首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The mooring of offshore floating structures, such as offshore platforms, in large waves against drift forces and rotational moments is a challenging problem in offshore engineering. To accurately investigate such problems, called positioning problems, the time-averaged steady forces of the second order known as the wave drift forces must be taken into account. Fortunately, a cloaking phenomenon occurs under certain conditions and dramatically reduces the wave drift force acting on such a floating body, as previously reported by several researchers. In the diffraction problem of water waves, cloaking refers to the condition where there is no scattering in the form of radial outgoing waves. The reduction of wave drift force on a truncated cylinder with the occurrence of cloaking phenomenon has been numerically and experimentally confirmed. In this paper, the arrangement of several small circular cylinders at regular intervals in a circle concentric with a fixed floating body is considered as an effective means of reducing the wave drift force. Using a combination of a higher-order boundary element method (HOBEM) and wave interaction theory, the influences of the geometric parameters of the outer surrounding cylinders on the wave drift force and the total scattered-wave energy are systematically investigated and discussed. A quasi-cloaking phenomenon is first found and reported in the present study, which is beneficial and flexible for application in practical engineering. More than one quasi-cloaking trigger (where a trigger is an occurrence condition) can be found simply by varying the distance between the inner and outer floating bodies.  相似文献   

2.
An analytical solution is presented for calculating the regular wave induced respones of an articulated column in a wave tank. Extension of the procedure leads to calculation of second order mean drift forces and moments. Hydrodynamic interaction between a cylindrical column and the parallel walls of the tank is shown theoretically to be highly significant and experimental data are presented to corroborate this finding.  相似文献   

3.
An investigation of the hydrodynamic behaviour of bodies in a large-amplitude oscillatory motion, for example in view of wave power absorption by floating bodies, not only requires the knowledge of added mass and damping coefficients, which can be calculated by means of a linear theory, but also of higher-order forces. Especially the third-order values will have to be calculated, because they contain a first-harmonic component.A computation procedure has been developed in order to calculate hydrodynamic forces up to the third order, acting on axisymmetric bodies in an oscillatory heaving motion. The method only requires the knowledge of first- and second-order potential functions, even for the calculation of third-order forces.Experiments have been carried out on floating conical and submerged cylindrical models, in order to evaluate the theoretical procedure.  相似文献   

4.
The purpose of the study was to develop a prediction technique to simulate the motion response of a damaged platform under wave, wind and current forces. The equations of motion were obtained using Newton's second law and the numerical solution technique of non-linear equations of motion is explained for intact and damaged cases. The analysis technique employs large displacement non-linear equations of motion. Solutions were obtained in the time-domain to predict the motion characteristics. In this study, analysis procedures were developed to calculate: (a) wave loading on asymmetrical structural configurations; (b) hydrodynamic reaction forces (inertia or moment of inertia, damping and restoring forces) on asymmetrical shapes. During the damage simulation, change in the mass of the structure as well as wave and hydrodynamic reaction forces, were taken into account. The computer program developed for the time-domain simulation is introduced. In order to avoid slowly decaying transient motions of the structure due to wave excitation forces, an exponential ramp function is used. The application of a ramp function enables a quick convergence in the time-domain solution of equations of motion. Results of a numerical motion simulation program and the experimental studies are also presented in order to make comparisons. Comparison of the test results with the numerical simulations shows good agreement for heave, roll and pitch motions. The formulations and the computational procedures given in this paper provide useful tools for the investigation of the non-linear dynamic stability characteristics of floating structures in waves for intact, damaged and post-flooding conditions in six-degrees of freedom.  相似文献   

