首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Lava drainback has been observed during many eruptions at Kilauea Volcano: magma erupts, degasses in lava fountains, collects in surface ponds, and then drains back beneath the surface. Time series data for melt inclusions from the 1959 Kilauea Iki picrite provide important evidence concerning the effects of drainback on the H2O contents of basaltic magmas at Kilauea. Melt inclusions in olivine from the first eruptive episode, before any drainback occurred, have an average H2O content of 0.7±0.2 wt.%. In contrast, many inclusions from the later episodes, erupted after substantial amounts of surface degassed lava had drained back down the vent, have H2O contents that are much lower (≥0.24 wt.% H2O). Water contents in melt inclusions from magmas erupted at Pu'u 'O'o on the east rift zone vary from 0.39–0.51 wt.% H2O in tephra from high fountains to 0.10–0.28 wt.% H2O in spatter from low fountains. The low H2O contents of many melt inclusions from Pu'u 'O'o and post-drainback episodes of Kilauea Iki reveal that prior to crystallization of the enclosing olivine host, the melts must have exsolved H2O at pressures substantially less than those in Kilauea's summit magma reservoir. Such low-pressure H2O exsolution probably occurred as surface degassed magma was recycled by drainback and mixing with less degassed magma at depth. Recognition of the effects of low-pressure degassing and drainback leads to an estimate of 0.7 wt.% H2O for differentiated tholeiitic magma in Kilauea's summit magma storage reservoir. Data for MgO-rich submarine glasses (Clague et al. 1995) and melt inclusions from Kilauea Iki demonstrate that primary Kilauean tholeiitic magma has an H2O/K2O mass ratio of ∼1.3. At transition zone and upper mantle depths in the Hawaiian plume source, H2O probably resides partly in a small amount of hydrous silicate melt. Received: 31 March 1997 / Accepted: 17 November 1997  相似文献   

2.
The petrology of the highly phyric two-pyroxene andesitic to dacitic pyroclastic rocks of the November 13, 1985 eruption of Nevado del Ruiz, Colombia, reveals evidence of: (1) increasingly fractionated bulk compositions with time; (2) tapping of a small magma chamber marginally zoned in regard to H2O contents (1 to 4%), temperature (960–1090°C), and amount of residual melt (35 to 65%); (3) partial melting and assimilation of degassed zones in the hotter less dense interior of the magma chamber; (4) probable heating, thermal disruption and mineralogic and compositional contamination of the magma body by basaltic magma “underplating”; and (5) crustal contamination of the magmas during ascent and within the magma chamber. Near-crater fall-back or “spill-over” emitted in the middle of the eruptive sequence produced a small pyroclastic flow that became welded in its central and basal portions because of ponding and thus heat conservation on the flat glaciated summit near the Arenas crater. The heterogeneity of Ruiz magmas may be related to the comparatively small volume (0.03 km3) of the eruption, nearly ten times less than the 0.2 km3 of the Plinian phase of Mount St. Helens, and probable steep thermal and PH2O gradients of a small source magma chamber, estimated at 300 m long and 100 m wide for an assumed ellipsoidal shape.  相似文献   

3.
 This work presents the results of a microthermometric and EPMA-SIMS study of melt inclusions in phenocrysts of rocks of the shoshonitic eruptive complex of Vulcano (Aeolian Islands, Italy). Different primitive magmas related to two different evolutionary series, an older one (50–25 ka) and a younger one (15 ka to 1890 A.D.), were identified as melt inclusions in olivine Fo88–91 crystals. Both are characterized by high Ca/Al ratio and present very similar Rb/Sr, B/Be and patterns of trace elements, with Nb and Ti anomalies typical of a subduction zone. The two basalts present the same temperature of crystallization (1180±20  °C) and similar volatile abundances. The H2O, S and Cl contents are relatively high, whereas magmatic CO2 concentrations are very low, probably due to CO2 loss before low-pressure crystallization and entrapment of melt inclusions. The mineral chemistry of the basaltic assemblages and the high Ca/Al ratio of melt inclusions indicate an origin from a depleted, metasomatized clinopyroxene-rich peridotitic mantle. The younger primitive melt is characterized with respect to the older one by higher K2O and incompatible element abundances, by lower Zr/Nb and La/Nb, and by higher Ba/Rb and LREE enrichment. A different degree of partial melting of the same source can explain the chemical differences between the two magmas. However, some anomalies in Sr, Rb and K contents suggest either a slightly different source for the two magmas or differing extents of crustal contamination. Low-pressure degassing and cooling of the basaltic magmas produce shoshonitic liquids. The melt inclusions indicate evolutionary paths via fractional crystallization, leading to trachytic compositions during the older activity and to rhyolitic compositions during the recent one. The bulk-rock compositions record a more complex history than do the melt inclusions, due to the syneruptive mixing processes commonly affecting the magmas erupted at Vulcano. The composition and temperature data on melt inclusions suggest that in the older period of activity several shallow magmatic reservoirs existed; in the younger one a relatively homogeneous feeding system is active. The shallow magmatic reservoir feeding the recent eruptive activity probably has a vertical configuration, with basaltic magma in the deeper zones and differentiated magmas in shallower, low-volume, dike-like reservoirs. Received: 11 March 1998 / Accepted: 14 July 1998  相似文献   

