首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Stromboli volcano has been in continuous eruption for several thousand years without major changes in the geometry and feeding system. The thermal structure of its upper part is therefore expected to be close to steady state. In order to mantaim explosive activity, magma must release both gas and heat. It is shown that the thermal and gas budgets of the volcano lead to consistent conclusions. The thermal budget of the volcano is studied by means of a finite-element numerical model under the assumption of conduction heat transfer. It is found that the heat loss through the walls of an eruption conduit is weakly sensitive to the dimensions of underlying magma reservoirs and depends mostly on the radius and length of the conduit. In steady state, this heat loss must be balanced by the cooling of magma which flows through the system. For the magma flux of about 1 kg s-1 corresponding to normal Strombolian activity, this requires that the conduits are a few meters wide and not deeper than a few hundred meters. This implies the existence of a magma chamber at shallow depth within the volcanic edifice. This conclusion is shown to be consistent with considerations on the thermal effects of degassing. In a Strombolian explosion, the mass ratio of gas to lava is very large, commonly exceeding two, which implies that the thermal evolution of the erupting mixture is dominated by that of the gas phase. The large energy loss due to decompression of the gas phase leads to decreased eruption temperatures. The fact that lava is molten upon eruption implies that the mixture does not rise from more than about 200 m depth. To sustain the magmatic and volcanic activity of Stromboli, a mass flux of magma of a few hundred kilograms per second must be supplied to the upper parts of the edifice. This represents either the rate of magma production from the mantle source feeding the volcano or the rate of magma overturn in the interior of a large chamber.  相似文献   

2.
Summit eruptions of Mauna Loa, on the Island of Hawaii, occurred in 1940 and 1949, and flank eruptions in 1942 and 1950. Lava poured out in 1940 and 1942 was about equal in amount, totaling approximately 76 million cubic meters in each eruption. The 1949 eruption was somewhat smaller, liberating approximately 59 million cubic meters. The 1950 eruption was one of the largest on record, producing five large lava flows and several smaller ones, totaling approximately 459 million cubic meters. Three of the 1950 flows entered the sea. In 1942 a lava flow threatened the city of Hilo, and was bombed from the air in an effort to divert it. Calculations indicate that the gas content of the lava extruded during the 1940 eruption probably was in the vicinity of one percent by weight of the total magma. Other calculations indicate the viscosity of fluid Hawaiian lava to be in the range of 103 to 105 poises. Temperature readings on the 1950 lava ranged from 10900 to 9000 C. Kilauea Volcano showed signs of uneasiness in 1944, with an apparent increase of magmatic pressure indicated by outward tilting of the moutain flanks and a series of earthquakes progressing toward the surface. In December 1950 a series of earthquakes accompanied a subsidence of the summit of Kilauea Volcano.  相似文献   

3.
We give an overview of the 2005–2011 eruptions of Shiveluch Volcano together with the seismicity and deformations of the lava dome during dome growth. It is shown that the generation of the intracrater intrusive dome proceeded at a variable rate. The maximum discharge of erupted lava reached 0.6 million cubic meters per day. Increased explosive activity preceded periods of intensive growth of the lava dome. We determined the volumes and depths of the magma chambers that supplied magma for large eruptions of the volcano on November 12, 1964, February 28, 2005, and October 27, 2010. We calculated the effective viscosity of the 2007 and 2011 lava flows.  相似文献   

