首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The particulate concentrations of 17 trace metals, Al, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Ag, Sb, Au, Hg, Pb and Th have been measured in the marine atmosphere (58 samples) and in the deep waters (35 samples) of the Tropical North Atlantic. For oceanic suspended matter, our results are similar to those in samples from the Atlantic and the Pacific Oceans collected during the GEOSECS Program. Based on these results, we have made a flux balance for the mixed layer between input via the atmosphere and removal through small and large particles. These data show that the primary flux of suspended aluminosilicates in the Tropical North Atlantic is attributable to the atmospheric input. Elements Sc, Th, Fe, V, Mn, Co and Cr show high correlation with Al in the marine atmosphere. Of these elements, Fe, Mn, V, Co and Cr are influenced by additional processes such as biological, in the marine environment. For elements Ni, Cu, Zn, Se, Ag, Sb, Au, Hg and Pb, we observe high enrichments (relative to average crustal material) in the marine atmosphere which may be due, at least partially, to the influence of anthropogenic sources. These metals also show similar enrichments in deep ocean suspended matter. Model calculations indicate that the atmospheric flux may not control the deep ocean particulate chemistry of Ni, Cu, Zn, Ag, Sb, Au and Hg. Hence it is likely that, for these elements, the enrichment in the ocean is due to processes within the marine regime, for example their involvement in the biological cycle of the ocean. For Se and Pb, the atmospheric source looks to be the dominant contribution to their particulate concentration in seawater. In the deep North Atlantic, particulate Pb appears to be mostly of anthropogenic origin, which is not the case for Se.  相似文献   

2.
The concentrations of Al, Fe, Mn, Zn, Cu, Pb, Ni, Cr, Ba, V, Sn and As in offshore bottom sediments from the Bacia de Campos oil field, SE Brazil, were measured at the beginning and at 7 months after completion of the drilling operation. Concentrations of Al, Fe, Ba, Cr, Ni and Zn were significantly higher closer to the drilling site compared to stations far from the site. Average concentrations of Al, Cu, and in particular of Ni, were significantly higher at the end of the drilling operation than at the beginning. Comparison between drilling area sediments with control sediments of the continental platform, however, showed no significant difference in trace metal concentrations. Under the operation conditions of this drilling event, the results show that while changes in some trace metal concentrations do occur during drilling operations, they are not significantly large to be distinguished from natural variability of the local background concentrations.  相似文献   

3.
Glacial meltwater and sediment at the source of the River Rhône have been analyzed to determine: 1. the partitioning of Al, Cd, Co, Cu, Cr. Fe, Mn, Ni, Pb and Zn between the water and particulate phase. 2. the particle size ranges which affect the dissolved trace metal ion composition of the meltwater and 3. the availability (potential release) of the ten trace metal ions from the sediment. Greater than 80% of the total Cd, Cu, Mn, Ni and Zn were found to be in operationally-defined (0.4 μm) dissolved forms. Fe and Al in the meltwater are primarily associated with particles in the size range 0.4–8 μm, while Cd. Cu, Mn, Ni and Zn occur with particles smaller than 0.1 μm. For the sediment, Cu, Ni and Pb were significantly present as exchangeable forms; only Cu, Ni, Pb and Zn were determined as organicallybound forms.  相似文献   

4.
Scanning electron microscopy and instrumental neutron activation analyses of filtered suspended matter from the Atlantic Ocean show that particulate aluminium (Alp) is a sensitive measure of bottom derived or resuspended material. The proportion of Alp in suspended particulate matter (SPM) increases slightly between surface and intermediate depths but shows large and steady increases in deep waters with approach to the bottom.

Fep/Alp andMnp/Alp ratios are always higher than the crustal ratios throughout the water column. We show that the processes which can explain such enrichments are different for particulate matter in surface waters (scavenging, incorporation in biogenic particles) than for resuspended material (precipitation from interstitial waters on surficial sediments).