5.
A method to compute wave- and current-induced viscous drift forces and moments on floating platforms in regular and random waves is presented. The relative velocity drag term of Morison's equation is used in conjunction with frequency domain first-order motion transfer functions to compute the drift forces and moments. Mean viscous drift forces and moments in regular waves in all six degrees-of-freedom of a tension leg platform are computed. The relative importance of the free-surface force integration, steady current, wave-current interaction and platform motions on the computed drift forces and moments are discussed. The results from this method, in the frequency domain, are used to compute the drift forces and responses in irregular waves using existing methods developed for potential drift computations. Comparisons with results from time-domain computations are also presented and good agreement between the frequency-domain and time-domain results is found. Some comparisons with experimental data are also made. The frequency-domain method is found to be an efficient and useful tool for the analysis of semi-submersible and tension leg platforms during the preliminary design stage in which extensive parametric studies need to be undertaken.  相似文献   

6.
深海极端波浪环境为浮式海洋平台作业时最为关键的海洋动力环境之一。在其作用下,深海浮式平台的运动、气隙以及结构响应等均为近年来的研究热点。然而,在深海环境中,入射波浪环境往往通过X波段雷达进行测量,仅能获得波浪的短时统计值,极大限制了实海域浮动平台动力响应的研究。目前,尚无成熟的方法能够对海洋浮式平台所处海域的入射波时序进行实时测量。针对深远海半潜式平台的波浪时序随船测量问题,结合平台气隙响应与运动响应数据建立基于深层神经网络的波浪非线性解耦模型,准确估计辐射、绕射波浪以及其非线性成分对时序波浪场的影响。研究显示,基于深度神经网络的波浪时序测量技术可以实现从气隙响应到入射波信息的反推,利用该方法计算得到的波浪时序具有较高的精度。  相似文献   

7.
8.
This paper presents a method of estimating wave forces acting on a submerged horizontal circular cylinder fixed in oblique waves.The experiments show that drag and inertia coefficients in beam sea are available for calculating the wave forces in oblique waves.Wave forces exerted on a vertical circular cylinder in deep waves are also investigated.The experimental results show that wave forces acting on the vertical cylinder coincide approximately with hydrodynamic forces acting on a submerged circular cylinder in an oscillating fluid.  相似文献   

9.
Accurate prediction of hydrodynamic forces on offshore structures is critical for safe and cost effective design of fixed and floating offshore structures exposed to a harsh environment. In the present paper, nonlinear interactions between regular waves and a single surface-piercing truncated circular column have been investigated using a frequency domain potential flow solver (DIFFRACT) and a full CFD solver in OpenFOAM for direct comparisons. Both the predicted free surface elevation around the column and the total force acting on the column have been analysed and compared with experimental data from MOERI. The degree of non-linearity and the contribution of each harmonic to the free surface run-up and wave forces have been examined, and evaluations of the accuracy and computational efficiency of the potential flow solver and the full CFD solver are provided and compared in the paper. Also of note are the local forms of the scattered waves around the column in numerical simulations, which are consistent with the Type-1 and Type-2 patterns identified in physical experiments at Imperial College.  相似文献   

10.
Mean and low frequency wave drifting forces on floating structures   总被引:1,自引:0,他引:1  
A recently developed method, based on three-dimensional potential theory, to compute the mean wave drifting forces on a free floating structure in regular waves, is extended to include low frequency oscillatory components which arise when the structure is floating in regular wave groups consisting of two regular waves with small difference frequency. This completes the information necessary for the determination of the wave drifting forces under arbitrary irregular wave conditions.In regular wave groups the drifting forces not only depend on the first order velocity potential and the first body motions, but also on the wave exciting forces due to the low frequency part of the second order potential. For the general three-dimensional case the latter contribution can only be determined numerically and at the expense of long computation times. Since this contribution is generally not large compared to components which may be determined using linear potential theory it is included using a simple approximation. Results of the method of approximation are compared with some two-dimensional cases for which exact solutions are known.Results of computations of the total mean and low frequency surge forces on a rectangular barge and a column stabilized semi-submersible platform are presented. For both structures, the computed mean surge drifting forces in regular head waves are compared with results of model tests.The computed components of the total mean drifting forces are presented. It appears that for both the barge and the semi-submersible the same components are of importance.For the semi-submersible, the computed low frequency second order surge forces in head waves are compared with results obtained from a test in irregular head waves using cross-bispectral analysis methods.  相似文献   