4.
Phenocrysts in volcanic rocks are commonly used to deduce crystallization processes in magma chambers. A fundamental assumption is that the phenocrysts crystallized in the magma chambers at isobaric and nearly equilibrium conditions, on the basis of their large sizes. However, this assumption is not always true as demonstrated here for a porphyritic alkali basalt (Kutsugata lava) from Rishiri Volcano, northern Japan. All phenocryst phases in the Kutsugata lava, plagioclase, olivine, and augite, have macroscopically homogeneous distribution of textures showing features characteristic of rapid growth throughout the crystals. Rarely, a core region with distinct composition is present in all phenocryst phases. Phenocrysts, excluding this core, are occasionally in direct contact with each other, forming crystal aggregates. The equilibrium liquidus temperature of plagioclase, the dominant phase (35 vol%) in the Kutsugata lava, can never exceed the estimated magmatic temperature, unless the liquidus temperature increases significantly due to vesiculation of the magma during ascent. This suggests that most phenocrysts in the Kutsugata lava were formed by decompression of the magma during ascent in a conduit, rather than by cooling during residence in a magma reservoir. In the magma chamber before eruption, probably located at depth of more than 7 km, only cores of the phenocrysts were present and the magma was nearly aphyric (<5 vol% crystals), though the observed rock is highly porphyritic with up to 40 vol% crystals. The Kutsugata magma is inferred to have been rich in dissolved H2O (>4 wt.%) in the magma chamber, and liquidus temperatures of phenocryst phases were significantly suppressed. Large undercooling caused by decompression and degassing of the magma was the driving force for significant crystallization during ascent because of the increase in liquidus temperature due to vapor exsolution. Low ascent rate of the Kutsugata magma, which is suggested by pahoehoe lava morphology and no association of pyroclastics, gave sufficient time for crystallization. Furthermore, the large degree of superheating of plagioclase in the magma chamber caused plagioclase crystallization with low population density and large crystal size, which characterizes the porphyritic nature of the Kutsugata lava. Alkali basalt is likely to satisfy these conditions and similar phenomena are suggested to occur in other volcanic systems.  相似文献   

5.
The local seismicity during the 2012–2013 eruption of Tolbachik Volcano and the 2008–2009 steam–gas eruption of Koryakskii Volcano is here considered as resulting from injections of magma that produced dikes, sills, and renewed activity at preexisting faults. We identified plane-oriented earthquake clusters in order to reveal the above zones using earthquake catalogs made at the Kamchatka Branch of the Geophysical Service of the Russian Academy of Sciences (KB GS RAS). Subsequent space–time analysis of these observations lends itself to the following interpretation. The November 27, 2012 Tolbachik lava eruption was preceded by an injection of magma resulting in a series of dikes trending west-northwestward in the range of absolute depths between–4 and +3 km in a zone situated southeast of the Ploskii Tolbachik Volcano edifice. The dikes penetrated into a nearly horizontal permeable zone at an absolute depth of approximately zero, producing sills and emplacing a magma-conducting dike along the top of the zone of cinder cones (the dip angle is 50° toward the azimuth 300°) 5.5 km from the epicenter of the initial magma injection. The summit steam–gas eruption of Koryakskii Volcano in 2008–2009 was preceded by magma filling a crustal chamber (the top of the chamber is at–3 km absolute depth; the chamber is 2.5 km across) close to the southwestern base of Koryakskii. Further, magma injection in a nearly north–south zone (7.5 by 2.5 km), the absolute depth between–2 and–5 km) in the north sector of Koryakskii Volcano was occurring concurrently with the summit steam–gas eruption. The injection of magma into the cone of Avacha Volcano (2010) produced sills (at altitudes between +1600 and +1900 m) and dikes (mostly striking northwest).  相似文献   

6.
This paper concerns observations in 1980–2007 of an intracrater extrusive dome growing on Shiveluch Volcano. Information is provided on the main phases in the generation of the lava dome. The rate of growth and discharge of erupted lava are shown to vary over time. The 1980–1981 discharge was very low during the initial phase in the generation of the lava dome, not above 0.1–0.2 million cubic meters per day. When the extrusion began to grow again, the highest discharge of ejecta was recorded in 1993, as much as 1.25 million cubic meters per day. The maximum rates of growth and discharge of ejecta are generally observed during the first few months of extrusion generation following the resumption of the eruptive process. Powerful explosive eruptions that accompany the extrusive process provoke an acceleration of dome growth. The periods of explosive eruptions had discharges three orders of magnitude greater than those during the most productive extrusive periods. This nonuniformity in extrusion generation reflects nonuniformities in magma supply, and also indicates the existence of a shallow magma chamber at depths of 4–6 km.  相似文献   

7.
The results of geological and geophysical studies are analyzed to throw light on the presence of an unsolidified magma chamber beneath El’brus Volcano in the Caucasus, as well as its depth and approximate dimensions. We provide an upper and a lower bound on the estimates of the heat stored by the chamber in the host rocks, which were heated by the volcano’s magma chamber from its origination until now, incorporating the variation in the dimensions of the magma chamber during its evolution and the heat storage in it. We examine the geological and geophysical conditions that favor the use of thermal energy in the hot rocks that surround the magma chamber of El’brus Volcano.  相似文献   