Close to the Mid-Atlantic Ridge, the bottom suspended matter exhibits higher Fep/Alp andMnp/Alp ratios than in abyssal plains. A ridge crest source must be invoked to explain the striking enrichment of Mnp. This source could also explain the enrichment of Fep, although primarily because the resuspended flux is small in that region, one cannot exclude the contribution of particles from the mid-water column.  相似文献   


5.
Measurements of dissolved Cd, Co, Cu, Mn, Ni, Pb, and Zn have been made on a seasonal basis at five stations on a north–south transect across the central English Channel between Cherbourg and the Isle of Wight. Vertical and horizontal distributions of dissolved Cd, Pb, Cu and Zn are relatively uniform except for sampling sites near the English coast. Dissolved Mn and Co show increased concentrations in the English coastal waters, and for Mn the seasonal trend in concentration follows the pattern seen in the Strait of Dover with higher values in the late summer. Ni and Cu are higher in concentration on the English side, which reflects mainly riverine sources. Measurements were also made of particulate forms of the metals above plus particulate Al, Ca, Fe, Mg, Sr and Ti. Water column concentrations of particulate metals broadly follow the distribution of suspended particulate matter, with highest concentrations near the UK coast. Trace metal concentrations have been integrated with modelled data on fluxes of water to provide estimates of fluxes for these elements into the eastern Channel, and an initial comparison is made with data for fluxes of metals through the Strait of Dover obtained during an earlier study. A major influence on the fluxes of particulate metals through the Isle of Wight-Cherbourg transect is the gyre system to the South east to the Isle of Wight, which has important east to west as well as west to east transport components. For those elements where the dissolved form of the metal dominates, the large flow of water in the central Channel waters leads to major fluxes of the metals towards the east and the Strait of Dover. However, the high suspended particulate matter loadings in the coastal waters and impact of the gyre system lead to net east to west fluxes of particulate Al, Fe, Mn and Ti. Comparison of these fluxes with data on the net west to east transport of these materials through the Strait of Dover infers that there must be a significant supply of these particulate metals to the eastern Channel.  相似文献   

6.
Removal of Al, As, Cd, total Cr (Tot. Cr), Cu, Total Fe (Tot. Fe), Mn, Ni, Pb, Sb, Sn, and Zn from urban effluent by wastewater treatment plants (WWTPs) operated under five‐stage Bardenpho® process were investigated and water soluble metals in the dewatered sludge were quantified. Samples were collected from two WWTPs on a weekly basis over an approximately 2.5‐year time span. Tot. Fe and Al were the most abundant, As, Pb, Ni, Cu, and Cd were the least abundant metals in the influents of both WWTPs. Removal efficiencies above 75% were achieved for Tot. Cr, Tot. Fe, Al, and Cu, whereas, no significant removal was observed for As, Cd, Pb, Sb, and Sn. Removal of Tot. Cr, Cu, Tot. Fe, Zn, Al, Mn, and Ni were influenced by influent suspended solids concentrations, and of Tot. Cr, Zn, and Cd were influenced by their initial content in the influent. Zn removal efficiency of biological nutrient removal (BNR) system in this study was higher and Cd removal efficiency was lower than that of conventional activated sludge reported in the literature. No remarkable difference for metals such as Cu, Mn, Ni, and Pb was observed between the removal efficiencies of conventional system and BNR system.  相似文献   

7.
Concentrations of heavy metals (Cu, Ni, Cd, Pb, Cr, and Zn) in bottom sediments, water, snow, and biota of the Uvod Reservoir, as well as of rare-earth elements (Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Y, and Yb) in its water are assessed. Geochemical studies of concentrations of Cu, Ni, Cd, Pb, Cr, and Zn in soils, water, and snow allow us to state that the metals enter the reservoir mostly from natural sources; however, some part of them are of anthropogenic origin. The sum of concentrations of light rare-earth elements (La, Ce, and Nd) make almost the total of all rare-earth elements in the reservoir—from 70 to 97%, depending on the sampling site. The highest concentrations of metals (and the highest percentage of their labile forms) are recorded in the Priplotinnyi and Kolbaskinskii (in macrophite deposits) pools and at the site of water inflow from the Volga-Uvod canal. There is also reason to suppose a secondary entry of the elements under study into the water mass. The largest variations in metals’ concentrations are observed during the periods of spring and autumn floods, when a great quantity of terrigenous suspended matter enters the water body. The distribution of the above metals and rare-earth elements in water is uneven; their highest concentrations are observed in the site of water inflow from the canal and in the Uvod River (the latter is likely to be due to the effect of the settlement of Pistsovo). The analysis of biota (fennel-leaved pondweed and zooplankton) has shown that the Uvod Reservoir is polluted with heavy metals.  相似文献   