11.
A theoretical assessment is made of mean wave drift forces on groups of vertical circular cylinders, such as the columns of a floating offshore platform. A complete analytical solution is obtained for two cylinders extending from seabed to free surface, and a long wave approximation is found to provide reliable predictions of the drift force in line with the waves at low frequencies. For moderate separation between the two cylinders, this force is found to tend at low frequencies to a value four times the force on an isolated cylinder.A numerical method is employed to study two surface piercing cylinders truncated below the free surface, and an arrangement of four vertical cylinders characteristic of a floating offshore platform. The mean vertical drift force is found to be reasonably well approximated, over the frequency range of practical interest, by the force on an individual cylinder considered in isolation multiplied by the number of cylinders in the group. Interaction effects, however, have a profound influence on the total horizontal drift force. At low frequencies this force is found to tend to the force on an isolated cylinder multiplied by the squate of the number of cylinders in the group.  相似文献   

12.
参考英国的Kincardine风机采用的新式的Semi-Spar概念,结合spar式基础和半潜式基础的特点,提出了一种新式海上浮式风机平台模型,并基于三维势流理论,利用AQWA软件进行水动力计算,验证新式平台可靠性。分析了在风、浪、流荷载联合作用下,锚链竖向夹角、系缆数量对风机浮式平台运动性能和系泊张力的影响,对系泊系统进行优化,并验证极端工况下的可靠性。结果证明风机平台水平运动和纵摇运动幅值较小,但垂荡幅值略大,而通过减小锚链竖向夹角可以控制平台运动响应幅值,增加系缆数量可以同时减小系泊张力大小。计算结果证明了新型Semi-Spar式海上风机平台可行性,为浮式风机平台及系泊系统的设计提供参考。  相似文献   

13.
In this study a typical tension-leg type of floating platform incorporated with the tuned liquid column damper (TLCD) device is studied. The purpose is to find an effective and economic means to reduce the wave induced vibrations of the floating offshore platform system. The floating offshore platform has been widely applied for the offshore exploitation such as operation station, cross-strait bridges, floating breakwater and complex of the entertainment facilities. For offshore platform being employed as a public complex the stability and comfort to stay will be the major concern besides the safety requirement. Therefore, how to mitigate the vibration induced from waves and similar environmental loading becomes an important issue. The TLCD system utilizing the water sloshing power to reduce the vibration of the main structure, a newly developed device that could effectively reduce the vibrations for many kinds of structure is the first-time employed in the floating platform system. In both the analytical and experimental results it is found that the accurately tuned TLCD system could effectively reduce the dynamic response of the offshore platform system in terms of the vibration amplitude and the resonant frequency.  相似文献   

14.
以Spar型浮式风机为研究对象,研究涡激力对于浮式风机系统运动的影响。对多体动力学软件FAST进行二次开发,加入涡激力的计算接口,实现了在平台涡激、波激、空气动力载荷及系泊联合作用下的Spar浮式风机系统的运动响应的计算。计算了在风、浪、流联合作用下,频率锁定现象发生时,Spar基础的运动响应,分析了风浪下Spar风机运动响应的涡激运动特性,并研究了不同的入流角度的影响。结果表明:考虑涡激力后,Spar基础的横荡运动明显增大;风浪流同向时,风浪的存在会抑制流载荷引起的横荡在涡泄频率的运动;在流与风浪垂直时,会激发Spar基础的更大的纵荡运动响应。  相似文献   

