首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
青藏高原(无论南部、北部)雪冰电导率与雪冰体的酸碱度及雪冰内各类杂质成分的关系明显不同于极地冰盖(南极冰盖与格陵兰冰盖),青藏高原雪冰电导率依赖于地壳来源的碱性矿物盐类杂质(如Ca2+,Mg2+,SO2-4等),因而与雪冰酸度(即H+)呈反相关;极地冰盖雪冰电导率依赖于海洋来源的酸根离子(如Cl-,SO2-4等),因而与雪冰酸度呈正相关。但在北极地区,雪冰电导率与各离子的关系存在复杂的地域分异,如在北极中心地区,极可能由于“北极霾”的干扰,打破了格陵兰冰盖内电导率与酸根离子间明确的函数关系。总之,雪冰电导率是寒区大气环境的替代性“指示器”  相似文献   

2.
极地冰雪环境地球化学指标及其指示意义   总被引:3,自引:0,他引:3       下载免费PDF全文
极地冰雪中可以反映气候环境的环境地球化学指标主要是可溶性杂质和不可溶性微粒。可溶性杂质主要包括H+、Na+、Mg2 +、Ca2 +、NH4+、Cl- 、NO3- 、SO42 - 、CH3SO3- 等。本文在概述冰雪中的这些化学杂质的来源影响因素和时空分布特征的基础上 ,概述了冰雪中NO3- 沉积的主要来源 (即闪电作用和高层大气光化学作用产生的含氮化合物等 )及其影响因素 (包括太阳活动、火山活动、超新星活动、核爆炸试验和沉积后的蒸发及迁移作用等 ) ,SO42 - 的主要来源 (即海洋生物释放和火山喷发等 )、影响因素 (包括源区温度、ENSO事件及海冰面积等 )和它们的时空变化特点 ;讨论了南、北极地区冰雪中微粒沉积的主要源区和变化特征。。  相似文献   

3.
北半球积雪/海冰面积与温度相关性的差异分析   总被引:1,自引:1,他引:0  
任艳群  刘苏峡 《地理研究》2018,37(5):870-882
积雪和海冰的时空变化对区域以及全球的气候、水文具有重要影响。基于雪冰数据和NCEP再分析气温数据,利用MK检验、滞后分析等方法,分析了积雪、海冰的时空变化特征及其与温度的相关特征。结果表明:1979-2013年,北半球积雪区、北极圈的年均温度呈显著上升的趋势,而积雪面积和海冰面积呈显著下降的趋势。在大部分地区,积雪覆盖频率随着温度的上升呈显著减少的趋势,但在中国长江中下游、青藏高原等局部地区,积雪覆盖频率随着温度的上升呈显著增加趋势。在大部分的近陆地海域,海冰覆盖频率随着温度的上升呈显著下降趋势。超前时间1~2个月的温度与海冰面积的负相关性最高。超前1~4个月的温度与积雪面积的负相关性最高。温度对海冰的影响时间比对积雪的影响时间长1~2个月。温度变化对海冰和积雪的影响存在一致性,但积雪和海冰对温度的响应时间存在差异,具有空间变异性。  相似文献   

4.
北极Svalbard群岛Longyearbyen地区3条冰川8个雪坑样品的分析结果表明,该地区冰川表层雪中海盐离子Cl-和Na+占主导地位,其浓度远高于其它离子,而陆源Ca2+在雪坑秋季污化层中浓度远远高于其它层位,可作为雪坑定年中秋季层位的标志。在季节变化上,海盐离子和SO2-4、NO-3在春季和夏季表现为高值,这与冬春季节北大西洋风暴和中纬度人类污染物远距离传输到北极有关,也与夏季局地海洋性气团、大气中氧化作用、光电作用和清除速率有关。同全球的边远地区格陵兰、南极和青藏高原比较,Longyearbyen地区雪中离子浓度水平较高,特别是海盐离子浓度远高于其它地区。  相似文献   

5.
1IntroductionStudiesonchemicalcharacteristicsinsnowpitareveryimportantinresearchofmodernprocesesinsnowandice,whichisbasiccont...  相似文献   

