首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work presents the results of a fluid inclusion study of an amphibolite-granulite facies transition in West Uusimaa, S.W. Finland. Early fluid-inclusions in the granulite facies area are characteristically carbonic (CO2), in contrast to predominantly aqueous early inclusions in the amphibolite facies area. These early inclusions can be related to peak metamorphic conditions (750-820°C and 3-5 kbar for peak granulite facies metamorphism). Relatively young CO2 inclusions with low densities (<0.8g/cm3) indicate that the first part of the cooling history of the rocks was characterized by a near isothermal uplift.
N2-CH4 inclusions, with compositions ranging between pure CH4 and pure N2 (Raman spectral analysis), were found in the whole area. They are probably syn- or even pre-early inclusions. Only nearly critical homogenizing inclusions have been found (low density). Pressure estimates, based on densities of early fluid inclusions, show that the rapid transition of amphibolite towards granulite facies metamorphism is virtually isobaric. Granulite facies metamorphism in West Uusimaa is a thermal event, probably induced by the influx of hot, CO2-bearing fluids.  相似文献   

2.
On the basis of fluid inclusion evidence, pervasive influx of deep-seated CO2-rich fluids has been invoked to account for mid- to upper amphibolite facies (M2B) metamorphism on the island of Naxos (Cyclades, Greece). In this paper, mineral devolatilization and melt equilibria are used to constrain the composition of both syn- and post-peak-M2B fluids in the deepest exposed levels of the metamorphic complex. The results indicate that peak-M2B fluids were spatially and compositionally heterogeneous throughout the high-grade core of the complex, whereas post-peak-M2B fluids were generally water-rich. The observed heterogeneities in syn-M2B fluid composition are inconsistent with pervasive CO2-flushing models invoked by previous workers on the basis of fluid inclusion evidence. It is likely that few CO2-rich fluid inclusions on Naxos preserve fluids trapped under peak metamorphic conditions. It is suggested that many of these inclusions have behaved as chemically open systems during the intense deformation that accompanied the uplift of the metamorphic complex. A similar process may explain the occurrence of some CO2-rich fluid inclusions in granulite facies rocks.  相似文献   

3.
Abstract Deformed quartz veins in garnet-zone schist adjacent to the active Alpine Fault, New Zealand, have fluid inclusions trapped along quartz grain boundaries. Textures suggest that the inclusions formed in their present shapes during annealing of the deformed veins. Many of the inclusions are empty, but some contain carbon dioxide with densities that range from 0.16 to 0.80 g cm−3. No water, nitrogen or methane was detected. The inclusions are considerably more CO2-rich than either the primary metamorphic fluid (<5% CO2) or fluids trapped in fracture-related situations in the same, or related, rocks (<50% CO2). Enrichment of CO2 is inferred to have resulted from selective migration (wicking) of saline water from the inclusions along water-wet grain boundaries after cooling-induced immiscibility of a water-CO2 mixture. Inclusion volumes changed after loss of water. Non-wetting CO2 remained trapped in the inclusions until further percolation progressively removed CO2 in solution. This mechanism of fluid migration dominated in ductile quartz-rich rocks near, but below, the brittle-ductile transition. At deeper levels, hydraulic fracturing is also an important mechanism for fluid migration, whereas at shallower levels advection through open fractures dominates the fluid flow regime.  相似文献   

4.
Abstract Andalusite-bearing veins formed during contact metamorphism in the aureole of the Vedrette di Ries tonalite. In the veins, quartz crystals that are completely armoured by andalusite or that occur in strain shadow areas contain three generations of fluid inclusions: low-salinity H2O-CO2-CH4 mixtures with CH4/(CO2+ CH4) ± 0.35 (type A); low-salinity aqueous fluids (type B); H2O-free, CO2-CH4 fluids with the same carbonic speciation as A (type C). Carbonic types A and C typically have a dark appearance, which is attributed to graphite coatings on inclusion walls. Microstructural analysis of the host quartz and calculated densities indicate that type A inclusions were likely trapped during vein formation. These inclusions underwent strain-assisted re-equilibration during cooling that resulted in density increases without change of composition. After the rocks had cooled below about 350 ° C, type C inclusions appear to have formed from one of the immiscible fractions after unmixing of the H2O-CO2-CH4 fluid mixtures. Aqueous type B inclusions, apparently trapped between 225 and 350 ° C, could represent an independent fluid, or could be the H2O-rich fraction of unmixed type A fluids. Taking account of the uncertainties, the composition and density of the complex type A inclusion fluids are in good agreement with the properties of primary fluids calculated from the petrological data. The fluid inclusion data support the model of vein formation by hydrofracturing as a result of dehydration of graphitic metapelites. These new results also demonstrate the importance of considering strain in the interpretation of metamorphic fluid inclusions.  相似文献   

