecosystem is poorly understood. Using a 15N enrichment mesocosm study, we quantified nitrogen (N) cycling in sediment and plants of black needlerush (Juncus roemerianus) salt marshes, facilitated by litter decomposition and litter plus grasshopper feces decomposition. We found 15 times more 15N recovery in sediment with grasshopper herbivory compared to sediment with no grasshopper herbivory. In plants, even though we found three times and a half larger 15N recovery with grasshopper herbivory, we did not find significant differences. Thus, herbivory can enhance N cycling in black needlerush salt marshes sediments and elevate the role of these salt marshes as nutrient sinks.  相似文献   

7.
Tidal freshwater marshes exist in a dynamic environment where plant productivity, subsurface biogeochemical processes, and soil elevation respond to hydrological fluctuations over tidal to multi-decadal time scales. The objective of this study was to determine ecosystem responses to elevated salinity and increased water inputs, which are likely as sea level rise accelerates and saltwater intrudes into freshwater habitats. Since June 2008, in situ manipulations in a Zizaniopsis miliacea (giant cutgrass)-dominated tidal freshwater marsh in South Carolina have raised porewater salinities from freshwater to oligohaline levels and/or subtly increased the amount of water flowing through the system. Ecosystem-level fluxes of CO2 and CH4 have been measured to quantify rates of production and respiration. During the first 20 months of the experiment, the major impact of elevated salinity was a depression of plant productivity, whereas increasing freshwater inputs had a greater effect on rates of ecosystem CO2 emissions, primarily due to changes in soil processes. Net ecosystem production, the balance between gross ecosystem production and ecosystem respiration, decreased by 55% due to elevated salinity, increased by 75% when freshwater inputs were increased, and did not change when salinity and hydrology were both manipulated. These changes in net ecosystem production may impact the ability of marshes to keep up with rising sea levels since the accumulation of organic matter is critical in allowing tidal freshwater marshes to build soil volume. Thus, it is necessary to have regional-scale predictions of saltwater intrusion and water level changes relative to the marsh surface in order to accurately forecast the long-term sustainability of tidal freshwater marshes to future environmental change.  相似文献   

8.
The effects of system closure on the dynamics of productivity and nutrient cycling are examined in four wetlands that differ in plant growth form and magnitudes and sources of water input and nutrient loading. Dynamics in relatively closed ombrotrophicCarex marsh andTaxodium swamp systems from Okefenokee Swamp are compared to those in open, rheotrophic riparian systems. The riparian systems examined includeZizaniopsis marshes along the tidal freshwater portion of the Altamaha River in Georgia and a matureTaxodium-Nyssa swamp along the Cache River in Illinois. Water budgets in the ombrotrophic systems are dominated by precipitation inputs while in the riparian wetlands they are dominated by overbank flooding. Nutrient loading to the open and closed systems differs by only two orders of magnitude, the former depending on atmospheric inputs and the latter depending on tidal and riverine inputs. Comparisons of nutrient import, export, and retention indicate that greater than 90% of inorganic nutrients are retained in the closed systems while less than 5% are retained in the open systems. Nutrient budgets for wetland vegetation, including aboveground uptake, root uptake, leaching, death, and translocation, are constructed. Strong differences in nutrient conservation within plant communities are found between marsh and forested closed systems and between open and closed systems as a whole. There is the indication that nutrients turn over more rapidly and nutrient cycles are less retentive and conservative as systems become more open and nutrient inputs increase. Nutrients turn over more rapidly in marshes with nonwoody vegetation than in swamp forests. This phenomena is partially attributable to the growth form of the vegetation as trees store vast amounts of high Canutrient ratio biomass in boles. Substituting space for time and marsh and swamp wetlands for young and mature ecosystems enables patterns of productivity and nutrient cycling for these wetlands to be compared with Odum’s (1969) predictions of ecosystem development. Patterns of ecosystem development in wetlands agree with those predicted for terrestrial systems in general, but there are many areas of contradiction. The degree of system closure appears to be a major factor controlling nutrient retention and cycling in wetland ecosystems. System closure is also likely to be important in determining the response of wetland systems to global increases in CO2 levels.  相似文献   