8.
The origin of dike-like bodies along the Hilina fault scarp on the south flank of Kilauea Volcano. Hawaii has been the subject of recent controversy. Some geologists favour an origin by intrusion of magma from below, others favour « intrusion » of lava derived from above — lava derived from fluid surface flows which poured down open cracks. In order to distinguish between deep versus surface sources for the bodies, a suite of dike and other samples were analyzed for S, H2O, and Cl. All surface flows are degassed, whereas known dikes are volatile-rich. Samples of the Hilina dikes, and dikes from the Ninole Formation, Mauna Loa are degassed, indicating that these dikes were surface-fed — formed by magma which had been de-volatized by surface transport. A model is presented whereby the Hilina dikes form in talus and lava cones that drape the Hilina fault scarp. Seismic activity during eruption may have played an important role in the formation of the Hilina dikes. Similar dikes in the Ninole Formation probably formed in a similar environment.  相似文献   

9.
Many examples of mixed magmas in banded lavas have been studied. Another type of mixed magmas or inhomogeneity of magma reservoir found in the 1962 lava flows of Miyake-zima Volcano erupted from fissures is reported.  相似文献   

10.
Scoria cones are common volcanic features and are thought to most commonly develop through the deposition of ballistics produced by gentle Strombolian eruptions and the outward sliding of talus. However, some historic scoria cones have been observed to form with phases of more energetic violent Strombolian eruptions (e.g., the 1943–1952 eruption of Parícutin, central Mexico; the 1975 eruption of Tolbachik, Kamchatka), maintaining volcanic plumes several kilometers in height, sometimes simultaneous with active effusive lava flows. Geologic evidence shows that violent Strombolian eruptions during cone formation may be more common than is generally perceived, and therefore it is important to obtain additional insights about such eruptions to better assess volcanic hazards. We studied Irao Volcano, the largest basaltic monogenetic volcano in the Abu Monogenetic Volcano Group, SW Japan. The geologic features of this volcano are consistent with a violent Strombolian eruption, including voluminous ash and fine lapilli beds (on order of 10?1 km3 DRE) with simultaneous scoria cone formation and lava effusion from the base of the cone. The characteristics of the volcanic products suggest that the rate of magma ascent decreased gradually throughout the eruption and that less explosive Strombolian eruptions increased in frequency during the later stages of activity. During the eruption sequence, the chemical composition of the magma became more differentiated. A new K–Ar age determination for phlogopite crystallized within basalt dates the formation of Irao Volcano at 0.4?±?0.05 Ma.  相似文献   

11.
During the period 1631–1944, Vesuvius was in persistent activity with alternating mild strombolian explosions, quiet effusive eruptions, and violent strombolian eruptions. The major difference between the predominant style of activity and the violent strombolian stages is the effusion rate. The lava effusion rate during major eruptions was in the range 20–100 m3/s, higher than during mild activity and quiet effusion (0.1–1 m3/s). The products erupted during the mild activity and major paroxysms have different degree of crystallization. Highly porphyritic lava flows are slowly erupted during years-long period of mild activity. This activity is fed by a magma accumulating at shallow depth within the volcanic edifice. Conversely, during the major paroxysms, a fast lava flow precedes the eruption of a volatile-rich, crystal-poor magma. We show that the more energetic eruptions are fed by episodic, multiple arrival of discrete batches of magma rising faster and not degassing during the ascent. The rapidly ascending magma pushes up the liquid residing in the shallow reservoir and eventually reaches the surface with its full complement of volatiles, producing kilometer-high lava fountains. Rapid drainage of the shallow reservoir occasionally caused small caldera collapses. The major eruptions act to unplug the upper part of the feeding system, erupting the cooling and crystallizing magma. This pattern of activity lasted for 313 y, but with a progressive decrease in the number of more energetic eruptions. As a consequence, a cooling plug blocked the volcano until it eventually prevented the eruption of new magma. The yearly probability of having at least one violent strombolian eruption has decreased from 0.12 to 0.10 from 1944 to 2007, but episodic seismic crises since 1979 may be indicative of new episodic intrusions of magma batches.  相似文献   