4.
The mechanics of explosive eruptions influence magma ascent pathways. Vulcanian explosions involve a stop–start mechanism that recurs on various timescales, evacuating the uppermost portions of the conduit. During the repose time between explosions, magma rises from depth and refills the conduit and stalls until the overpressure is sufficient to generate another explosion. We have analyzed major elements, Cl, S, H2O, and CO2 in plagioclase-hosted melt inclusions, sampled from pumice erupted during four vulcanian events at Soufrière Hills volcano, Montserrat, to determine melt compositions prior to eruption. Using Fourier transform infrared spectroscopy, we measured values up to 6.7 wt.% H2O and 80 ppm CO2. Of 42 melt inclusions, 81 % cluster between 2.8 and 5.4 wt.% H2O (57 to 173 MPa or 2–7 km), suggesting lower conduit to upper magma reservoir conditions. We propose two models to explain the magmatic conditions prior to eruption. In Model 1, melt inclusions were trapped during crystal growth in magma that was stalled in the lower conduit to upper magma reservoir, and during trapping, the magma was undergoing closed-system degassing with up to 1 wt.% free vapor. This model can explain the melt inclusions with higher H2O contents since these have sampled the upper parts of the magma reservoir. However, the model cannot explain the melt inclusions with lower H2O because the timescale for plagioclase crystallization and melt inclusion entrapment is longer than the magma residence time in the conduit. In Model 2, melt inclusions were originally trapped at deeper levels of the magma chamber, but then lost hydrogen by diffusion through the plagioclase host during periodic stalling of the magma in the lower conduit system. In this second scenario, which we favor, the melt inclusions record re-equilibration depths within the lower conduit to upper magma reservoir.  相似文献   

5.
Miocene volcanism in eastern Morocco is comprised of potash rich calc-alkalic and alkaline rocks. In the southern part of the area, at the base of the Guilliz massif, basic inclusions are found in latites. From a petrological, geochemical and mineralogical study of both latites and their inclusions, it appear that the inclusions represent a basic liquid quenched in the latitic magma, inside the magma chamber. As a result of the drop in pressure and crystallization, a K-rich vapour phase separated from the inclusion-forming liquid and percolated the latitic magma, increasing the K2O content of the latter and possibly triggering eruptions. The mixing process between the two magmas seems supported by density and viscosity estimations. Calculations show that for temperatures ranging from 700 °C to 1000 °C and H2O contents from 1.6 to 5%, the inclusion forming liquid is less dense than the latitic liquid and can therefore ascend into the latitic magma by interface disequilibrium and flotation.  相似文献   

6.
The Early Permian mafic-ultramafic concentrically zoned Gaositai intrusion at Chengde, on the northern margin of the North China Craton (NCC), is a cumulative complex emplaced along a giant fracture that penetrates deeply into the continental lithosphere. Melt inclusions are present in chromite crystals from the inner dunite and chromitite zones of the Gaositai complex. The melt inclusions have experienced post-trap crystallization and resulted in multiple mineral phases, including melilite, garnet, phlogopite, magnesite and apatite, which can indicate the liquidus minerals of the primitive magma. The characteristics of the melilite+melanite+clinopyxene assemblage indicate that the primary parental magma was highly undersaturated and derived from an alkali-rich mantle source. The crystallization of phlogopite, magnesite and apatite suggests a primary magma rich in K, H2O and CO2. When compared with experimental data, the primary magma of the Gaositai intrusion is concordant with a kamafugite magma originating from partial melting of enriched mantle with H2O and CO2 at pressures greater than 2.7 GPa. This magmatic process would have been related to extensional thinning of the continental lithosphere. The Gaositai primary magmas have high Nb/La ratios, which are similar to those of ocean island basalts, but different from arc-related magmas. This suggests that the northern margin of the NCC was not an active continental margin of the Paleo-Asian Ocean subduction zone during the Early Permian: an extensional tectonic setting during the emplacement of the Gaositai intrusion is more likely.  相似文献   

