首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Observations of the central intensity of the Ca ii K and 849.8 nm lines are used to derive the ratios of the oscillation power in the frequency ranges of the “five-minute” (W 5) and “three-minute” (W 3) oscillations. It is shown that at high significance level ratios, (W 5/W 3) >1 at coronal hole bases, and W 5/W 3 ≈1 in quiet chromospheric areas far from holes.  相似文献   

2.
The oscillatory processes in the relatively quiet solar atmosphere, at the base of an extensive coronal hole, have been investigated. The properties of the oscillations in a number of parameters related mainly to the Ca II line intensity have been analyzed in areas belonging to various chromospheric network structures (cells, networks, flocculi, etc.). The goal of this study was to reveal peculiarities of the oscillatory process in the spatial areas located (in projection) at the center of a coronal hole, near its boundary, and at a bright coronal point at various heights of the solar atmosphere (from the photosphere to the middle chromosphere). In most structural elements, the low- and high-frequency components of the spectrum have been found to increase and decrease, respectively, with height. The oscillatory power of the low-frequency oscillations is at a maximum in the areas bordering the bright magnetic network elements. The power of the three-minute, five-minute, and low-frequency oscillations decreases at the centers of the bright chromospheric network. The phase relations point to the propagation of waves mainly at the boundaries of the bright chromospheric network and intermediate (in brightness) network elements. In two of the three investigated regions, the power of the five-minute oscillations (2.4–4.0 mHz) in cells is higher than that of the three-minute ones (5.2–6.8 mHz) at the investigated levels of the quiet solar atmosphere.  相似文献   

3.
The locations of coronal holes are usually based on equivalent-width images in the He i 1083 nm line. However, it is difficult to differentiate coronal holes from the centers of quiet chromospheric network without complementary data and the skill of an experienced observer. Analysis of imaging spectroscopy shows that line half-width and central intensity are correlated differently in coronal holes and a quiet Sun. This fact can be used to form linear combinations of these images in which coronal holes are better separated from the quiet Sun. Coronal hole borders agree well with SOHO/EIT data but can show significant differences from National Solar Observatory maps.  相似文献   

4.
The behavior of oscillations in the quite solar chromosphere under a coronal hole at several heights has been investigated. The properties of oscillations in cell, network, and weak-floccule areas have been analyzed. A time series of spectrograms in three ionized calcium lines, the Ca II K and H resonance doublet lines and the infrared Ca II 849.8-nm triplet line, was used. The observations were carried out at the horizontal solar telescope of the Sayan Observatory. The goal of this study was to compare the distributions of spectral power in various frequency ranges and their variations for selected spatial areas at different heights of the chromosphere. Particular attention was paid to the weak floccule due to a noticeable difference in the central intensity distribution between the K and H lines and the 849.8-nm line. A spectral Fourier analysis was used. The central intensities of the observed spectral lines, the K-index, and the equivalent width (the latter for the 849.8-nm line) were chosen as oscillation parameters. The studies have shown that the main intensity oscillation power at both atmospheric levels is concentrated at frequencies below 9 mHz. In the distribution of intensity oscillation power at different chromospheric levels, there are differences clearly distinguishable in the floccule. Powerful five-minute oscillations whose main peak frequency decreases with height, while the amplitude increases have been detected in the central part of the floccule. This result confirms the assumptions recently pointed out in the literature that vertical magnetic field concentrations can serve as a channel for the passage of low-frequency oscillations from the photosphere to the chromosphere in faculae. The intensity oscillation power in the frequency ranges under consideration has turned out to decrease with height, on average, for the entire observed spatial area. This may be related to the loss of part of the wave energy through the reflection, dissipation, and transformation of wave modes in the magnetic canopy layer. An area with a low brightness but powerful oscillations at about 3.3 mHz covering a considerable range of heights probably pertaining to “magnetic flashers” has been isolated in the telescope’s field of view.  相似文献   