5.
A sequence of regional metamorphic isograds indicating a range from prehnite-pumpellyite to lower amphibolite facies was mapped in metabasites near Flin Flon, Manitoba. The lowest grade rocks contain prehnite + pumpellyite and are cut by younger brittle faults containing epidote + chlorite + calcite. Isobaric temperature- X CO2 and pressure-temperature (constant X CO2) diagrams were calculated to quantify the effects of CO2 in the metamorphic fluid on the stability of prehnite-pumpellyite facies minerals in metabasites containing excess quartz and chlorite. Prehnite and, to a lesser extent, pumpellyite are stable only in fluids with X co2 <0.002. For X co2>0.002, epidote + chlorite + calcite assemblages are stable. Our calculated phase relations are consistent with regional metamorphism in the Flin Flon area in the presence of an H2O-rich fluid and a more CO2-rich fluid in the later fault zones. We believe that the potential effects of small amounts of CO2 in the metamorphic fluid should be assessed when considering the pressure-temperature implications of mineral assemblages in low-grade metabasites.  相似文献   

6.
Calc-silicate granulites from the Bolingen Islands, Prydz Bay, East Antarctica, exhibit a sequence of reaction textures that have been used to elucidate their retrograde P–T path. The highest temperature recorded in the calc-silicates is represented by the wollastonite- and scapolite-bearing assemblages which yield at least 760°C at 6 kbar based on experimental results. The calc-silicates have partially re-equilibrated at lower temperatures (down to 450°C) as evidenced by the successive reactions: (1) wollastonite + scapolite + calcite = garnet + CO2, (2) wollastonite + CO2= calcite + quartz, (3) wollastonite + plagioclase = garnet + quartz, (4) scapolite = plagioclase + calcite + quartz, (5) garnet + CO2+ H2O = epidote + calcite + quartz, and (6) clinopyroxene + CO2+ H2O = tremolite + calcite + quartz.
The reaction sequence observed indicates that a CO2 was relatively low in the wollastonite-bearing rocks during peak metamorphic conditions, and may have been further lowered by local infiltration of H2O from the surrounding migmatitic gneisses on cooling. Fluid activities in the Bolingen calc-silicates were probably locally variable during the granulite facies metamorphism, and large-scale CO2 advection did not occur.
A retrograde P–T path, from the sillimanite stability field ( c. 760°C at 6 kbar) into the andalusite stability field ( c. 450°C at <3 kbar), is suggested by the occurrence of secondary andalusite in an adjacent cordierite–sillimanite gneiss in which sillimanite occurs as inclusions in cordierite.  相似文献   

7.
Abstract Nearly pure CO2 fluid inclusions are abundant in migmatites although H2O-rich fluids are predicted from the phase equilibria. Processes which may play a role in this observation include (1) the effects of decompression on melt, (2) generation of a CO2-bearing volatile phase by the reaction graphite + quartz + biotite + plagioclase = melt + orthopyroxene + CO2-rich vapour, (3) selective leakage of H2O from CO2+ H2O inclusions when the pressure in the inclusion exceeds the confining pressure during decompression, and (4) enrichment of grain-boundary vapour in CO2 by subsolidus retrograde hydration reactions.  相似文献   

8.
Abstract Quartz-hosted, synthetic CO2-H2O fluid inclusions behave as open systems with respect to diffusional transfer of hydrogen during laboratory-simulated metamorphic re-equilibration at 650, 750 and 825°C and 1.5 kbar total pressure with fO2 defined by the C-CH4 buffer. Microthermometry and Raman spectroscopy show that the initial CO2-H2O inclusions become CO2-CH4-H2-H2O
inclusions after diffusive influx of hydrogen from the reducing confining medium. Measurable changes are observed in inclusion compositions after only 15 days of re-equilibration, implying significant hydrogen mobility at still lower temperatures over geological time spans. Results of synthetic inclusion re-equilibrium experiments have profound implications for the interpretation of natural fluid-inclusion data; failure to account for potential hydrogen migration in inclusions from high-temperature geological environments may lead to erroneous estimates of P-T, and/or the compositions of metamorphic fluids.  相似文献   