7.
Magma mixing and magma plumbing systems in island arcs   总被引:3,自引:0,他引:3  
Petrographic features of mixed rocks in island arcs, especially those originating by the mixing of magmas with a large compositional and temperature difference, such as basalt and dacite, suggest that the whole mixing process from their first contact to the final cooling (= eruption) has occurred continuously and in a relatively short time period. This period is probably less than several months, considerably shorter than the whole volcanic history. There may also be a prolonged quiescent interval, lasting longer than several days, between the magmas' contact and the mechanical mixing. This interval will allow the basic magma to cool and produce a semi-solidified boundary which is later disrupted by flow movements to produce basic inclusions.Mixing of magmas of contrasting chemical composition need not be the inevitable consequence of the contact of the magmas. It is, however, made more probable by forced convection caused by motive force such as the injection of a basic magma into an acidic magma chamber. A short interval between their initial contact and the final eruption requires that the acid magma chamber has a small volume, of the same order or less than that the introduced basic magma.The volcanic activity of Myoko volcano, central Japan, of the last 100,000 years shows alternate eruptions of hybrid andesite by mixing of basaltic and dacitic magmas, and non-mixed basalt to basaltic andesite. There was a repose period of 20,000 to 30,000 years between eruptions. The acidic chamber, eventually producing the mixed andesite activity, is formed during the repose period by the « in situ » solidification of the original basic magma against its wall. The volume of the chamber is very small, probably about 10–2 km3. Basaltic magma with constant chemical composition is supplied to the shallow chamber from another deep seated basaltic chamber. The volume of the shallow magma chamber may be critical to the characteristics of volcanic activity and its products.  相似文献   

8.
Among the series of eruptions at Miyakejima volcano in 2000, the largest summit explosion occurred on 18 August 2000. During this explosion, vesiculated bombs and lapilli having cauliflower-like shapes were ejected as essential products. Petrological observation and chemical analyses of the essential ejecta and melt inclusions were carried out in order to investigate magma ascent and eruption processes. SEM images indicate that the essential bombs and lapilli have similar textures, which have many tiny bubbles, crystal-rich and glass-poor groundmass and microphenocrysts of plagioclase, augite and olivine. Black ash particles, which compose 40% of the air-fall ash from the explosion, also have similar textures to the essential bombs. Whole-rock analyses show that the chemical composition of all essential ejecta is basaltic (SiO2=51–52 wt%). Chemical analyses of melt inclusions in plagioclase and olivine phenocrysts indicate that melt in the magma had 0.9–1.9 wt% H2O, <0.011 wt% CO2, 0.04–0.17 wt% S and 0.06–0.1 wt% Cl. The variation in volatile content suggests degassing of the magma during ascent up to a depth of about 1 km. The ratio of H2O and S content of melt inclusions is similar to that of volcanic gas, which has been intensely and continuously emitted from the summit since the end of August 2000, indicating that the 18 August magma is the source of the gas emission. Based on the volatile content of the melt inclusions and the volcanic gas composition, the initial bulk volatile content of the magma was estimated to be 1.6–1.9 wt% H2O, 0.08–0.1 wt% CO2, 0.11–0.17 wt% S and 0.06–0.07 wt% Cl. The basaltic magma ascended from a deeper chamber (10 km) due to decrease in magma density caused by volatile exsolution with pressure decrease. The highly vesiculated magma, which had at least 30 vol% bubbles, may have come into contact with ground water at sea level causing the large explosion of 18 August 2000.Editorial responsibility: S. Nakada, T. DuittAn erratum to this article can be found at  相似文献   