5.
K. A. Marsh 《Solar physics》1977,52(2):343-348
Microphotometry of calcium K-line photographs in the regions of polar coronal holes shows that the chromospheric network exterior to a hole has a slightly broader intensity distribution than that inside the hole itself, a fact which can be attributed to a greater number of bright network elements outside the hole. These bright elements presumably represent the enhanced network resulting from the dispersal of magnetic flux from old active regions, a hypothesis which is consistent with current ideas of coronal hole formation.  相似文献   

6.
We study the Ca ii K, H, and λ 849.8 nm line profiles in two regions of the quiet Sun, one being located in the extensive low-latitude coronal hole observed on 3 through 5 August 2003, and the other being located outside the coronal hole. Comparison of the profiles was carried out separately for cells and cell boundaries of the chromospheric network. Our principal result is that space- and time-averaged profiles of the central self-reversal in the coronal hole sites differ from those outside of the hole: Intensities of the K3 and H3 central depressions are increased in the cells but are unchanged in the network; the height of the K2 peaks is reduced in the cells and particularly in the network; the central self-reversal asymmetry is intensified in the network. Distinctions appear at a high confidence level. Line wings as well as average characteristics of the infrared line remain practically unchanged. We discuss probable causes for this behavior of the lower chromosphere lines.  相似文献   

7.
A coronal hole was observed for three days of its passage near the central meridian of the Sun. Spectrograms containing strong lines of ionized calcium were obtained. The central intensities of the Ca II H, K, and λ849.8 nm lines in the region of the coronal hole and in the quiet-Sun region outside its boundaries were measured. Only the line profiles that were confidently identified as being undisturbed even by weak flocculi were selected. All profiles were averaged in each of the two chromospheric network components (network and cell), and the average profiles were calculated using all of the available data (network+cell). Small differences were found between the central intensities of the Ca II H and K lines inside and outside the coronal hole, with the hole being brighter than the quiet region. A detailed statistical analysis shows that these small differences are real at high confidence levels owing to the large sample sizes. A difference of the same sign is slightly noticeable in the infrared line, but its confidence level is less than 90%. The chromosphere in the coronal hole is brightened by the cell alone; in the network, the chromospheric foot of the coronal hole does not differ from the quiet region. Comparison with the results of other authors obtained from observations in higher atmospheric layers suggests that the network also contains a brightness peak that subsequently gives way to a characteristic depression, but it lies higher than that in the cell.  相似文献   

8.
Three-and five-minute sunspot oscillations have different spatial distributions in the solar atmospheric layers. The spatial distributions are crucial for revealing the physical origin of sunspot oscillations and to investigate their propagation. In this study, six sunspots observed by Solar Dynamics Observatory/Atmospheric Imaging Assembly were used to obtain the spatial distributions of three-and five-minute oscillations. The fast Fourier transform method is applied to represent the power spectra of oscillation modes. We find that, from the temperature minimum to the lower corona, the powers of the fiveminute oscillation exhibit a circle-shape distribution around its umbra, and the shapes gradually expand with temperature increase. However, the circle-shape disappears and the powers of the oscillations appear to be very disordered in the higher corona. This indicates that the five-minute oscillation can be suppressed in the high-temperature region. For the three-minute oscillations, from the temperature minimum to the high corona, their powers mostly distribute within an umbra, and part of them are located at the coronal fan loop structures. Moreover, those relative higher powers are mostly concentrated in the position of coronal loop footpoints.  相似文献   