12.
 Samples collected from a lava channel active at Kīlauea Volcano during May 1997 are used to constrain rates of lava cooling and crystallization during early stages of flow. Lava erupted at near-liquidus temperatures (∼1150  °C) cooled and crystallized rapidly in upper parts of the channel. Glass geothermometry indicates cooling by 12–14  °C over the first 2 km of transport. At flow velocities of 1–2 m/s, this translates to cooling rates of 22–50  °C/h. Cooling rates this high can be explained by radiative cooling of a well-stirred flow, consistent with observations of non-steady flow in proximal regions of the channel. Crystallization of plagioclase and pyroxene microlites occurred in response to cooling, with crystallization rates of 20–50% per hour. Crystallization proceeded primarily by nucleation of new crystals, and nucleation rates of ∼104/cm3s are similar to those measured in the 1984 open channel flow from Mauna Loa Volcano. There is no evidence for the large nucleation delays commonly assumed for plagioclase crystallization in basaltic melts, possibly a reflection of enhanced nucleation due to stirring of the flow. The transition of the flow surface morphology from pāhoehoe to 'a'ā occurred at a distance of 1.9 km from the vent. At this point, the flow was thermally stratified, with an interior temperature of ∼1137  °C and crystallinity of ∼15%, and a flow surface temperature of ∼1100  °C and crystallinity of ∼45%. 'A'ā formation initiated along channel margins, where crust was continuously disrupted, and involved tearing and clotting of the flow surface. Both observations suggest that the transition involved crossing of a rheological threshold. We suggest this threshold to be the development of a lava yield strength sufficient to prevent viscous flow of lava at the channel margin. We use this concept to propose that 'a'ā formation in open channels requires both sufficiently high strain rates for continued disruption of surface crusts and sufficient groundmass crystallinity to generate a yield strength equivalent to the imposed stress. In Hawai'i, where lava is typically microlite poor on eruption, these combined requirements help to explain two common observations on 'a'ā formation: (a) 'a'ā flow fields are generated when effusion rates are high (thus promoting crustal disruption); and (b) under most eruption conditions, lava issues from the vent as pāhoehoe and changes to 'a'ā only after flowing some distance, thus permitting sufficient crystallization. Received: 3 September 1998 / Accepted: 12 April 1999  相似文献   

13.
The initial cooling of pahoehoe flow lobes   总被引:1,自引:0,他引:1  
 In this paper we describe a new thermal model for the initial cooling of pahoehoe lava flows. The accurate modeling of this initial cooling is important for understanding the formation of the distinctive surface textures on pahoehoe lava flows as well as being the first step in modeling such key pahoehoe emplacement processes as lava flow inflation and lava tube formation. This model is constructed from the physical phenomena observed to control the initial cooling of pahoehoe flows and is not an empirical fit to field data. We find that the only significant processes are (a) heat loss by thermal radiation, (b) heat loss by atmospheric convection, (c) heat transport within the flow by conduction with temperature and porosity-dependent thermal properties, and (d) the release of latent heat during crystallization. The numerical model is better able to reproduce field measurements made in Hawai'i between 1989 and 1993 than other published thermal models. By adjusting one parameter at a time, the effect of each of the input parameters on the cooling rate was determined. We show that: (a) the surfaces of porous flows cool more quickly than the surfaces of dense flows, (b) the surface cooling is very sensitive to the efficiency of atmospheric convective cooling, and (c) changes in the glass forming tendency of the lava may have observable petrographic and thermal signatures. These model results provide a quantitative explanation for the recently observed relationship between the surface cooling rate of pahoehoe lobes and the porosity of those lobes (Jones 1992, 1993). The predicted sensitivity of cooling to atmospheric convection suggests a simple field experiment for verification, and the model provides a tool to begin studies of the dynamic crystallization of real lavas. Future versions of the model can also be made applicable to extraterrestrial, submarine, silicic, and pyroclastic flows. Received: 26 November 1994 / Accepted: 1 December 1995  相似文献   