9.
A swath bathymetric survey was conducted on Marsili Volcano, the biggest seamount in the Tyrrhenian Sea. It stands 3000 m above the surrounding oceanic crust of the 3500 m-deep Marsili back-arc basin and is axially located within the basin. The seamount has an elongated shape and presents distinctive morphology, with narrow (<1000 m) ridges, made up of several elongated cones, on the summit zone and extensive cone fields on its lower flanks. A dredging campaign carried out at water depths varying between 3400 and 600 m indicates that most of Marsili Seamount is composed of medium-K calc-alkaline basalts. Evolved high-K andesites were only recovered from the small cones on the summit axis zone. Petrological and geochemical characteristics of the least differentiated basalts reveal that at least two varieties of magmas have been erupted on the Marsili Volcano. Group 1 basalts have plagioclase and olivine as dominant phases and show lower Al, Ca, K, Ba, Rb and Sr, and higher Fe, Na, Ti and Zr with respect to a second type of basaltic magma. Group 2 basalts reveal the presence of clinopyroxene as an additional phenocryst phase. In addition, the two basaltic magmas have different original pre-eruptive H2O content (group 1, H2O-poor and group 2, H2O-rich). Moreover, comparison of the compositional trends and mineralogical compositions obtained from MELTS [Ghiorso, M.S., Sack, R.O., Contrib. Mineral. Petrol. 119 (1995) 197–212] fractional crystallization calculations reveal that the evolved andesites can only exclusively be derived from a low-pressure (0.3 kbar) fractionation of magmas compositionally similar to the least evolved group 2 basalts. Finally, we suggest that the high vesicularity of the basalts sampled at relatively great depths (>2400 m) on the edifice is governed by H2O and, probably, CO2 exsolution and is not a feature indicative of shallow water depth eruption.  相似文献   

10.
 The 1963 eruption of Gunung Agung produced 0.95 km3 dense rock equivalent (DRE) of olivine±hornblende-bearing, weakly phyric, basaltic andesite tephra and lava. Evidence for magma mixing in the eruptive products includes whole-rock compatible and incompatible trace element trends, reverse and complex compositional zoning of mineral phases, disequilibrium mineral assemblages, sieve-textured plagioclase phenocrysts, and augite rims on reversely zoned orthopyroxene. Basalt magma mixed with pre-existing andesite magma shortly before eruption to yield basaltic andesite with a temperature of 1040–1100  °C at an assumed pressure of 2 kb, f O2>NNO, and an average melt volatile content (H2O±CO2) of 4.3 wt.%. Magma-mixing end members may have provided some of the S and Cl emitted in the eruption. Glass inclusions in phenocrysts contain an average of 650 ppm S and 3130 ppm Cl as compared with 70 ppm and 2220 ppm, respectively, in the matrix glass. Maximum S and Cl contents of glass inclusions approach 1800 and 5000 ppm, respectively. Application of the petrologic method to products of the 1963 eruption for estimating volatile release yields of 2.5×1012 g (Mt) of SO2 and 3.4 Mt of Cl released from the 0.65 km3 of juvenile tephra which contributed to stratospheric injection of H2SO4 aerosols on 17 March and 16 May, when eruption column heights exceeded 20 km above sea level. An independent estimate of SO2 release from atmospheric aerosol loading (11–12 Mt) suggests that approximately 7 Mt of SO2 was injected into the stratosphere. The difference between the two estimates can be most readily accounted for by the partitioning of S, as well as some Cl, from the magma into a water-rich vapor phase which was released upon eruption. For other recent high-S-release eruptions of more evolved and oxidized magmas (El Chichón, Pinatubo), the petrologic method gives values two orders of magnitude less than independent estimates of SO2 emissions. Results from this study of the Agung 1963 magma and its volatile emissions, and from related studies on eruptions of more mafic magmas, suggest that SO2 emissions from eruptions of higher-S-solubility magma may be more reliably estimated by the petrologic method than may those from more-evolved magma eruptions. Received: 29 June 1994 / Accepted: 25 April 1996  相似文献   