8.
Background concentrations of Cd, Pb, Zn and Cu were studied for wetlands from pristine regions of the Russian Arctic: Severnaya Zemlya Archipelago, Vrangel Island, Arctic deserts and tundra of the North Taimyr Peninsula, Byrranga Mountainous Area, tundra zone of Mid-Siberia, North-East Siberia, Far North-East, and Amguemo-Anadyr Mountainous Area. These wetland regions were known to be relatively remote and isolated, with little human population and no local industry. Samples were collected during the period 1976–1993 and included: (a) snow and thaw water, (b) particulate matter, (c) bottom sediments, (d) hydric organo-mineral deposits and hydric soils, (e) polygonal bog peat and sedge-moss peat. Observed ranges for the background concentrations of Cd, Pb, Zn, and Cu in water were 0.001–0.15, 0.02–0.36, 0.05–2.9 and 0.23–6.2 μg l−1 respectively. For (b)–(e) the corresponding values were [0.04–0.46; 1.3–41; 8.6–190; 0.7–63]; [0.05 0.99; 1.5–49; 2.5–153; 2.4–55]; [0.05–0.96; 1.7–44; 2.2–154; 2.0–82] and [0.03–0.83; 1.3–31; 2.1–124; 1.7–68] mg kg−1, dry wt, respectively. Although full assessment of the pristine nature of the wetlands was not possible due to the limited data available, the observed metal concentrations reflect natural geochemical background levels and influence from localized minor ore-deposits present for some regions. In general, there was no evidence of impact from remote industrial regions of the Russian Arctic.  相似文献   

9.
The spatial distribution of the concentrations of heavy metals Cd, Pb, Zn and Cu were studied for contaminated wetlands located by industrial centres and villages influenced by anthropogenic contamination in the Russian Arctic. For comparison, non-contaminated wetlands were also studied in neighbouring areas. Samples were collected during the period 1977–1994 and included: (a) water, (b) particulate matter, (c) bottom sediments, (d) hydric soils and (e) hummock bog peat and polygonal bog peat. For impacted wetlands, the observed ranges for the concentrations of Cd, Pb, Zn, and Cu in water were 0.12–0.8, 0.9–2.5, 2.4–15 and 16–34 μg l−1, respectively. For (b)- (e) the corresponding values were [1.2–5.4; 24–37; 120–320; 80–116]; [6.4–17; 34–59; 240–570; 115–280]; [10–32; 57–78; 315–480; 87–350] and [5.1–53; 51–150; 125–520; 80–440] mg/kg, dry wt, respectively. The metal concentrations were up to 1000 times higher than background levels determined for non-contaminated wetlands in the Russian Arctic. The contaminants appear to be a direct result of localized anthropogenic activity, arising primarily from geoprospecting, the oil and coal industry, and domestic waste.  相似文献   

10.
Baseline levels of a number of trace metals have been determined in samples of water and sediment from Baffin Bay. Concentrations of Cr, Mn, Fe, Ni, Cu and Cd in the waters of Baffin Bay are generally lower than those observed in eastern Canadian coastal waters, levels being close to reported open ocean concentrations. Nearshore sediment samples, analysed for Cr, V, Mn, Ni, Co, Cu, Zn, Hg and Pb, display comparable concentrations to unpolluted muds in eastern Canadian coastal regions. Concentrations of these elements in the deep sediments of central Baffin Bay closely resemble levels in Atlantic Ocean deep-sea clays.  相似文献   