9.
The nature of the three-minute and five-minute oscillations observed in sunspots is considered to be an effect of propagation of magnetohydrodynamic (MHD) waves from the photosphere to the solar corona. However, the real modes of these waves and the nature of the filters that result in rather narrow frequency bands of these modes are still far from being generally accepted, in spite of a large amount of observational material obtained in a wide range of wave bands. The significance of this field of research is based on the hope that local seismology can be used to find the structure of the solar atmosphere in magnetic tubes of sunspots. We expect that substantial progress can be achieved by simultaneous observations of the sunspot oscillations in different layers of the solar atmosphere in order to gain information on propagating waves. In this study we used a new method that combines the results of an oscillation study made in optical and radio observations. The optical spectral measurements in photospheric and chromospheric lines of the line-of-sight velocity were carried out at the Sayan Solar Observatory. The radio maps of the Sun were obtained with the Nobeyama Radioheliograph at 1.76 cm. Radio sources associated with the sunspots were analyzed to study the oscillation processes in the chromosphere – corona transition region in the layer with magnetic field B=2000 G. A high level of instability of the oscillations in the optical and radio data was found. We used a wavelet analysis for the spectra. The best similarities of the spectra of oscillations obtained by the two methods were detected in the three-minute oscillations inside the sunspot umbra for the dates when the active regions were situated near the center of the solar disk. A comparison of the wavelet spectra for optical and radio observations showed a time delay of about 50 seconds of the radio results with respect to the optical ones. This implies an MHD wave traveling upward inside the umbral magnetic tube of the sunspot. For the five-minute oscillations the similarity in spectral details could be found only for optical oscillations at the chromospheric level in the umbral region or very close to it. The time delays seem to be similar. Besides three-minute and five-minute ones, oscillations with longer periods (8 and 15 minutes) were detected in optical and radio records. Their nature still requires further observational and theoretical study for even a preliminary discussion.  相似文献   

10.
We present results of investigations into chromospheric velocity oscillations in sunspots, carried out at the Sayan Solar Observatory. It is shown that the “chevron” structures in the space-time diagrams demonstrate wavetrain properties. Such structures are indicators of a propagating wave process and they are typical of many sunspots. In the authors’ opinion, three-minute umbral oscillations are not the source of running penumbral waves (RPW). It is very likely that umbral oscillations and RPW initially propagate along different magnetic field lines. We explain the decrease in RPW propagation velocity and frequency in the outer penumbra, as compared with the inner, by the combined action of different frequency modes. To better reveal the properties of these modes, frequency filtering was used. Our measurements of the RPW (five-minute mode) wavelength and RPW propagation velocity in different sunspots vary from 12 to 30 and from 28 to 60 – 70 km s−1 correspondingly.  相似文献   

11.
Intensity distributions of the EUV network and the cell interior in the solar atmosphere have been obtained in fourteen emission lines from Solar and Heliospheric Observatory (SOHO)/Coronal Diagnostic Spectrometer (CDS) observations. The formation temperature of the observed lines is in the range log T=4.90 – 6.06 (T in Kelvin), and hence they represent increasing heights in the solar atmosphere from the upper chromosphere and the transition region to the low corona. Intensity distributions of the cell interior have been found to be different in the quiet Sun and the coronal hole even at the lower transition region, which is at variance with some earlier results. The intensity contrast of the network with respect to the cell interior has been obtained for each line, and differences in the quiet Sun and the coronal hole have been examined. The network contrast, in general, is lower for the coronal hole as compared to the quiet Sun, but becomes equal to it in the upper transition region. The maximum contrast for both the regions is at about log T=5.3. Also obtained are the relative contributions of the network and the cell interior to the total intensity. The implications of the results for models of the transition region are briefly mentioned.  相似文献   

12.
We present a preliminary analysis of spectral lines obtained with the SUMER instrument (Solar Ultraviolet Measurements of Emitted Radiation) onboard the Solar and Heliospheric Observatory (SOHO), as observed during three observing campaigns. From the 70 observed spectral lines, we selected 12, representing 9 ions or atoms, in order to analyse line intensities, shifts and widths in polar coronal holes as well as in the normal quiet Sun. We find that coronal lines show a distinct blueshift in coronal holes relative to the quiet Sun at equal heliospheric angle, while there is no evidence for such a shift for lines formed at temperatures below 105K. The widths of lines formed at temperatures above 3 – 104K are slightly increased inside the coronal hole, but unaffected for lower temperatures. Intensity measurements clearly show the center-to-limb variation, as well as an intensity diminution inside the coronal hole for lines formed above approximately 105K. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
High-frequency quasi-periodic variations (HF QPOs) in the X-ray light curves of black hole X-ray novae can be understood as oscillations of the accretion disk in a nonlinear 3:2 resonance. An m = 0 vertical oscillation near a black hole modulates the X-ray emission through gravitational lensing (light-bending) at the source. Certain oscillations of the accretion disk will also modulate the mass accretion rate, and in neutron-star systems this would lead to nearly periodic variations in brightness of the luminous boundary layer on the stellar surface – the amplitude of the neutron-star HF QPOs would be thus increased relative to the black hole systems. The “kHz QPOs” in black holes are in the hecto-Hz range.  相似文献   