11.
The extinct Pleistocene volcano Muriah, situated behind the main Pleistocene—Recent Sunda magmatic arc in north-central Java, has erupted at least two contrasted groups of lavas. One group forms a well-defined compositional series (Anhydrous Series) from leucite basanite to tephritic phonolite, with olivine and tschermakitic clinopyroxene the main phenocrysts. The other group, the “Hydrous Series”, includes compositionally variable tephrites and high-K andesites with common plagioclase, biotite and amphibole. Lavas of the Anhydrous Series are much richer in LIL trace elements than the most potassic lavas of neighbouring active volcanoes, but relative HFS element enrichment is less pronounced. REE patterns have almost constant slopes from La (250–600 times chondrites) to Yb (5–10 times chondrites), while those of lavas of active centres are less light-enriched, and show flattening in the heavy REE. Anhydrous Series initial 87Sr/86Sr ratios (0.7043–0.7046) are lower than those of active centres (0.7047–0.7053). Hydrous Series lavas are intermediate in all these geochemical characteristics.The most mafic A-series leucite basanite, with Mg/(Mg + Fe2+) 0.69, 140 ppm Ni and 620 ppm Cr was probably derived from the primary magma for the series by fractionation of only 5 wt.% olivine. Its REE pattern suggests derivation from a garnet-bearing source. Experiments on this basanite, with up to 10% olivine and 20% orthopyroxene added, and in the presence of H2O and H2O/CO2 mixtures, have shown that for all but very high magma water contents, the olivine and garnet liquidus fields are widely separated by fields of phlogopite and clinopyroxene. There is no liquidus field of orthopyroxene. Hence, if magma production involved an equilibrium melting process alone, the most probable sources are of garnet-bearing phlogopite clinopyroxenite type. Alternatively, this magma may represent the end-product of interaction between a low-K basanite magma from a garnet lherzolite source in the asthenosphere and a phlogopite-bearing lherzolite zone in the lower lithosphere. Its production was probably related to crustal doming and extension superimposed on the dominant subduction regime. Hydrous Series magmas may have resulted from mixing between Anhydrous Series magmas and high-K calc-alkaline basaltic to andesitic magmas more directly related to subduction processes.  相似文献   

12.
Mount Drum is one of the youngest volcanoes in the subduction-related Wrangell volcanic field (80×200 km) of southcentral Alaska. It lies at the northwest end of a series of large, andesite-dominated shield volcanoes that show a northwesterly progression of age from 26 Ma near the Alaska-Yukon border to about 0.2 Ma at Mount Drum. The volcano was constructed between 750 and 250 ka during at least two cycles of cone building and ring-dome emplacement and was partially destroyed by violent explosive activity probably after 250 ka. Cone lavas range from basaltic andesite to dacite in composition; ring-domes are dacite to rhyolite. The last constructional activity occurred in the vicinity of Snider Peak, on the south flank of the volcano, where extensive dacite flows and a dacite dome erupted at about 250 ka. The climactic explosive eruption, that destroyed the top and a part of the south flank of the volcano, produced more than 7 km3 of proximal hot and cold avalanche deposits and distal mudflows. The Mount Drum rocks have medium-K, calc-alkaline affinities and are generally plagioclase phyric. Silica contents range from 55.8 to 74.0 wt%, with a compositional gap between 66.8 and 72.8 wt%. All the rocks are enriched in alkali elements and depleted in Ta relative to the LREE, typical of volcanic arc rocks, but have higher MgO contents at a given SiO2, than typical orogenic medium-K andesites. Strontium-isotope ratios vary from 0.70292 to 0.70353. The compositional range of Mount Drum lavas is best explained by a combination of diverse parental magmas, magma mixing, and fractionation. The small, but significant, range in 87Sr/86Sr ratios in the basaltic andesites and the wide range of incompatible-element ratios exhibited by the basaltic andesites and andesites suggests the presence of compositionally diverse parent magmas. The lavas show abundant petrographic evidence of magma mixing, such as bimodal phenocryst size, resorbed phenocrysts, reaction rims, and disequilibrium mineral assemblages. In addition, some dacites and andesites contain Mg and Ni-rich olivines and/or have high MgO, Cr, Ni, Co, and Sc contents that are not in equilibrium with the host rock and indicate mixing between basalt or cumulate material and more evolved magmas. Incompatible element variations suggest that fractionation is responsible for some of the compositional range between basaltic andesite and dacite, but the rhyolites have K, Ba, Th, and Rb contents that are too low for the magmas to be generated by fractionation of the intermediate rocks. Limited Sr-isotope data support the possibility that the rhyolites may be partial melts of underlying volcanic rocks. Received March 13, 1993/Accepted September 10, 1993  相似文献   