9.
Much uncertainty exists in spatial and temporal variations of nitrous oxide (N2O) emissions from coastal marshes in temperate regions. To investigate the spatial and temporal variations of N2O fluxes and determine the environmental factors influencing N2O fluxes across the coastal marsh dominated by Suaeda salsa in the Yellow River estuary, China, in situ measurements were conducted in high marsh (HM), middle marsh (MM), low marsh (LM), and mudflat (MF) in autumn and winter during 2011–2012. Results showed that mean N2O fluxes and cumulative N2O emission indicated intertidal zone of the examined marshes as N2O sources over all sampling seasons with range of 0.0051 to 0.0152 mg N2O m?2 h?1 and 7.58 to 22.02 mg N2O m?2, respectively. During all times of day and the seasons measured, N2O fluxes from the intertidal zone ranged from ?0.0004 to 0.0644 mg N2O m?2 h?1. The freeze/thaw cycles in sediments during early winter (frequent short-term cycle) and midwinter (long-term cycle) were one of main factors affecting the temporal variations of N2O emission. The spatial variations of N2O fluxes in autumn were mainly dependent on tidal fluctuation and plant composition. The ammonia-nitrogen (NH4 +–N) in sediments of MF significantly affected N2O emissions (p < 0.05), and the high concentrations of Fe in sediments might affect the spatial variation of N2O fluxes. This study highlighted the large spatial variation of N2O fluxes across the coastal marsh (coefficient of variation (CV) = 127.86 %) and the temporal variation of N2O fluxes during 2011–2012 (CV = 137.29 %). Presently, the exogenous C and N loadings of the Yellow River estuary are increasing due to human activities; thus, the potential effects of exogenous C and N loadings on N2O emissions during early winter should be paid more attention as the N2O inventory is assessed precisely.  相似文献   

10.
Several recent studies indicate that the replacement of extant species withPhragmites australis can alter the size of nitrogen (N) pools and fluxes within tidal marshes. Some common effects ofP. australis expansion are increased standing stocks of N, greater differentiation of N concentrations between plant tissues (high N leaves and low N stems), and slower whole-plant decay rates than competing species (e.g.,Spartina, Typha spp.). Some of the greater differences between marsh types involveP. australis effects on extractable and porewater pools of dissolved inorganic nitrogen (DIN) and N mineralization rates. Brackish and salt marshes show higher concentrations of DIN in porewater beneathSpartina spp. relative toP. australis, but this is not observed in freshwater tidal marshes whenP. australis is compared withTypha spp. or mixed plant assemblages. With few studies of concurrent N fluxes, the net effect ofP. australis on marsh N budgets is difficult to quantify for single sites and even more so between sites. The magnitude and direction of impacts ofP. australis on N cycles appears to be system-specific, driven more by the system and species being invaded than byP. australis itself. WhereP. australis is found to affect N pools and fluxes, we suggest these alterations result from increased biomass (both aboveground and belowground) and increased allocation of that biomass to recalcitrant stems. Because N pools are commonly greater inP. australis than in most other communities (due to plant and litter uptake), one of the most critical questions remaining is “From where is the extra N inP. australis communities coming?” It is important to determine if the source of the new N is imported (e.g., anthropogenic) or internallyproduced (e.g., fixed, remineralized organic matter). In order to estimate net impacts ofP. australis on marsh N budgets, we suggest that further research be focused on the N source that supports high standing stocks of N inP. australis biomass (external input versus internal cycling) and the relative rates of N loss from different marshes (burial versus subsurface flow versus denitrification).  相似文献   