14.
The trachytic Tanetomi lava from Rishiri Volcano, northern Japan, provides useful information concerning how a replenished mafic magma mixes with a compositionally zoned felsic magma in a magma chamber. The Tanetomi lava was erupted in the order of Lower lava 1 (LL1, 59.2-59.8 wt.% in SiO2), Lower lava 2 (LL2, 58.4-59.1 wt.%), and Upper lava (UL, 59.9-65.1 wt.%). Evidence for mixing with a mafic magma is observed only in the LL2, in which a greater amount of crystals derived from the mafic magma occurs in rocks with higher SiO2 content. The whole-rock compositional trend of the Tanetomi lavas is fairly smooth except for the LL2 lava composition, which scatter along the main composition trend. There is no reasonable composition of basaltic magma on the extrapolation of the LL2 composition trend, and the trend cannot be explained by a simple two-component magma mixing. Before the replenishment, the felsic magma was zoned in composition (58-65 wt.% in SiO2) and temperature (1030-920°C) in the magma chamber located at the pressure of ~2 kbar. The compositional variation of the main felsic magma was produced by extraction of a fractionated interstitial melt from mush zones along the chamber walls and its subsequent mixing with the main magma (boundary layer fractionation). The LL1 magma tapped the magma chamber soon after the replenishment, before the mafic magma mixed with the overall felsic magma. Then the basalt magma mixed heterogeneously with the upper part of the felsic magma by forced convection as a fountain during injection. The mixing of the basalt magma with compositionally zoned felsic magma resulted in the characteristic composition trend of the LL2. The fraction of basaltic magma in the LL2 magma is estimated to be at most 10%. Despite such a small proportion, the basalt magma was mixed completely with the felsic magma, probably because the crystallinity of undercooled basalt magma was low enough to behave as a liquid.  相似文献   

15.
This paper describes a methodology for the monitoring of fumarole temperatures at medium ranges (~ 6 km) using a handheld infrared camera (wavelength range: 8–13.5 µm). As a relationship between fumarole temperatures, gas flux and volcanic activity has been demonstrated by a number of studies, fumarole temperature data has a potential use as a monitoring tool. Volcán de Colima is an andesitic stratovolcano with a 300 m diameter summit crater formed by the destruction of the 2004 lava dome by a series of explosions in 2005. Between January 2006 and August 2007, sequences of thermal images were recorded from a viewpoint 6 km to the north during regular 24–48 hour monitoring excursions. The temperatures of fumaroles on the crater rim and the ground surface on the volcano's flanks were measured. A methodology was developed to remove data affected by clouds or volcanic water vapour based on rates of temperature change and scatter within the data. For the remaining data, it is demonstrated mathematically that at this range, typical variations in atmospheric transmissivity will affect the apparent temperatures by +/− 2 °C, while a 25% change in fumarole heat flux would change it by 5–10 °C. The mean night-time apparent temperature of the fumaroles was calculated for each excursion and showed an irregular decline over the 19 month period. Subtracting the radiant heat flux of flank rocks from those of the fumaroles removes seasonal variations and gives the clearest view of trends in the fumarole heat flux. A sharp drop in fumarole temperature during February 2007 coincided with the emergence of a lava dome in the crater. The declining fumarole temperature is interpreted to reflect decreasing gas flux from the crater in line with a change in eruptive regime from frequent, small, ash-rich explosions to slow effusion of lava.  相似文献   

16.
A small explosive eruption of Kilauea Volcano, Hawaii, occurred in May 1924. The eruption was preceded by rapid draining of a lava lake and transfer of a large volume of magma from the summit reservoir to the east rift zone. This lowered the magma column, which reduced hydrostatic pressure beneath Halemaumau and allowed groundwater to flow rapidly into areas of hot rock, producing a phreatic eruption. A comparison with other events at Kilauea shows that the transfer of a large volume of magma out of the summit reservoir is not sufficient to produce a phreatic eruption. For example, the volume transferred at the beginning of explosive activity in May 1924 was less than the volumes transferred in March 1955 and January–February 1960, when no explosive activity occurred. Likewise, draining of a lava lake and deepening of the floor of Halemaumau, which occurred in May 1922 and August 1923, were not sufficient to produce explosive activity. A phreatic eruption of Kilauea requires both the transfer of a large volume of magma from the summit reservoir and the rapid removal of magma from near the surface, where the surrounding rocks have been heated to a sufficient temperature to produce steam explosions when suddenly contacted by groundwater.  相似文献   