13.
To investigate the relationship between volatile abundances and eruption style, we have analyzed major element and volatile (H2O, CO2, S) concentrations in olivine-hosted melt inclusions in tephra from the 2000 yr BP eruption of Xitle volcano in the central Trans-Mexican Volcanic Belt. The Xitle eruption was dominantly effusive, with fluid lava flows accounting for 95% of the total dense rock erupted material (1.1 km3). However, in addition to the initial, Strombolian, cinder cone-building phase, there was a later explosive phase that interrupted effusive activity and deposited three widespread ash fall layers. Major element compositions of olivine-hosted melt inclusions from these ash layers range from 52 to 58 wt.% SiO2, and olivine host compositions are Fo84–86. Water concentrations in the melt inclusions are variable (0.2–1.3 wt.% H2O), with an average of 0.45±0.3 (1σ) wt.% H2O. Sulfur concentrations vary from below detection (50 ppm) to 1000 ppm but are mostly ≤200 ppm and show little correlation with H2O. Only the two inclusions with the highest H2O have detectable CO2 (310–340 ppm), indicating inclusion entrapment at higher pressures (700–900 bars) than for the other inclusions (≤80 bars). The low and variable H2O and S contents of melt inclusions combined with the absence of less soluble CO2 indicates shallow-level degassing before olivine crystallization and melt inclusion formation. Olivine morphologies are consistent with the interpretation that most crystallization occurred rapidly during near-surface H2O loss. During cinder cone eruptions, the switch from initial explosive activity to effusive eruption probably occurs when the ascent velocity of magma becomes slow enough to allow near-complete degassing of magma at shallow depths within the cone as a result of buoyantly rising gas bubbles. This allows degassed lavas to flow laterally and exit near the base of the cone while gas escapes through bubbly magma in the uppermost part of the conduit just below the crater. The major element compositions of melt inclusions at Xitle show that the short-lived phase of renewed explosive activity was triggered by a magma recharge event, which could have increased overpressure in the storage reservoir beneath Xitle, leading to increased ascent velocities and decreased time available for degassing during ascent.  相似文献   

14.
Infrared spectroscopic analyses of melt inclusions in quartz phenocrysts from pantellerites erupted at Pantelleria, Italy, show that the magmas contained moderate pre-eruptive H2O contents, ranging from 1.4 to 2.1 wt.%. Melt H2O concentrations increase linearly with incompatible elements, demonstrating that H2O contents were not buffered significantly during fractionation by any crystalline or vapor phase. The relatively low H2O contents of pantellerites are consistent with an origin by partial melting of alkali gabbros rather than fractional crystallization of basalt. Preeruptive H2O concentrations do not correlate with the volume or explosivity of pantellerite eruptions; decompression history is critical in determining the style of pantellerite (and other) eruptions.  相似文献   

15.
Fuego volcano in Guatemala erupted in 1974 in a basaltic sub-Plinian event, which has been well documented and studied. In 1999, after a period of quiescence lasting 20 years, Fuego erupted again, this time less violently, but with persistent low-level activity. This study investigates the link between these episodes. Previous melt inclusion studies have shown magma erupted in 1974 to have been a volatile-rich hybrid tapped from a vertically extensive system. By contrast, magma erupted in 1999 and 2003 is similar in composition to that erupted in 1974, but melt inclusions are more evolved. Although melt inclusions from the later period are CO2 rich (up to ∼1,500 ppm), they have low H2O concentration (max 1.5 wt.%, compared to ∼6 wt.% in 1974). These melt inclusions have a modified H2O concentration due to diffusive re-equilibration at shallow pressures. Despite this diffusive exchange, both eruptions show evidence of recent mingling of the same low and higher K melts, one of which was slightly cooler than the other and as a result traversed the amphibole stability field. (210Pb/226Ra) data on selected bulk rock samples from 1974 suggest that whereas the cooler, more evolved end-member may have been degassing since the last major eruption in the 1930s, the warmer end-member intruded at most a decade prior to the 1974 eruption. The two end-members are thus batches of the same magma emplaced shallowly ∼30 years apart during which time the older batch was cooled and differentiated before mixing with the younger influx. The presence of the same two melts in the later eruptions suggests that magma in 1999 and 2003 is partly residual from 1974. The current eruptive activity is clearing the system of this residual magma prior to an expected new magma batch.  相似文献   