9.
Abstract. Primary fluid inclusions in quartz and carbonates from the Kanggur gold deposit are dominated by aqueous inclusions, with subsidiary CO2-H2O inclusions that have a constant range in CO2 content (10–20 vol %). Microthermometric results indicate that total homogenization temperatures have a wide but similar range for both aqueous inclusions (120 to 310C) and CO2-H2O inclusions (140 to 340C). Estimates of fluid salinity for CO2-H2O inclusions are quite restricted (5.9∼10.3 equiv. wt% NaCl), whereas aqueous inclusions show much wider salinity ranging from 2.2 to 15.6 equivalent wt %NaCl.
The 6D values of fluid inclusions in carbonates vary from -45 to -61 %, in well accord with the published δD values of fluid inclusions in quartz (-46 to -66 %). Most of the δ18O and δD values of the ore-forming fluids can be achieved by exchanged meteoric water after isotopic equilibration with wall rock by fluid/rock interaction at a low water/rock ratio. However, the exchanged meteoric water alone cannot explain the full range of δ18O and δD values, magmatic and/or meta-morphic water should also be involved. The wide salinity in aqueous inclusions may also result from mixing of meteoric water and magmatic and/or metamorphic water.  相似文献   

10.
Abstract Observations and microthermometric data on fluid inclusions from a terrane that underwent deformation following peak metamorphic conditions show that grain-boundary migration recrystallization favours the entrapment of carbonic inclusions whereas microfracturing during brittle deformation favours the infiltration and eventual entrapment of aqueous fluids. Our results imply that pure CO2 fluid inclusions in metamorphic rocks are likely to be the residue of deformation-recrystallization process rather than representing a primary metamorphic fluid.
Where the temperature of deformation can be deduced by other means, the densities of fluid inclusions trapped during recrystallization, which we call recrystallization-primary fluid inclusions, can be used to constrain the ambient pressure during deformation. Using these constraints, the data imply that the post-metamorphic Hercynian exhumation in Sardinia brought rocks at 300° C to within 3km of the surface. This conclusion is similar to that described for the rapidly uplifted Southern Alps in New Zealand.  相似文献   

11.
Abstract Scapolite, wollastonite, calcite, diopside, grossular-andradite garnet and sphene occur in calc-silicate rocks in the granulite terrain of the Arunta Block, central Australia. This assemblage buffers the CO2 activity at a low value, so that any coexisting fluid phase must be H2O rich and CO2 poor ( X co2 = 0.2-0.3). In contrast, the H2O activity in the surrounding felsic and mafic granulites was low. Thus fluid activities during granulite facies metamorphism were locally buffered in various rock units and fluid flow appears to have been restricted or fluid may have been absent. Late retrograde rims of garnet and garnet-quartz separate phases formed in the high-grade stage. Formation of these rims would have required either an influx of water-rich fluid or a decrease in pressure. Evidence from the surrounding granulites shows that in one locality, the calc-silicate rocks had undergone late isobaric hydration; in another locality, minor uplift had occurred soon after peak P-T conditions. In both, scapolite had partly broken down to plagioclase-calite. A calc silicate rock from the granulite terrain of Enderby Land, Antarctica, contains scapolite, wollastonite, calcite, diopside, quartz and sphene; this assemblage also indicates low CO2 activities. In this rock, wollastonite has broken down to calcite-quartz, to indicate isobaric cooling without influx of hydrous fluid.  相似文献   

12.
Abstract. This study examined the effect of CO2 on NaCl solubility in hydrothermal fluid, with the synthetic fluid inclusion technique. Fluid inclusions of 30–40 wt% NaCl and 5 mol % CO2 were synthesized, and their halite dissolution temperatures, Tm(halite), were measured. The solubilities of NaCl in CO2-bearing aqueous fluid were obtained at 160–320C under vapor-saturated pressures. The Tm(halite) value in aqueous fluid with 5 mol % CO2 obtained in this study agrees with that of Schmidt et al. (1995), showing that 5 mol % CO2 reduces the solubility of NaCl by about 1 wt%.
Calculation of magnetite solubility suggests that 5–10 mol % CO2 decreases magnetite solubility by 4.5–8.9 % relative to the magnetite solubility in CO2-free solution. Therefore, an increase of CO2 content in ore-forming solutions may cause deposition of iron minerals and produce ore deposits.  相似文献   