6.
The dramatic decline in Arctic sea ice cover is anticipated to influence atmospheric temperatures and circulation patterns. These changes will affect the terrestrial climate beyond the boundary of the Arctic, consequently modulating terrestrial snow cover. Therefore, an improved understanding of the relationship between Arctic sea ice and snow depth over the terrestrial Arctic is warranted. We examined responses of snow depth to the declining Arctic sea ice extent in September, during the period of 1979–2006. The major reason for a focus on snow depth, rather than snow cover, is because its variability has a climatic memory that impacts hydrothermal processes during the following summer season. Analyses of combined data sets of satellite measurements of sea ice extent and snow depth, simulated by a land surface model (CHANGE), suggested that an anomalously larger snow depth over northeastern Siberia during autumn and winter was significantly correlated to the declining September Arctic sea ice extent, which has resulted in cooling temperatures, along with an increase in precipitation. Meanwhile, the reduction of Arctic sea ice has amplified warming temperatures in North America, which has readily offset the input of precipitation to snow cover, consequently further decreasing snow depth. However, a part of the Canadian Arctic recorded an increase in snow depth driven locally by the diminishing September Arctic sea ice extent. Decreasing snow depth at the hemispheric scale, outside the northernmost regions (i.e., northeastern Siberia and Canadian Arctic), indicated that Arctic amplification related to the diminishing Arctic sea ice has already impacted the terrestrial Arctic snow depth. The strong reduction in Arctic sea ice anticipated in the future also suggests a potential long-range impact on Arctic snow cover. Moreover, the snow depth during the early snow season tends to contribute to the warming of soil temperatures in the following summer, at least in the northernmost regions.  相似文献   

7.
Studies on the impact of solar activity on climate system are very important in understanding global climate change. Previous studies in this field were mostly focus on temperature, wind and geopotential height. In this paper, interdecadal correlations of solar activity with Winter Snow Depth Index (WSDI) over the Tibetan Plateau, Arctic Oscillation Index (AOI) and the East Asian Winter Monsoon Index (EAWMI) are detected respectively by using Solar Radio Flux (SRF), Total Solar Irradiance (TSI) and Solar Sunspot Number (SSN) data and statistical methods. Arctic Oscillation and East Asian winter monsoon are typical modes of the East Asian atmospheric circulation. Research results show that on interdecadal time scale over 11-year solar cycle, the sun modulated changes of winter snow depth over the Tibetan Plateau and East Asian atmospheric circulation. At the fourth lag year, the correlation coefficient of SRF and snow depth is 0.8013 at 0.05 significance level by Monte-Carlo test method. Our study also shows that winter snow depth over the Tibetan Plateau has significant lead and lag correlations with Arctic Oscillation and the East Asian winter monsoon on long time scale. With more snow in winter, the phase of Arctic Oscillation is positive, and East Asian winter monsoon is weak, while with less snow, the parameters are reversed. An example is the winter of 2012/2013, with decreased Tibetan Plateau snow, phase of Arctic Oscillation was negative, and East Asian winter monsoon was strong.  相似文献   

8.
2000-2016年青海湖湖冰物候特征变化   总被引:4,自引:0,他引:4  
湖冰物候特征是气候变化的灵敏指示器。基于2000-2016年青海湖边界矢量数据,结合Terra MODIS和Landsat TM/ETM+遥感影像及气象数据,利用RS和GIS技术综合分析青海湖湖冰物候特征变化及其对气候变化的响应。结果表明:① 青海湖开始冻结、完全冻结、开始消融和完全消融的时间分别为12月中旬、1月上旬、3月中下旬和3月下旬至4月上旬,平均封冻期和平均完全封冻期为88 d和77 d,平均湖冰存在期和平均消融期为108 d和10 d。② 近16年间青海湖湖冰物候特征各时间节点变化呈现较大的差异性。湖泊开始冻结日期相对变化较小,完全冻结日期呈先提前后推迟的波动趋势,开始消融日期呈先推迟后提前的波动趋势,完全消融日期在2012-2016年呈明显提前趋势。青海湖封冻期在2000-2005年和2010-2016年呈缩短趋势,但减少速率慢于青藏高原腹地的湖泊。③ 青海湖冻结和消融的空间模式相同,即湖冰形成较早的区域则消融较早,且前者持续时间(18~31 d)整体上大于后者(7~20 d),二者相差约10 d。④ 冬半年负积温大小是影响青海湖封冻期的关键要素,但风速和降水对青海湖湖冰的形成和消融亦发挥着重要作用。  相似文献   