15.
Response of a compliant platform to irregular waves is determined using finite element method. The tower is idealized by 2-D beam elements with an elastic support at the guy lines location. The flexural characteristics of the beam correspond to the four corner members of the trusses. The guying system is modelled by an axial element with linear load deformation characteristics. A computer program based on the linearized Morison's equation and the linear (Airy) wave theory, is developed to calculate the total force based on the storm wave height data at different levels of the structure. The response of the structure to random waves is based on the spectral approach. The direct and cross spectral densities of the generalized wave forces are determined and used to obtain the spectral densities of the generalized modal coordinates and mean square response at each level. Possible extension of the method is indicated to compute the evolutionary response to nonstationary wave forces.  相似文献   

16.
Hydrodynamic behavior of a straight floating pipe under wave conditions   总被引:2,自引:0,他引:2  
This paper examines the hydrodynamic behavior of a floating straight pipe under wave conditions. The main problem in calculating the forces acting on a small-sized floating structure is obtaining the correct force coefficients Cn and Ct, which differ from a submerged structure. For a floating straight pipe of small size, we simplify it into a 2D problem, where the pipe is set symmetrically under wave conditions. The force equations were deduced under wave conditions and a specific method proposed to resolve the wave forces acting on a straight floating pipe. Results of the numerical method were compared to those from model tests and the effects of Cn and Ct on numerical results studied. Suggestions for the selection of correct Cn and Ct values in calculating wave forces on a straight floating pipe are given. The results are valuable for research into the hydrodynamic behavior of the gravity cage system.  相似文献   

17.
以三类内孤立波理论(Kd V、e Kd V和MCC)的适用性条件为依据,采用Morison和傅汝德-克雷洛夫公式分别计算Spar平台内孤立波水平力和垂向力,结合时域有限位移运动方程,建立了有限深两层流体中内孤立波与带分段式系泊索Spar平台相互作用的理论模型。以东沙群岛某海域实测内孤立波为对象,数值分析了在内孤立波作用下某经典式Spar平台的内孤立波动态载荷、运动响应及其系泊张力的变化特性。研究表明,内孤立波不仅会对Spar平台产生突发性冲击载荷,使其产生大幅度水平漂移运动,而且还会使其系泊张力显著增大。因此,在Spar平台等深海平台的设计应用中,内孤立波的影响不可忽视。  相似文献   

18.
大深度分层流体中二维淹没浮体的波浪力分析   总被引:2,自引:0,他引:2       下载免费PDF全文
研究了大深度分层流体中二维任意形状淹没浮体的波浪力特性。首先基于一种合适的格林函数,采用边界积分方程法研究了流体中浮体对水波散射问题,然后通过单个淹没圆柱体的透射能和反射能与解析方法结果的比较,对所提出的方法进行了验证,最后分析了在不同的几何和物理条件下几种形状的浮体对波浪力的特有影响,得到了一些有意义的结果,这对分层海洋中淹没浮体的设计具有重要的参考价值。  相似文献   

19.
The method of calculation of non-linear restoring forces presented in this paper is simple, concise and feasible to apply easily in the calculation of restoring forces of platforms in order to simulate motion responses of offshore platforms in the time-domain. In this method, hydrostatic restoring forces and moments are related to the translational and/or rotational displacements. Calculations of non-linear yaw, roll and pitch restoring moments are based on the catenary type of moorings. Although the method presented here is a simple one, it is capable of the calculation of restoring forces for use in the time-domain motion simulations of offshore platforms, with an acceptable degree of accuracy when the numerical simulation results were compared with the experimental measurements.  相似文献   

20.
The scattering of waves by both floating and submerged stationary elliptical breakwaters is investigated by means of linearised shallow water wave theory. This formulation leads to solutions for the fluid velocity potential in terms of Mathieu functions of real argument. Expressions are derived for the wave-induced forces and moments on the structures and their total and differential scattering cross-sections. Numerical results are presented for a range of wave and structural parameters.The present analysis serves as a prelude to a more comprehensive study of the problem without the shallow water restriction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号