13.
Two impure ultrahigh-pressure (UHP) marbles, a calcite marble with the peak assemblage Grt + Phe + Cpx + Rt + (Arg) and a dolomite marble with the peak assemblage Crn + Chl + Rt + Dol (±Arg), from the same lens from the polymetamorphic complex of the Brossasco-Isasca Unit (BIU) (southern Dora-Maira Massif) have been petrologically investigated and modelled by calculating P – T phase-diagram projections for H2O–CO2 mixed-volatile systems. Thermobarometric data obtained from the calcite marble suggest Alpine peak conditions in the diamond stability field (4.0 GPa at 730 °C), and allow reconstruction of the earlier portion of the Alpine retrograde P – T path, which is characterized by a significant decompression coupled with a moderate and continuous cooling to 650 °C at 2.50 GPa. The modelled fluid compositions at peak conditions point to 0.025 ≤  X (CO2) ≤ 0.10 and X (CO2) ≤ 0.0012 in the calcite marble and dolomite marble, respectively, suggesting fluid heterogeneity at the local scale and an internally buffered fluid evolution of the studied impure marbles. The lack of micro-diamond in the BIU marbles is explained by the very-low X (CO2) values, which favoured relatively high f O2-conditions, preventing the formation of diamond at the UHP peak metamorphic conditions.  相似文献   

14.
Abstract The orthopyroxene-clinopyroxene, garnet-orthopyroxene and garnet-clinopyroxene geothermometers, and the garnet-orthopyroxene-plagioclase, garnet-clinopyroxene-plagioclase and anorthite-ferrosilite-grossular-almandine-quartz geobarometers are applied to metabasites and the garnetplagioclase-sillimanite-quartz geobarometer is applied to a metapelite from the Proterozoic Arendal granulite terrain, Bamble sector, Norway. P–T conditions of metamorphism were 7.3 ± 0.5 kbar and 800 ± 60°C.
This terrain shows a regional gradation from the amphibolite facies, into normal LILE content granulite facies rocks and finally strongly LILE deficient granulite facies gneisses. Neither P nor T vary significantly across the entire transition zone. The change in 'grade'parallels the increasing dominance of CO2 over H2O in the fluid phase.
LILE-depletion is not a pre-condition of granulite facies metamorphism: granulites may have either 'depleted'or 'normal'chemistries. The results presented herein show that LILE-deficiency in granulite facies orthogneisses is not necessarily related to variations in either P or T . The important mechanisms in the Arendal terrain were (a) direct synmetamorphic crystallization from magma, with primary LILE-poor mineralogies imposed by the prevailing fluid regime, and (b) metamorphic depletion, involving scavenging of LILEs during flushing by mantle-derived CO2-rich fluids. The latter process is constrained by U–Pb and Rb–Sr isotopic work to have occurred no later than 50 Ma after intrusion of the acid-intermediate gneisses, and was probably associated with contemporary basic magmatism in a tectonic environment similar to a present day cordilleran continental margin.  相似文献   

15.
The CO2 atmospheric content has shown large variations over geological times. High contents (up to one order of magnitude more than present-day values) ultimately correspond to discrete episodes of mantle degassing, either juvenile, or subduction-related (carbon recycling). A number of arguments (e.g. the continuous volume increase of carbonate-bearing sediments with time) suggest that, throughout the Earth's history, juvenile CO2 has formed a major contribution to the global carbon budget of the Earth.
The absence of a direct relationship between major volcanic episodes and the average CO2 atmospheric content suggests that volcanoes might not be the only way by which mantle CO2 is transported to the surface. It is proposed that large quantities of juvenile CO2 could temporarily be stored in the lower continental crust during major episodes of granulite formation. These are primarily caused by magmatic underplating and they result in a vertical accretion of the crust by accumulation of CO2-bearing, mantle-derived magmas. Most of the CO2 migrates through the crust during post-metamorphic evolution and isostatic restoration of the normal continental thickness. However, large quantities of CO2 can still be present in some areas, notably as high-density fluids enclosed in minerals.  相似文献   

16.
Abstract. Laser Raman microprobe analysis was performed on the fluid inclusions from the Honko-Sanjin zone in the Hishikari epithermal gold deposit, southern Kyushu, Japan. Gas concentrations of fluid inclusions through the zone were below detection limits (e.g., 5 mmole/kg H2O for CO2), with an exception at shallow portion in which the CO2/N2 mole ratio was determined to be 5.3. Boiling of hydrothermal solutions probably separated gases from ore fluids at the deep portion of the deposit, and migration of gases to shallow portion resulted in CO2-rich steam-heated water and related acid alteration.  相似文献   