11.
Many studies have been conducted on heavy metal concentrations in urban outdoor dust in China,showing that differences exist in the metal concentrations of different cities. However, no report has studied the distribution of heavy metals across Chinese cities. This work presents the spatial distribution of heavy metals in urban outdoor dust in Chinese cities and discusses the causes for the differences in heavy metal levels across cities by analyzing and summarizing data for 20 provincial capitals from the published scientific literature. The results show that the geometric mean values of Ni and Cr in urban dust of China are lower than or comparable to crustal levels, whereas levels of Cd, Cu, Pb, and Zn are significantly greater than crustal levels. The spatial distributions of Cu, Pb, and Zn in urban dust all exhibit a pattern in which heavy metal levels are greater in cities located in the south of China than in the north. Commercial areas and residential-education areas accumulate more Cd in their dust than industrial areas and traffic areas, and industrial areas and residential-education areas accumulate more Pb than commercial areas and traffic areas. The Zn level in dust from industrial areas is significantly greater than in other areas, and Cu exhibits no significant difference between different functional areas. A positive correlation exists between Cd and Zn in urban dust and population density. Urban dust Pb in Chinese cities is lower than the world average as calculated using data for thirteen cities in different countries. Cd, Cu, and Zn levels in China are close to world averages.  相似文献   

12.
Suspended particulate matter (SPM) was collected in the freshwater-seawater mixing zone in the lower reaches of the Daugava River (Latvia) and adjacent marine area, during five cruises in 1998-2001. The study focused on biogeochemical phase exchange processes. SPM in the freshwater was found to be mainly allochthonous with a high content of organic matter, Mn and sorbed phosphate. Property-salinity plots suggested flocculation of humic-Fe complexes across the salinity gradient. The variability of sorbed phosphate was related to particulate Fe, although no dependence on pH and ionic strength was observed. The Mn contents of SPM mainly follow conservative mixing, but there are also indications of interface exchange of Mn in the mixing zone. The geochemical behaviour of particulate Al appears to differ from that of Fe. In early spring, trace element contents in SPM (Cr, Ni, Cu, Zn, Cd, Pb) correlate tightly with particulate organic matter, whose distribution is linked to phytoplankton distributions.  相似文献   

13.
Concentrations of dissolved metals (Cd, Cu, Ni, Mn and Zn) were determined for summer and winter, under low-flow conditions in Port Jackson, a microtidal, well-mixed estuary in south-east Australia. Mean concentrations of Cd (0.04+/-0.02 microg/l), Ni (0.86+/-0.40 microg/l), Mn (20.0+/-25 microg/l) and Zn (6.47+/-2.0 microg/l) were below water quality guidelines. Concentrations of Cu (1.68+/-0.37 microg/l), however, slightly exceeded recommended values. Dissolved Ni and Mn behaved mostly conservatively, whereas Cd, Cu and Zn showed mid-estuarine maxima. Peaks in Cd, Cu and Zn concentrations were located in the upper estuary, independent of the salinity and suspended particulate matter loading, and were consistent with anthropogenic inputs of metals in the estuary. Concentrations of dissolved Cu were highest in summer, whereas concentrations of Cd, Ni and Mn were significantly lower in summer than winter (P< or =0.05). The increase in temperature and biological activity during summer explained the seasonal variation. The sequence of log K(d) values (20-30 salinity) was Mn>Zn>Cu>Ni. These results give unique information concerning the contemporaneous distribution of dissolved trace metals in the Port Jackson estuary and they provide a data set against which the long-term contamination may be assessed.  相似文献   