16.
Magma plumbing system of the 2000 eruption of Miyakejima Volcano, Japan   总被引:1,自引:0,他引:1  
During the 2000 eruption at Miyakejima Volcano, two magmas with different compositions erupted successively from different craters. Magma erupted as spatter from the submarine craters on 27 June is aphyric basaltic andesite (<5 vol% phenocrysts, 51.4–52.2 wt% SiO2), whereas magma issued as volcanic bombs from the summit caldera on 18 August is plagioclase-phyric basalt (20 vol% phenocrysts, 50.8–51.3 wt% SiO2). The submarine spatter contains two types of crystal-clots, A-type and A-type (andesitic type). The phenocryst assemblages (plagioclase, pyroxenes and magnetite) and compositions of clinopyroxene in these clots are nearly the same, but only A-type clots contain Ca-poor plagioclase (An < 70). We consider that the A-type clots could have crystallized from a more differentiated andesitic magma than the A-type clots, because FeO*/MgO is not strongly influenced during shallow andesitic differentiation. The summit bombs contain only B-type (basaltic type) crystal-clots of Ca-rich plagioclase, olivine and clinopyroxene. The A-type and B-type clots have often coexisted in Miyakejima lavas of the period 1469–1983, suggesting that the magma storage system consists of independent batches of andesitic and basaltic magmas. According to the temporal variations of mineral compositions in crystal-clots, the andesitic magma became less evolved, and the basaltic magma more evolved, over the past 500 years. We conclude that gradually differentiating basaltic magma has been repeatedly injected into the shallower andesitic magma over this period, causing the andesitic magma to become less evolved with time. The mineral chemistries in crystal-clots of the submarine spatter and 18 August summit bombs of the 2000 eruption fall on the evolution trends of the A-type and B-type clots respectively, suggesting that the shallow andesitic and deeper basaltic magmas existing since 1469 had successively erupted from different craters. The 2000 summit collapse occurred due to drainage of the andesitic magma from the shallower chamber; as the collapse occurred, it may have caused disruption of crustal cumulates which then contaminated the ascending, deeper basalt. Thus, porphyritic basaltic magma could erupt alone without mixing with the andesitic magma from the summit caldera. The historical magma plumbing system of Miyakejima was probably destroyed during the 2000 eruption, and a new one may now form.Editorial responsibility: S Nakada, T Druitt  相似文献   

17.
TheTonglingarea,whichiscalledtheChineseCopperCapital,isoneofthemostimportantnon-ferrousmetalproducersinChina(e.g.Cu,AuandAg,especiallyCu).ManyresearchershavenotedthatthemetaldepositsarecloselyrelatedtotheMesozoicintrusiverocksinthisarea.Therefore,theTongl…  相似文献   

18.
Miocene(16―10 Ma) basalts,together with significantly well-preserved fossils(including animal and plant fossils) in the contemporaneously tephra-rich Maar sediments,are located in Shanwang volcanic region,Shandong Province,China.Distribution area of the basaltic eruption products is about 240 km2.Detailed field observations indicate that most of basaltic rocks are fissure eruptive products and some are central eruptives constrained by linear faults.The well-preserved fossils in the lacustrine deposits have been considered to be a result of mass mortalities.Based on physically volcanologic modeling results,eruption column of the basaltic fissure activities in the Shanwang volcanic region is estimated to have entered the stratosphere.Petrographic observations indicate that the basalts have porphyritic textures with phenocrysts of olivine,pyroxene,plagioclase feldspar and alkali feldspar setting in groundmass of plagioclase feldspar,alkali feldspar,quartz,apatite and glass.Based on observations of tephra,tuff and tuffites collected in the Maar sediments of the Shanwang area,we determined major element oxide concentrations and volatile composition of melt inclusions in phenocrysts and matrix glasses by electron microprobe analysis.Volatile(including S,Cl,F and H2O) concentrations erupted into the stratosphere were estimated by comparing pre-and post-eruptive volatile concentrations.Our determination results show that contents of S,Cl,F and H2O emitted into the stratosphere were 0.18%― 0.24%,0.03%―0.05%,0.03%―0.05% and 0.4%―0.6%,respectively,which was characterized by high-S contents erupted.Amounts of volatiles emitted in the Shanwang volcanic region are much higher than those in eruptions which had a substantial effect on climate and environment.According to the com-positions and amounts of the volatiles erupted from the Miocene basaltic volcanism in Shanwang,we propose a hypothesis that volatile-rich basaltic volcanism could result in the mass mortalities by in-jecting volatiles(e.g.,SO2,H2S,HCl,HF and H2O) into the stratosphere that would have triggered abrupt environmental changes(including formation of acid rain,temperature decline,ozone depletion,etc.) and altered lake chemistry,and subsequently volcanic ash fall buried and covered the dead animals and plants,forming well-preserved fossils in Shanwang Maar sediments.  相似文献   