11.
The supply of nutrients from surface and subsurface water flow into the root zone was measured in a developing barrier island marsh in Virginia. We hypothesize that high production of tall-formSpartina alterniflora in the lower intertidal zone is due to a greater nitrogen input supplied by a larger subsurface flux. Individual nitrogen inputs to the tall-form and short-formS. alterniflora root zones were calculated from water flow rates into the root zone and the nutrient concentration corresponding to the source of the flow. Total dissolved inorganic nitrogen (DIN) input (as ammonium and nitrate) was then calculated using a summation of the hourly nutrient inputs to the root zone over the entire tidal cycle based on hydrologic and nutrient data collected throughout the growing season (April–August) of 1993 and 1994. Additionally, horizontal water flow into the lower intertidal marsh was reduced experimentally to determine its effects on nutrient input and plant growth. Total ammonium (NH4 +) input to the tall-formS. alterniflora root zone (168 μmoles 6 h?1) was significantly greater relative to the short-form (45 μmoles 6 h?1) during flood tide. Total NH4 + input was not significantly different between growth forms during ebb tide, and total nitrate (NO3 ?) and total DIN input were not significantly different between growth forms during either tidal stage. During tidal flooding, vertical flow from below the root zone accounted for 71% and horizontal flow from the adjacent mudflat accounted for 19% of the total NH4 + input to the tall-formS. alterniflora root zone. Infiltration of flooding water accounted for 15% more of the total NO3 ? input relative to the total NH4 + input at both zones on flood tide. During ebb tide, vertical flow from below the root zone still accounted for the majority of NH4 + and NO3 ? input to both growth forms. After vertical flow, horizontal subsurface flow from upgradient accounted for the next largest percentages of NH4 + and NO3 ? input to both growth forms during ebb tide. After 2 yr of interrupted subsurface horizontal flow to the tall-formS. alterniflora root zone, height and nitrogen content of leaf tissue of treatment plants were only slightly, but significantly, lower than control plants. The results suggest that a dynamic supply of DIN (as influenced by subsurface water flows) is a more accurate depiction of nutrient supply to macrophytes in this developing marsh, relative to standing stock nutrient concentrations. The dynamic subsurface supply of DIN may play a role in spatial patterns of abovegroundS. alterniflora production, but determination of additional nitrogen inputs and the role of belowground production on nitrogen demand need to also be considered.  相似文献   

12.
We measured fluxes of NH4+ and NO3 and δ15N of NH4+, sediment, and porewater NH4+ from incubated sediment cores along a nitrate gradient and in different seasons from Childs River, MA. NH4+ flux was low at the downstream site with the lowest concentration of organic matter (high salinity) but otherwise did not differ along the estuary. The δ15N of regenerated NH4+ ranged from +6.1‰ to +15.3‰ but did not vary significantly with season or salinity; the mean for the entire estuary was +10.4 ± 0.5‰. Based on differences between the δ15N of regenerated NH4+ and sediment, and expected isotopic fractionation due to remineralization, we concluded that nitrification occurred after remineralization of NH4+. Differences between the δ15N of regenerated NH4+ and the δ15N of porewater NH4+ provided further evidence of nitrification. We estimated that 11% to 48% of remineralized NH4+ underwent coupled nitrification–denitrification before release into the water column. In spite of losses to denitrification, NH4+ flux released 1.4 mol N m−2 year−1 to the water column and could provide 42% of phytoplankton nitrogen requirements.  相似文献   

13.
Tidal freshwater marshes are critical buffers that exist at the interface between watersheds and estuaries. Little is known about the physical dynamics of tidal freshwater marsh evolution. Over a 21-mo period, July 1995 to March 1997, measurements were made of biweekly sediment deposition at 23 locations in a 3.8-ha tidal freshwater marsh in the Bush River subestuary of the upper Chesapeake Bay. Biweekly accumulation showed high spatial and temporal variability, ranging from ?0.28 g cm?2 to 1.15 g cm?2. Spatial variability is accounted for by habitat differences including plant associations, elevation, and hydrology. Temporal variability is accounted for by interannual climate variability, the growth cycles of marsh plants, stream-marsh interactions, forest-marsh interactions, and animal activity.  相似文献   

14.
Aboveground live standing crop of giant cutgrass (Zizaniopsis miliacea) populations in similar freshwater tidal and impounded nontidal marshes were almost identical (peaking at 1,039 g per m2 in each). The mortality, however, was greater in the tidal marsh resulting in significantly (95% level) greater annual production of aboveground cutgrass in the tidal (1,530±103 g per m2 per yr) than the impounded (1,172±88 g per m2 per yr) marsh, a 31% difference which we consider to be a measure of tidal subsidy. Belowground production also was found to average higher in the tidal marsh, but estimates were not as satisfactory as the aboveground results due to sampling difficulties. Combined annual above and belowground net production comes to an estimated 2,048 ±101 g per m2 per yr for the tidal and 1,481±219 for the impounded cutgrass marsh. The potential of freshwater tidal marshes for tertiary treatment of wastes is briefly discussed.  相似文献   