9.
"美丽冰冻圈"融入区域发展的途径与模式   总被引:2,自引:0,他引:2  
杨建平  哈琳  康韵婕  肖杰  陈虹举  贺青山 《地理学报》2021,76(10):2379-2390
在探讨“美丽冰冻圈”内涵的基础上,从自然属性与社会经济两个层面、致利与致害两条线,分析了“美丽冰冻圈”与区域可持续发展的关系,“美丽冰冻圈”、区域社会经济发展、人类福祉构成冰冻圈—人类社会经济复合命运共同体。基于中国冰冻圈要素及其变化影响的区域差异性,选取祁连山—河西地区、青藏高原三江源地区、横断山大香格里拉地区,分别代表冰冻圈水资源影响区、冰冻圈灾害影响区、冰冻圈旅游经济区,围绕冰冻圈水资源服务与绿洲经济、雪灾害风险与畜牧业经济、冰雪旅游与区域经济等核心问题,从冰冻圈资源服务与灾害风险视角,详细阐述了冰冻圈融入不同区域发展的途径与模式。在干旱半干旱内陆地区,冰冻圈主要以水源涵养、水量供给与径流调节服务,融入绿洲社会经济发展,是一种冰冻圈水资源支撑型区域发展模式;在青藏高原高寒区,冰冻圈生态环境决定了畜牧业经济的脆弱性,冰冻圈灾害负向影响畜牧业经济,是一种冰冻圈生态支撑+灾害影响型区域发展模式;在冰冻圈旅游经济区,直接依托冰雪资源发展冰雪旅游业,是一种基于冰冻圈资源的旅游经济驱动型区域发展模式。  相似文献   

10.
1Introduction“Anti-adsorptionphysicalycoatedmercuryfilmelectrodesystem”ASVmethodwasproposedbyInstituteofOceanology,ChineseAca...  相似文献   

11.
极地冰雪氢氧同位素指标及其指示意义   总被引:1,自引:0,他引:1       下载免费PDF全文
本文综述了水汽来源状况、降水季节变化、火山喷发、太阳活动等气候环境因素对极地冰雪中同位素含量的可能影响及其程度 ,以及降水区域不均衡性、降水年际不均衡性、逆温层和同位素在冰雪中的扩散迁移作用等几种不稳定因素可能对冰雪同位素分析造成的干扰 ;在此基础上 ,综述了极地冰雪中δ1 8O、δD和其差值d(d =δD - 8δ1 8O)与局部或全球气温之间的一些线性关系 (包括全球尺度 ,格陵兰地区 ,南极地区等 )及它们在空间分布上的变化规律  相似文献   

12.
ChemicalcharacteristicsofsummerprecipitationatPointBarrow,ArcticAlaskaHouShugui(侯书贵)andQinDahe(秦大河)LanzhouInstituteofGlaciol...  相似文献   

13.
A 6-m ice core was recovered in 2004 from the Naimona'Nyi Glacier, the middle Himalayas. Empirical orthogonal function (EOF) analysis on the major ion reveals that EOF1 represents the variations of majority of ions which may be originated from crustal aerosols. Comparing the calcium concentrations from the Naimona'Nyi with these from Dasuopu, East Rongbuk and Guliya ice cores, it is observed that calcium, a good indicator of the input of crustal aerosol in snow, concentrates mostly in the Guliya ice core located on the northern Tibetan Plateau, and gradually decreases from west to east in the Himalayas.  相似文献   