19.
Chemical analyses of 30 melt inclusions from Satsuma-Iwojima volcano, Japan, were carried out to investigate volatile evolution in a magma chamber beneath the volcano from about 6300 yr BP to the present. Large variations in volatile concentrations of melts were observed. (1) Water concentration of rhyolitic melts decreases with time; 3–4.6 wt.% at the time of latest caldera-forming eruption of Takeshima pyroclastic flow deposit (ca. 6300 yr BP), 3 wt.% for small pyroclastic flow (ca. 1300 yr BP) of Iwodake, post-caldera rhyolitic dome, and 0.7–1.4 wt.% for submarine lava eruption (Showa-Iwojima) in 1934. (2) Rhyolitic melts of the Takeshima and Iwodake eruptions contained CO2 of less than 40 ppm, while the Showa-Iwojima melt has higher CO2 concentration of up to 140 ppm. (3) Water and CO2 concentrations of basaltic to andesitic melt of Inamuradake, a post-caldera basaltic scoria cone, are 1.2–2.8 wt.% and ≤290 ppm, respectively.Volatile evolution in the magma chamber is interpreted as follows: (1) the rhyolitic magma at the time of the latest caldera-forming eruption (ca. 6300 yr BP) was gas-saturated due to pressure variation in the magma chamber because the large variation in water concentration of the melt was attributed to exsolution of volatile in the magma prior to the eruption. Iwodake eruption (ca. 1300 yr BP) was caused by a remnant of the caldera-forming rhyolitic magma, suggested from the similarity of major element composition between these magmas. (2) Volatile composition of the Showa-Iwojima rhyolitic melt agrees with that of magmatic gases presently discharging from a summit of Iwodake, indicating the low pressure degassing condition. (3) The degassing of the magma chamber by magma convection in a conduit of Iwodake during non-eruptive but active degassing period for longer than 800 years decreased water concentration of the rhyolitic magma. (4) Geological and petrological observations indicate that a stratified magma chamber, which consists of a lower basaltic layer and an upper rhyolitic layer, might have existed during the post-caldera stage. Addition of CO2 from the underlying basaltic magma to the upper gas-undersaturated (degassed) rhyolitic magma increased CO2 concentration of the rhyolitic magma.  相似文献   

20.
Magma mixing: petrological process and volcanological tool   总被引:4,自引:0,他引:4  
Magma mixing is a widespread, if not universal igneous phenomenon of variable importance. The evidence for magma mixing is found primarily in glassy tephra; the consolidation of lava obscures the evidence. Inclusions of glass in big crystals in tephra, because of their greater range in composition compared to the whole rock and the residual glass, indicate that the big crystals were derived from separate systems which mixed together prior to and during eruption. The observed or reconstructed concentration of K2O in inclusions of glass in large crystals represent the composition of the contaminant and host systems. Selective enrichment in K2O during entrapment of melt by growing crystals is shown to be negligible. The weight percents of K2O in host, contaminant and residual glass and bulk rock determine the proportions of contaminant and host required to yield either the residual glass or bulk rock. In several cases the proportion of contaminant required is substantially larger than the proportion of crystals in the hybrid magma; therefore, by heat budget argument, the contaminant was partly liquid when contamination began. In some tephra individual phenocrysts contain glasses which are more silicic toward the center of the crystal indicating that the crystal grew from a melt whose composition changed in the opposite sense to that expected for progressive solidification of a closed system. Space time associations of compositionally distinct glassy tephra with contaminated magmas suggest coexistence of basaltic and silicic melts within magma systems. Evidence of contamination is present in most tephra studied so far. Magma mixing appears to be the prevalent process whereby contamination occurs. Magma mixing seems to be particularly evident in systems where there is independent evidence for a vapor-saturated magma reservoir. Probably vapor saturation promotes mixing in magma systems. Magma mixing probably is an important mechanism of compositional diversification (differentiation) of volcanic rocks from continental margin and possibly other environments.Textural evidence of the onset of magma mixing can be related to disturbance of a complex reservoir immediately before ascent and eruption. Thus, conditions before mixing can be ascribed to the reservoir. In this way it is possible to learn about the reservoir: its composition, its diversity, its depth, its walls. It is also possible to learn about the causes of eruption: whether by increase in gas pressure due to either progressive consolidation, or heating from below by an injection of hot magma, or by encounter with ground water; whether by buoyant rise. Evaluation of these problems requires also a thorough knowledge of the chronology of particular eruptions. Thus, magma mixing is a useful volcanological tool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号