14.
Coronal holes (CH) emit significantly less at coronal temperatures than quiet-Sun regions (QS), but can hardly be distinguished in most chromospheric and lower transition region lines. A key quantity for the understanding of this phenomenon is the magnetic field. We use data from SOHO/MDI to reconstruct the magnetic field in coronal holes and the quiet Sun with the help of a potential magnetic model. Starting from a regular grid on the solar surface we then trace field lines, which provide the overall geometry of the 3D magnetic field structure. We distinguish between open and closed field lines, with the closed field lines being assumed to represent magnetic loops. We then try to compute some properties of coronal loops. The loops in the coronal holes (CH) are found to be on average flatter than in the QS. High and long closed loops are extremely rare, whereas short and low-lying loops are almost as abundant in coronal holes as in the quiet Sun. When interpreted in the light of loop scaling laws this result suggests an explanation for the relatively strong chromospheric and transition region emission (many low-lying, short loops), but the weak coronal emission (few high and long loops) in coronal holes. In spite of this contrast our calculations also suggest that a significant fraction of the cool emission in CHs comes from the open flux regions. Despite these insights provided by the magnetic field line statistics further work is needed to obtain a definite answer to the question if loop statistics explain the differences between coronal holes and the quiet Sun.  相似文献   

15.
K. P. Raju 《Solar physics》2009,255(1):119-129
Relative Doppler velocities and spectral linewidths in a coronal hole and in the quiet Sun region outside have been obtained from Solar and Heliospheric Observatory (SOHO)/Coronal Diagnostic Spectrometer (CDS) observations. Five strong emission lines in the CDS wavelength range (namely, O? iii 599 Å, O?v 630 Å, Ne?vi 562.8 Å, He?ii 304 Å, and Mg?ix 368 Å), whose formation temperatures represent different heights in the solar atmosphere from the lower transition region to the inner corona, have been used in the study. As reported earlier, relative velocities in the coronal hole are generally blueshifted with respect to the quiet Sun, and the magnitude of the blueshifts increases with height. It has been found that the polar coronal hole has larger relative velocities than the equatorial extension in the inner corona. Several localized velocity contours have been found mainly on network brightenings and in the vicinity of the coronal hole boundary. The presence of velocity contours on the network may represent network outflows whereas the latter could be due to localized jets probably arising from magnetic reconnection at the boundary. All spectral lines have larger widths in the coronal hole than in the quiet Sun. In O?v 630 Å an extended low-linewidth region is seen in the coronal hole?–?quiet Sun boundary, which may indicate fresh mass transfer across the boundary. Also polar coronal holes have larger linewidths in comparison with the equatorial extension. Together with larger relative velocities, this suggests that the solar wind emanating from polar hole regions is faster than that from equatorial hole regions.  相似文献   