15.
Tillamook Bay, Oregon, is a drowned river estuary that receives freshwater input from 5 rivers and exchanges ocean water through a single channel. Similar to other western United States estuaries, the bay exhibits a strong seasonal change in river discharge in which there is a pronounced winter maximum and summer minimum in precipitation and runoff. The behavior of major inorganic nutrients (phosphorus, nitrogen, and silica) within the watershed is examined over seasonal cycles and under a range of river discharge conditions for October 1997–December 1999. Monthly and seasonal sampling stations include transects extending from the mouth of each river to the mouth of the estuary as well as 6–10 sites upstream along each of the 5 major rivers. Few studies have examined nutrient cycling in Pacific Northwest estuaries. This study evaluates the distributions of inorganic nutrients to understand the net processes occurring within this estuary. Based upon this approach, we hypothesize that nutrient behavior in the Tillamook Bay estuary can be explained by two dominant factors: freshwater flushing time and biological uptake and regeneration. Superimposed on these two processes is seasonal variability in nutrient concentrations of coastal waters via upwelling. Freshwater flushing time determines the amount of time for the uptake of nutrients by phytoplankton, for exchange with suspended particles, and for interaction with the sediments. Seasonal coastal upwelling controls the timing and extent of oceanic delivery of nutrients to the estuary. We suggest that benthic regeneration of nutrients is also an important process within the estuary occurring seasonally according to the flushing characteristics of the estuary. Silicic acid, nitrate, and NH4 + supply to the bay appears to be dominated by riverine input. PO4 −3 supply is dominated by river input during periods of high river flow (winter months) with oceanic input via upwelling and tidal exchange important during other times (spring, summer, and fall months). Departures from conservative mixing indicate that internal estuarine sources of dissolved inorganic phosphorus and nitrogen are also significant over an annual cycle.  相似文献   

16.
Coastal waters are severely threatened by nitrogen (N) loading from direct groundwater discharge. The subterranean estuary, the mixing zone of fresh groundwater and sea water in a coastal aquifer, has a high potential to remove substantial N. A network of piezometers was used to characterize the denitrification capacity and groundwater flow paths in the subterranean estuary below a Rhode Island fringing salt marsh.15N-enriched nitrate was injected into the subterranean estuary (in situ push-pull method) to evaluate the denitrification capacity of the saturated zone at multiple depths (125–300 cm) below different zones (upland-marsh transition zone, high marsh, and low marsh). From the upland to low marsh, the water table became shallower, groundwater dissolved oxygen decreased, and groundwater pH, soil organic carbon, and total root biomass increased. As groundwater approached the high and low marsh, the hydraulic gradient increased and deep groundwater upwelled. In the warm season (groundwater temperature >12 °C), elevated groundwater denitrification capacity within each zone was observed. The warm season low marsh groundwater denitrification capacity was significantly higher than all other zones and depths. In the cool season (groundwater temperature <10.5 °C), elevated groundwater denitrification capacity was only found in the low marsh. Additions of dissolved organic carbon did not alter groundwater denitrification capacity suggesting that an alternative electron donor, possibly transported by tidal inundation from the root zone, may be limiting. Combining flow paths with denitrification capacity and saturated porewater residence time, we estimated that as much as 29–60 mg N could be removed from 11 of water flowing through the subterranean estuary below the low marsh, arguing for the significance of subterranean estuaries in annual watershed scale N budgets.  相似文献   

17.
In an annual cycle from March 2005 to February 2006, benthic nutrient fluxes were measured monthly in the Dongtan intertidal flat within the Changjiang (Yangtze River) Estuary. Except for NH4^+, there always showed high fluxes from overlying water into sediment for other four nutrients. Sediments in the high and middle marshes, covered with halophyte and consisting of macrofauna, demonstrated more capabilities of assimilating nutrients from overlying water than the low marsh. Sampling seasons and nutrient concentrations in the overlying water could both exert significant effects on these fluxes. Additionally, according to the model provided by previous study, denitrification rates, that utilizing NO3- transported from overlying water (Dw) in Dongtan sediments, were estimated to be from -16 to 193 μmol·h^-1·m^-2 with an average value of 63 μmol·h^-1·m^-2 (n=18). These estimated values are still underestimates of the in-situ rates owing to the lack of consideration of DN, i.e., denitrification supported by the local NO3^- production via nitrification.  相似文献   