14.
Particulate heavy metals (Cu, Pb, Cd) were measured following intensive sampling in June and October 1994 at 70 stations in the Changjiang Estuary and Hangzhou Bay, China. In the study area, particulate Cu and Pb have a similar level that is higher than the concentration of particulate Cd. Cu, Pb and Cd concentrations in suspended sediments are higher than those in bed load. In the middle of Hangzhou Bay, heavy metal concentrations in suspended sediments and bed load are similar. This may be the result of the frequent exchange between them, which is due to the strong dynamic condition. A negative relationship was observed between concentrations of heavy metals in bed load and bulk density. Fine-grained sediments were the main carriers of heavy metals. Sedimentary dynamics dominate the fate of heavy metals in these sites. The distributions of metals (especially Cu) in suspended sediments can indicate the transfer of sediments in this area.  相似文献   

15.
16.
ABSTRACT

The seasonal distribution of metals (V, Cr, Co, Cu, Ni, Zn, Pb, Mn, Fe, Al and Ti) in suspended and bottom sediments of four minor estuaries (Terekhol, Chapora, Sal and Talpona rivers) of Goa, India was investigated to understand the metal distribution process in the estuarine region. The highest particulate-metal concentrations were found in low-salinity regions of all the estuaries, in the wet season (e.g. in the Terekhol River, the averages in ppm were Co: 53, Ni: 197, Cu: 208, Zn: 212 and Pb: 65) compared to the dry season averages (Co: 27, Ni: 76, Cu: 105, Zn: 164 and Pb: 13 ppm). The estuarine-mixing diagrams showed non-conservative behaviour in both seasons. The Sal River had the highest particulate-metal concentration (Co: 106, Ni: 300 and Zn: 323 ppm), suggesting an anthropogenic input. The enrichment factor for suspended matter was higher than bottom sediments with extremely high enrichment for Mn (>10). The Geo-accumulation index displayed unpolluted to polluted class for all metals. The study highlights the important role played by small estuaries in seasonal metal release and accumulation along the coastal region.  相似文献   

17.
Concentrations and seasonal variations of water chemistry, including dissolved and particulate forms of Fe, Mn, Zn, Cu, Pb, Cd, and Ni in rivers of Primorskii Krai are determined. It is shown that, unlike the macrocomposition, the effect of hydrological regime on the concentration of dissolved metal forms is controversial and depends on anthropogenic load, watershed landscapes, and pH variations. Elevated concentrations of dissolved metal forms are recorded in the beginning of spring flood and during low-water period. Beyond the limits of local impact of wastewater, the concentrations of dissolved forms of Cu, Zn, Ni, Pb, and Cd in river waters of the region insignificantly differ from the clearest rivers of the World.  相似文献   

18.
Alia?a Bay is one of the most important maritime zones of Turkey where shipping activity, shipbreaking industry, steel works and petrochemical complexes exist together. Concentrations of heavy metals and organic carbon in sediment of the Alia?a Bay were investigated to evaluate an environmental risk assessment from metals contamination in 2009-2010. Comparison of the metal concentrations with average shale and Mediterranean background levels revealed that most of the samples from the Alia?a were polluted with Hg, Cd, Pb, Cr, Cu, Zn, Mn and Ni. It was found that Hg, Pb, Cu, Zn and Ni levels in Alia?a Bay exceeded the PEL values. Sediments, contaminated with Pb, Cr, Cu, Zn and Ni were considered as heavily polluted per the SQG.  相似文献   