17.
Low-pressure granulite facies metasedimentary gneisses exposed in MacRobertson Land, east Antarctica, include hercynitic spinel-bearing metapelitic gneisses. Peak metamorphic mineral assemblages include spinel + rutile + ilmenite + sillimanite + garnet, spinel + ilmenite + sillimanite + garnet + cordierite, ortho-pyroxene + magnetite + ilmenite + garnet, spinel + cordierite + biotite + ilmenite and orthopyroxene + cordierite + biotite, each with quartz, K-feldspar and melt. The presence of garnet + biotite- and cordierite + orthopyroxene-bearing assemblages implies crossing tie-lines in AFM projection for the K2O-FeO-MgO-Al2O3-SiO2-H2O (KFMASH) system. This apparent contradiction, and the presence of spinel, rutile and ilmenite in the assemblages, is acounted for by using the KFMASH-TiO2-O2 system, i.e. AFM + TiO2+ Fe2O3. We derive a petrogenetic grid for this system, applicable to low-pressure granulite facies metamorphic conditions. Retrograde assemblages are interpreted from corona textures on hercynitic spinel and Fe-Ti oxides. The relative positions of the peak and retrograde metamorphic assemblages on the petrogenetic grid suggest that corona development occurred during essentially isobaric cooling.  相似文献   

18.
The field relations from a quarry at Nuliyam, South India, illustrate dehydration of an amphibolite facies gneiss to granulite facies charnockite by CO2 influx, over a scale of 30 m. Both the calc-silicate source of the fluids and the full extent of their penetration into the gneiss are preserved in a continuous section. Fluid flow is by a hydraulic fracture mechanism, but is thought to be pervasive. The sharp reaction front predicted by the continuum mechanical theory for advective fluid transport is not observed. The front spreading is on too large a scale for either diffusive or dispersive control and is due to local kinetic disequilibrium between the fluid and rock, although the divariant nature of the reaction may also have a limited effect. The time-integrated fluid flux varies from the instantaneous porosity at the fluid front to 20 vol. % adjacent to the calc-silicate. Carbon isotope budgets suggest that decarbonation of the calc-silicate by a Rayleigh fractionation process provides a sufficient source for the CO2 influxing into the gneiss. Graphite abundances vary from 0.01 to 0.1% (by weight), it is principally derived by precipitation from the fluid and may be modelled from phase equilibria. Carbon isotope fronts coincide with the reaction front on the scale of sampling, although isotopic disequilibrium between graphite and inclusion-CO2 also implies local fluid-rock disequilibrium.  相似文献   

19.
The equilibrium constant, K a, of the association reaction to form ion pairs from charged solute species in supercritical solutions can be calculated from a model based on published equations. Log K a at constant pressure is a linear function of the inverse in the dielectric constant of the fluid times temperature. The dielectric properties of H2O and CO2 at supercritical pressures and temperatures can also be evaluated using the Kirkwood equation. Using Looyenga mixing rules, the dielectric constant of H2O–CO2 mixtures can be obtained and the change in log K a with addition of CO2 in aqueous solutions evaluated. These changes in log K a with addition of CO2 are consistent with measured changes of log K a with addition of Ar in supercritical H2O–Ar solutions.
Log K a of KCl and NaCl increase to an increasing extent as the mole fraction of CO2 increases in H2O–CO2 solutions. For instance, at 2 kbar and constant temperature between 400 and 600° C, log K a of KCl increases by about two orders of magnitude whilst that of NaCl increases by over four orders of magnitude as the CO2 mole fraction increases from 0.0 to 0.35. Such changes in log K a will have dramatic effects on the solubility of minerals in CO2-rich environments.  相似文献   

20.
Results of electron microprobe and microthermometric studies of samples collected from the Bouvet Triple Junction Region (BTJR) during a joint Russian-Italian geological expedition on the R/V Academician Nikolaj Strakhov (1994) have revealed new data on the composition of basaltic magmas and oceanic hydrothermal fluids connected with magmatic processes. Detailed analysis of basaltic glasses shows that the modem Mid-Atlantic Ridge (MAR) rift valley is composed of normal mid-ocean ridge basalts with low concentrations of K2 O and TiOz (N-MORB), while its flanks are more enriched with these components approaching E-MORB. A marked influence of the Bouvet hot spot volcanism on magma generation on the South-West Indian Ridge (SWIR) near Bouvet Island is observed. Basaltic melts in this area belong to alkalic and transitional series and have maximum contents of K2O, TiO2, H2O.
Microthermometric analyses of fluid inclusions in the samples from the BTJR have revealed major differences in the oceanic hydrothermal fluid systems on the MAR and near SWIR, which depends on the peculiarities of magma. In the area of the MAR (with dry melts) only H2O solution inclusions in quartz were found; thus, seawater is probably the only primary source of hydrothermal fluids (NaCl + MgCl2+ H2O; T = 170–200°C). In the SWIR area (with the high content of water in melts) syngenetic liquid CO2 and H2O solution inclusions in quartz indicate the influence of the magmatic fluid component on the ore-forming water/carbon dioxide solutions (NaCl + CaC12+ H2O + CO2; T = 200–310 °C; P = 900–1700 bar).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号