18.
During a semi-lunar tidal cycle from full moon till new moon, tide is characterized by the periodic change in spring and neap tide. Under the in situ conditions of light and temperature, the influence of a semi-lunar spring and neap tidal cycle on nutrient cycling in intertidal flat of the Yangtze estuary was simulated in the laboratory in July 2002. Lab experiments showed that NH4+ and PO43– were always released into overlying waters, while NO3 was directed into sediments in the permanently waterlogged systems, suggesting that the long-term waterlogged sediment acts as a significant source for NH4+ and PO43–, and a sink for NO3 in water columns. In contrast, reflooding of intertidal sediments after long-term desiccation promoted the considerable effluxes of NH4+, NO3 and PO43– into overlying waters, reflecting that the long-term exposed sediment is an important source for nutrients in overlying waters. In addition, the semi-lunar tidal cycle led to the intricate depth distribution patterns of nutrients in intertidal sediments. During long-term exposure, NH4+ in sediments was quickly transformed into NO2 and NO3, while organic P pool might be converted to slightly adsorbed and iron-bound P. Therefore, it is considered that the semi-lunar tidal circulation has the significant influence on the biogeochemical cycle of nutrients in intertidal systems.  相似文献   

19.
Changes in groundwater tables brought about by sea level increases in the Delaware River Basin (near Philadelphia) about 2,500 years B.P., initiated wetland development at the Princeton-Jefferson Branch of the Woodbury Creek marshes. Continual increases in sea level pushed groundwater tables further upward, and by approximately 800 years B.P., groundwater tables had risen to the upper limits for woody vegetation at the site. By the time European settlers arrived in the late 1600s nontidal sedge marshes dominated the site. Upon arriving colonists began manipulating the hydrology of the Delaware River Basin by constructing dams and dikes for flood control. Soon many areas were cut off from direct contact with the river. During the next one and one-half centuries sea level continued to rise, and because of channelization of the Delaware River the tidal range doubled. During the early 1900s flood control structures began to fail allowing tidal waters to periodically inundate these protected sites. At that time the site was dominated by a Quercus-Castanea swamp forest with hummocks of Cyperaceae interspersed throughout. In 1940 the dike surrounding the Princeton-Jefferson marsh collapsed and the site was immediately inundated with tidal waters on a regular basis. Within a short period of time tidal freshwater marsh developed and has continued to the present day. It is clear from this investigation that changes in hydrology brought about by cultural modifications have been directly responsible for the ontogeny of this tidal marsh. The influence cultural impacts have had on wetland development at the Princeton-Jefferson marsh suggest that it may be necessary to reevaluate the extent humans have modified the development and structure of the present day upper Delaware River estuary. Although the ability to discern historic vegetation zonation patterns is limited, these marshes can record individual events that have shaped these wetlands through time. Due to differences in the structure of the plant community, rates of decomposition, and processes of accretion, Redfield’s model (1972) of tidal salt marsh development does not apply to the Princeton-Jefferson marsh. Along a submerging coast, the development of tidal freshwater marsh in many estuaries may be necessary for the establishment of brackish and salt marshes by creating and maintaining a suitable habitat for the eventual colonization of more salt-tolerant plant species. The roles these wetlands have played in the development of the estuaries has been underestimated in the past.  相似文献   

20.
We examined patterns of habitat function (plant species richness), productivity (plant aboveground biomass and total C), and nutrient stocks (N and P in aboveground plant biomass and soil) in tidal marshes of the Satilla, Altamaha, and Ogeechee Estuaries in Georgia, USA. We worked at two sites within each salinity zone (fresh, brackish, and saline) in each estuary, sampling a transect from the creekbank to the marsh platform. In total, 110 plant species were found. Site-scale and plot-scale species richness decreased from fresh to saline sites. Standing crop biomass and total carbon stocks were greatest at brackish sites, followed by freshwater then saline sites. Nitrogen stocks in plants and soil decreased across sites as salinity increased, while phosphorus stocks did not differ between fresh and brackish sites but were lowest at salty sites. These results generally support past speculation about ecosystem change across the estuarine gradient, emphasizing that ecosystem function in tidal wetlands changes sharply across the relatively short horizontal distance of the estuary. Changes in plant distribution patterns driven by global changes such as sea level rise, changing climates, or fresh water withdrawal are likely to have strong impacts on a variety of wetland functions and services.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号