19.
Overlying bottom water samples were collected in the Vistula River plume, southern Baltic Sea, (Poland) and analysed for dissolved and labile particulate (1 M HCl extractable) Cu, Pb, Zn, Mn, Fe and Ni, hydrological parameters being measured simultaneously. Particulate organic matter (POM), chlorophyll a and dissolved oxygen are key factors governing the chemical behaviour of the measured metal fractions. For the dissolved Cu, Pb, Zn, Fe and Ni two maxima, in the shallow and in the deeper part of the river plume, were found. In the shallow zone desorption from seaward fluxing metal-rich riverine particles account for markedly increased metal concentrations, as confirmed also by high particulate metal contents. For Pb, atmospheric inputs were also considered to have contributed to the elevated concentrations of dissolved Pb adjacent to the river mouth. In the deep zone desorption from detrital and/or resuspended particles by aerobic decomposition of organic material may be the main mechanism responsible for enrichment of particle-reactive metals (Cu, Pb, Zn) in the overyling bottom waters. The increased concentrations of dissolved Fe may have been due to reductive dissolution of Fe oxyhydroxides within the deep sediments by which dissolved Ni was released to the water. The distribution of Mn was related to dissolved oxygen concentrations, indicating that Mn is released to the water column under oxygen reduced conditions. However, Mn transfer to the dissolved phase from anoxic sediments in deeper part of the Vistula plume was hardly evidenced suggesting that benthic flux of Mn occurs under more severe reductive regime than is consistent with mobilization of Fe. Behaviour of Mn in a shallower part has been presumably affected by release from porewaters and by oxidization into less soluble species resulting in seasonal removal of this metal (e.g. in April) from the dissolved phase. The particulate fractions represented from about 6% (Ni) and 33% (Mn, Zn, Cu) to 80% (Fe) and 89% (Pb) of the total (labile particulate plus dissolved) concentrations. The affinity of the metals for particulate matter decreased in the following order: Pb > Fe > Zn > or = > Cu > Mn > Ni. Significant relationships between particulate Pb-Zn-Cu reflected the affinity of these metals for organic matter, and the significant relationship between Ni-Fe reflected the adsorption of Ni onto Fe-Mn oxyhydroxides. A comparison of metal concentrations with data from other similar areas revealed that the river plume is somewhat contaminated with Cu, Pb and Zn which is in agreement with previous findings on anthropogenic origin of these metals in the Polish zone of southern Baltic Sea.  相似文献   

20.
Freshwater lakes are one of the most vulnerable ecosystems to environmental contamination. This study was initiated to assess the spatial distribution, fractionation, ecological risk of selected potentially toxic metals (Pb, Zn, Cu, Cr, and Ni) in bottom sediments of the Zarivar lake, the second largest freshwater lake in Iran. The results revealed that Pb, Zn and Cu had the high spatial variability (coefficient of variation >50) across the sampling sites and their maximum concentrations (197.5 for Pb, 198.7 for Zn and 185.6 mg/kg for Cu) were observed in sampling sites from the northern, western and eastern margins of the lake. Cr and Ni with average concentrations of 28.3 and 31.38 mg/kg respectively, exhibited low spatial variability (coefficient of variation <20) and their concentrations did not vary significantly among the sampling sites. Based on the redundancy analysis (RDA), sediment organic matter was strongly correlated with Pb, Zn and Cu while Fe2O3 and Al2O3 showed a positive correlation with Ni and Cr. The calculated average enrichment factor (EF) and geoaccumulation index (Igeo) showed that the contamination level of metals can be arranged in the following order of Pb> Cu > Zn > Cr > Ni. Results from the modified five-step sequential extraction analysis indicated that 40 % of total Pb and Zn were associated with the reducible fraction, 45 % of Cu with the oxidizable fraction and more than 80 % of total Ni and Cr were retrieved from the residual fraction. It was also noticed that Pb, Zn and Cu were more incorporated into the non-residual fractions in the sites with a higher total concentration of these metals, suggesting that both total concentration and fractionation behavior of metals were influenced by their potential sources in the study area. Ecological risk assessment using the potential ecological risk index (PERI) and the modified potential ecological risk index (MPERI) showed that sediments from the eight sampling sites pose a moderate to considerable risk whereas the other sites had low ecological risk level. In comparison to sediment quality guidelines (SQGs), the effects range low (ERL) and probable effect level (PEL) values for Pb, Cu and Zn were exceeded at some sampling sites while Ni and Cr concentrations were found to be below or close to their SQGs values at all the sampling sites. Pb was generally identified as the contaminant of most concern in the study area. Taking into account the results obtained from the fractionation study and the source contribution estimate, it can be inferred that the Pb, Zn and Cu with the average contribution of 79, 54 and 64 % respectively, were mainly derived from anthropogenic sources whereas Ni and Cr with the estimated contribution of 80 and 89 % were predominately from the lithogenic source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号