17.
The historical records of Kilauea and Mauna Loa volcanoes reveal that the rough-surfaced variety of basalt lava called aa forms when lava flows at a high volumetric rate (>5–10 m3/s), and the smooth-surfaced variety called pahoehoe forms at a low volumetric rate (<5–10 m3/s). This relationship is well illustrated by the 1983–1990 and 1969–1974 eruptions of Kilauea and the recent eruptions of Mauna Loa. It is also illustrated by the eruptions that produced the remarkable paired flows of Mauna Loa, in which aa formed during an initial short period of high discharge rate (associated with high fountaining) and was followed by the eruption of pahoehoe over a sustained period at a low discharge rate (with little or no fountaining). The finest examples of paired lava flows are those of 1859 and 1880–1881. We attribute aa formation to rapid and concentrated flow in open channels. There, rapid heat loss causes an increase in viscosity to a threshold value (that varies depending on the actual flow velocity) at which, when surface crust is torn by differential flow, the underlying lava is unable to move sufficiently fast to heal the tear. We attribute pahoehoe formation to the flowage of lava at a low volumetric rate, commonly in tubes that minimize heat loss. Flow units of pahoehoe are small (usually <1 m thick), move slowly, develop a chilled skin, and become virtually static before the viscosity has risen, to the threshold value. We infer that the high-discharge-rate eruptions that generate aa flows result from the rapid emptying of major or subsidiary magma chambers. Rapid near-surface vesiculation of gas-rich magma leads to eruptions with high discharge rates, high lava fountains, and fast-moving channelized flows. We also infer that long periods of sustained flow at a low discharge rate, which favor pahoehoe, result from the development of a free and unimpeded pathway from the deep plumbing system of the volcano and the separation of gases from the magma before eruption. Achievement of this condition requires one or more episodes of rapid magma excursion through the rift zone to establish a stable magma pathway.  相似文献   

18.
Erta'ale lava lake: heat and gas transfer to the atmosphere   总被引:1,自引:0,他引:1  
Data on uncontaminated samples of volcanic gases can be counted on the fingers of one hand, yet estimation of total volcanic gas flow cannot be made without such data. In this paper the flux of gas from the lava lake to the atmosphere is calculated by a heat budget based on the excess heat loss caused by combustion of H2 and CO and by the mass rate of loss of other gases on the basis of their ratios to H2 and CO in the unoxidized gas samples. The estimated rates of loss of H2O, CO2, SO2 and HCl are consistent with the rate of loss of heat if this heat is generated by crystallization and if the initial magma contains concentrations of gas appropriate for submarine basalt from oceanic ridges. The moderate activity of permanent degassing from the two active lava ponds studied gives a lower flux than that of other volcanoes.  相似文献   

19.
A buried, old volcanic body (pre‐Komitake Volcano) was discovered during drilling into the northeastern flank of Mount Fuji. The pre‐Komitake Volcano is characterized by hornblende‐bearing andesite and dacite, in contrast to the porphyritic basaltic rocks of Komitake Volcano and to the olivine‐bearing basaltic rocks of Fuji Volcano. K‐Ar age determinations and geological analysis of drilling cores suggest that the pre‐Komitake Volcano began with effusion of basaltic lava flows around 260 ka and ended with explosive eruptions of basaltic andesite and dacite magma around 160 ka. After deposition of a thin soil layer on the pre‐Komitake volcanic rocks, successive effusions of lava flows occurred at Komitake Volcano until 100 ka. Explosive eruptions of Fuji Volcano followed shortly after the activity of Komitake. The long‐term eruption rate of about 3 km3/ka or more for Fuji Volcano is much higher than that estimated for pre‐Komitake and Komitake. The chemical variation within Fuji Volcano, represented by an increase in incompatible elements at nearly constant SiO2, differs from that within pre‐Komitake and other volcanoes in the northern Izu‐Bonin arc, where incompatible elements increase with increasing SiO2. These changes in the volcanism in Mount Fuji may have occurred due to a change in regional tectonics around 150 ka, although this remains unproven.  相似文献   

20.
Volcanic gas samples were collected from July to November 1985 from a lava pond in the main eruptive conduit of Pu'u O'o from a 2-week-long fissure eruption and from a minor flank eruption of Pu'u O'o. The molecular composition of these gases is consistent with thermodynamic equilibrium at a temperature slightly less than measured lava temperatures. Comparison of these samples with previous gas samples shows that the composition of volatiles in the magma has remained constant over the 3-year course of this episodic east rift eruption of Kilauea volcano. The uniformly carbon depleted nature of these gases is consistent with previous suggestions that all east rift eruptive magmas degas during prior storage in the shallow summit reservoir of Kilauea. Minor compositional variations within these gas collections are attributed to the kinetics of the magma degassing process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号