14.
青藏高原毗邻全球大气污染物排放增长最快速的地区,受西风和南亚季风的影响,中亚、南亚等高原周边排放的污染物通过大气环流传输,进入高原并对其气候环境产生重要影响。观测事实表明:近几十年青藏高原东部和南部雪冰中黑碳含量呈显著上升趋势,这可能导致冰川加速融化和积雪持续时间缩短,最终影响青藏高原的水循环过程。前人对青藏高原黑碳的外源输送,特别是南亚大气污染物的贡献及其对高原气候、冰冻圈变化的影响,还没有较清晰和统一的认识。青藏高原污染物定点监测网络的发展及高分辨率区域气候—大气化学模式的应用,为定量评估高原污染物外源输送及气候效应提供了契机。本文在国家自然科学基金青年科学基金项目“南亚黑碳气溶胶跨境传输及其对青藏高原气候影响的数值模拟研究”的资助下,在以下三个方面取得了进展:①系统性论证了高分辨率区域气候—大气化学模式在高原的适用性,模拟了青藏高原及周边区域黑碳时空分布、传输和沉降过程;②揭示了污染物扩散的机制,评估了大气黑碳的气候及雪冰效应,并对比了自然源粉尘和人为源黑碳对青藏高原气候的影响;③定量估算了不同区域排放对高原黑碳外源输送的贡献率,其中来自南亚的黑碳对青藏高原外源输送的贡献率最高,在非季风期为61.3%,季风期为19.4%。本文揭示了外源输送黑碳对青藏高原气候的影响,为提高一带一路核心区冰冻圈与水资源的管理及预测能力,制定应对环境变化策略及国家气候外交谈判提供科学依据。  相似文献   

15.
青藏高原积雪分布与变化特征   总被引:45,自引:1,他引:44  
柯长青  李培基 《地理学报》1998,53(3):209-215
本文对青藏高原SMMR修积雪深度、NOAA周积雪面积、地面台站积雪深度进行了分析。结果表明青藏高原东西两侧多雪与腹地少雪形成鲜明对比,高原东部是高原积雪年际变化最显著的地区,它主导了整个高原积雪的年际变化,并且与西部多雪区年际波动呈反位相关系。从60年代到80年代积雪年际波动幅度有明显增加趋势,积雪变化具有3年左右准周期。随着全球变暖,青藏高原积雪将会有所增加。  相似文献   

16.
At present, gas hydrates are known to occur in continental high latitude permafrost regions and deep sea sediments. For middle latitude permafrost regions of the Tibetan Plateau, further research is required to ascertain its potential development of gas hydrates. This paper reviewed pertinent literature on gas hydrates in the Tibetan Plateau. Both geological and ge- ographical data are synthesized to reveal the relationship between gas hydrate formation and petroleum geological evo- lution, Plateau uplift, formation of permafrost, and glacial processes. Previous studies indicate that numerous residual basins in the Plateau have been formed by original sedimentary basins accompanied by rapid uplift of the Plateau. Ex- tensive marine Mesozoic hydrocarbon source rocks in these basins could provide rich sources of materials forming gas hydrates in permafrost. Primary hydrocarbon-generating period in the Plateau is from late Jurassic to early Cretaceous, while secondary hydrocarbon generation, regionally or locally, occurs mainly in the Paleogene. Before rapid uplift of the Plateau, oil-gas reservoirs were continuously destroyed and assembled to form new reservoirs due to structural and thermal dynamics, forcing hydrocarbon migration. Since 3.4 Ma B.P., the Plateau has undergone strong uplift and extensive gla- ciation, periglacier processes prevailed, hydrocarbon gas again migrated, and free gas beneath ice sheets within sedi- mentary materials interacted with water, generating gas hydrates which were finally preserved under a cap formed by frozen layers through rapid cooling in the Plateau. Taken as a whole, it can be safely concluded that there is great temporal and spatial coupling relationships between evolution of the Tibetan Plateau and generation of gas hydrates.  相似文献   