16.
We have used a high spatial and temporal resolution of long time sequence of spectra in CaII H-line obtained at the Vacuum Tower Telescope (VTT) of the Sacramento Peak Observatory on a quiet region at the center of the solar disk over a large number of bright points and network elements to search for atmospheric (chromospheric) g-mode oscillations. An important parameter of the H-line profile, intensity at H2v(Ih2V), has been derived from a large number of line profiles. We derived the light curves of all the bright points and network elements. The light curves represent the main pulse with large intensity amplitude and followed by several follower pulses with lower intensity amplitudes. The light curves of these bright points would give an impression that one can as well draw curves towards and away from the highest peak (main pulse) showing an exponential growth and decay of the amplitudes. An exponential decaying function has been fitted for all the light curves of the bright points to determine the damping time of the modes that are more or less the same, and one value of the coefficient of exponent can represent reasonably well the decay for all the cases. The FFT analysis of temporal variation of both the bright points and the network elements indicates around 10-min periodicity. We speculate that this longer period of oscillation may be related to chromospheric g-mode oscillations.  相似文献   

17.
We report on initial observations of coronal holestructure and evolution by the Coronal Diagnostic Spectrometer (CDS) instrument on board the Solar and Heliospheric Observatory (SOHO). The data show that there is coronal activity on time scales of tens of minutes, manifested as brightenings at chromospheric network cell junctions in extreme ultraviolet (EUV) wavelengths. There are also significant differences in structure seen in different wavelengths in coronal holes. Finally, we show coronal hole EUV spectra and compare them to quiet-Sun spectra, also taken by CDS.  相似文献   

18.
We analyze the oscillations of the Hα profile width based on our observations of the chromosphere at the base of solar coronal holes. The maximum oscillation amplitude averaged over ten time series is 64 m 0 A. Direct calculations show that this value cannot be reached through temperature oscillations, because the periodic intensity fluctuations observed during our experiment did not exceed 5%, corresponding to Hα profile broadening only by 1.5–2 m Å. We hypothesize that the observed variations can result from the propagation of torsional Alfvén waves in the chromosphere of coronal holes.  相似文献   

19.
Dulk  G. A.  Sheridan  K. V. 《Solar physics》1974,36(1):191-202

Maps of the brightness distribution of the ‘quiet Sun’ at 80 and 160 MHz reveal the presence of features both brighter and darker than average. The ‘dark’ regions are well correlated with dark regions on UV maps; we deduce that they result from ‘coronal holes’. The ‘bright’ regions are associated with quiescent filaments and not plages or bright regions on microwave or UV maps; we deduce that they result from ‘coronal helmets’.

When coronal holes appear near the centre of the disk we can estimate the density and kinetic temperature in the holes from the radio observations. For a hole observed on 1972 July 20–21, we find T ≈ 0.8 × 106 inside the hole and T ≈ 1.0 × 106 in average regions outside the hole. Inside the hole the density is estimated to be about one-quarter of that in Newkirk's model of the spherically symmetric corona.

Variations in brightness at a fixed height above the limb are generally well correlated with scans at a similar height made with a K-coronameter. Occasional differences may result from streamers protruding beyond the limb from the back of the Sun. These can be seen by the K-coronameter but, because of refraction of the radio rays, not by the radio-heliograph.

  相似文献   

20.
Solar radio maps obtained by our group and others over a wide wavelength range (millimeter to meter) and over a considerable time span (1973–1978) have allowed us to compute the radio spectrum of an average coronal hole, i.e., the brightness temperature inside a coronal hole normalized by the brightness temperature of the quiet Sun outside the coronal hole measured at several different radio wavelengths. This radio spectrum can be used to obtain the changes of the quiet Sun atmosphere inside coronal holes and also as an additional check for coronal hole profiles obtained by other methods. Using a standard solar atmosphere and a computer program which included ray tracing, we have tried to reproduce the observed radio spectrum by computing brightness temperatures at many different wavelengths for a long series of modifications in the electron density, neutral particle density and temperature profiles of the standard solar atmosphere. This analysis indicates that inside an average coronal hole the following changes occur: the upper chromosphere expands by about 20% and its electron density and temperature decrease by about 10%. The transition zone experiences the largest change, expanding by a factor of about 6, its electron density decreases by a similar factor, and its temperature decreases by about 50%. Finally in the corona the electron density decreases by about 20% and the temperature by about 15%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号