17.
青藏高原东南部海拔高,地形复杂,云量大,准确掌握该地区的积雪分布特征对于积雪灾害防治非常重要。论文以2013—2019年冬季积雪积累期云量符合要求的35景高分一号(GF-1)影像为基础,将全色影像和多光谱影像融合为2 m分辨率影像,通过目视解译获取了研究区积雪的空间分布特征,结合改进后的30 m分辨率SRTM DEM,探讨了地形对积雪分布的影响。结果表明:积雪像元在研究区范围内占比为33.1%。积雪的垂直分布特征明显:积雪在高程带4000~5000 m(高海拔)处分布较集中,积雪面积占比为18.1%;在高程带0~2000 m、2000~3000 m和6000~7000 m处积雪面积占比均不到0.1%。积雪在北坡、东北坡的分布比例较高,均为15%以上;在南坡、西坡、西南坡、东南坡分布比例较低,均为10%左右。将基于GF-1影像获取的积雪分布分别与同日获取的根据MODIS V6积雪产品计算的积雪比例(MODIS FSC)和积雪分布的对比表明,64.4%的MODIS FSC像元绝对误差不超过10%,MODIS积雪分布产品对含雪像元的漏分率和误分率平均为33.8%和32.7%,说明MODIS积雪产品在研究区的精度还具有较高的不确定性,其对低覆盖积雪反演的精度较差。这表明利用MODIS积雪产品研究青藏高原东南部积雪的时空变化特征时还需要对其积雪反演算法进行改进,同时亟需加强地面观测和基于多源遥感数据的积雪研究。研究结果可为青藏高原东南部雪冰灾害防治提供支撑。  相似文献   

18.
In order to analyze the differences between the two snow cover data, the snow cover data of 884 meteorological stations in China from 1951 to 2005 are counted. The data include days of visual snow observation, snow depth, and snow cover durations, which vary according to different definitions of snow cover days. Two series of data, as defined by "snow depth" and by "weather observation," are investigated here. Our results show that there is no apparent difference between them in east China and the Xinjiang region, but in northeast China and the Tibetan Plateau the "weather observation" data vary by more than 10 days and the "snow depth" data vary by 0.4 cm. Especially in the Tibetan Plateau, there are at least 15 more days of "weather observation" snow in most areas (sometimes more than 30 days). There is an obvious difference in the snow cover data due to bimodal snowfall data in the Tibetan Plateau, which has peak snowfalls from September to October and from April to May. At those times the temperature is too high for snow cover formation and only a few days have trace snow cover. Also, the characteristics and changing trends of snow cover are analyzed here based on the snow cover data of nine weather stations in the northeast region of the Tibetan Plateau, by the Mann-Kendall test. The results show significantly fewer days of snow cover and shorter snow durations as defined by "snow depth" compared to that as defined by "weather observation." Mann-Kendall tests of both series of snow cover durations show an abrupt change in 1987.  相似文献   

19.
西藏高原不同时段雪灾的空间分布及大气环流特征   总被引:1,自引:0,他引:1  
黄晓清  杨勇  石磊 《中国沙漠》2013,33(2):396-402
利用西藏高原38个气象站自建站以来至2008年的10月至翌年4月逐日积雪资料,依据积雪深度和积雪持续日数两项要素组合的雪灾等级指标,分析了前冬、隆冬和春季3个时段西藏高原不同等级雪灾空间分布。结果表明:主要有3个雪灾发生高频中心区,即以聂拉木为中心的喜马拉雅山脉中段区、以嘉黎为中心的那曲地区中东部区及以错那为中心的喜马拉雅山脉东段区;在时段上雪灾主要出现在前冬和隆冬,春季最少,但在前冬和隆冬雪灾频率分布有较大的空间差异;喜马拉雅山脉中段区、阿里地区、那曲站以中灾和重灾为主。利用NCEP/NCAR再分析月平均高度场数据,对区域性雪灾异常年和无雪灾年进行了合成分析,结果表明:前冬和隆冬北半球500 hPa中高纬环流非常相似,自大西洋东海岸向东至西太平有显著的“+-+-”波列,而春季中高纬从欧洲西部为“-+-+-+”波列;3个时段欧洲大陆长波槽脊异常加强,经向环流发展;前冬和隆冬欧亚大陆高度距平场为西高东低,春季正好相反;雪灾年与无雪灾年极涡、乌拉尔山高压脊、贝加尔湖高压脊和北美大槽的强度、位置有较大的差异,而东亚大槽只是春季有所差别外其他时段不明显。  相似文献   

20.
韩建康 《极地研究》1999,10(1):12-20
1IntroductionItisnowwelrecognizedthattheoceanicbiogenicsulphurcycleplaysanimportantroleintheforcingofglobalclimate.Dimethylsu...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号