首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
阳宗海硅藻群落对水体污染和水文调控的长期响应模式   总被引:2,自引:2,他引:0  
在人类活动持续干扰的背景下,云南部分湖泊面临着污染物输入增加的环境压力,特别是营养盐富集和重金属污染。以云南地区遭受过严重工业污染的阳宗海为研究对象,通过沉积物硅藻群落、砷浓度、营养元素与稳定同位素、粒度等多指标分析,结合文献记录和湖泊调查结果,揭示了阳宗海硅藻群落对湖泊富营养化和砷污染的长期响应特征,并识别了不同时期的主要环境压力与其驱动强度。结果表明:长期的营养盐累积使得浮游硅藻逐渐占据优势地位,且耐污染的底栖硅藻种的快速增加与砷污染出现的时段一致。在阳宗海长期富营养化的背景下,当水体砷污染物浓度达到一定阈值水平后,硅藻群落结构的改变和多样性的降低都指示了湖泊生态系统发生了灾难性的转变。同时1965年开始的湖泊引水工程导致了贫营养种的突然增加。因此,水体富营养化、重金属污染与湖泊水文调控是导致阳宗海硅藻群落长期变化的主控因子,对阳宗海的生态修复与综合治理需要综合考虑不同胁迫因子的长期影响与驱动作用。  相似文献   

2.
Aquatic biodiversity is commonly linked with environmental variation in lake networks, but less is known about how local factors may influence within-lake biological heterogeneity. Using a combined ecological and multi-proxy palaeoecological approach we investigated long-term changes in the pathways and processes that underlie eutrophication and water depth effects on lake macrophyte and invertebrate communities across three basins in a shallow lake—Castle Lough, Northern Ireland, UK. Contemporary data allow us to assess how macrophyte assemblages vary in composition and heterogeneity according to basin-specific factors (e.g. variation in water depth), while palaeoecological data (macrophytes and co-occurring invertebrates) enable us to infer basin-specific impacts and susceptibilities to nutrient-enrichment. Results indicate that variability in water depth promotes assemblage variation amongst the lake basins, stimulating within-lake macrophyte assemblage heterogeneity and hence higher lake biodiversity. The palaeo-data indicate that eutrophication has acted as a strong homogenising agent of macrophyte and invertebrate diversities and abundances over time at the whole-lake scale. This novel finding strongly suggests that, as eutrophication advances, the influence of water depth on community heterogeneity is gradually eroded and that ultimately a limited set of eutrophication-tolerant species will become homogeneously distributed across the entire lake.  相似文献   

3.
Diatom assemblages of surface sediments in 46 billabongs from four river floodplains in the southeast Murray-Darling Basin, Australia were sampled to investigate drivers of species distribution. The principal purpose of the study was to derive information to aid interpretation of diatom-based palaeoecological studies of these systems and of floodplain lakes more generally. Patterns in billabong diatom assemblages in relation to river reach, hydrology and farming intensity on surrounding land were examined, as were correlations with water quality variables. Seasonal variation in billabong water quality was high relative to spatial variation, and spatial patterns in billabong water quality were weak. In contrast, strong patterns were evident in diatom assemblages. Three main patterns were observed: (1) a distinction between billabongs dominated by planktonic diatoms from those dominated by benthic and attached forms; (2) differences in diatom assemblages in billabongs on different river reaches; and (3) differences in assemblages in billabongs with different hydrology. Of all water quality variables tested, total phosphorus (TP), total nitrogen (TN) and pH exerted the strongest independent influence on diatom distribution; however, only TP remained an important variable when species variation due to river reach, hydrology, and aquatic plant cover was taken into account. The weak influence of water quality on diatom distribution is interpreted as reflecting the dichotomy between plankton and non-plankton-dominated billabongs, the influence of hydrology and biogeography, the lack of strong spatial water quality gradients and the high degree of temporal variability in water quality. The findings show that diatom records from billabong sediments can provide evidence of long-term changes in the abundance of aquatic macrophytes and hydrology. They also suggest that merging calibration data sets across regions for the purpose of improving diatom transfer functions for water quality reconstruction is of limited value for floodplain lakes, and that performance is more likely to be gained by boosting site numbers within regions.  相似文献   

4.
This paper aims to determine the ecological and chemical reference conditions (~1800?C1850 AD) and degree of floristic change at nine enriched lakes, covering a range of types across Europe, using fossil diatom assemblages in dated sediment cores and application of total phosphorus (TP) transfer functions. Additionally the study assesses the potential of analogue matching as a technique for identifying reference sites and for estimating reference TP concentrations for the study lakes using a training set of 347 European lakes and 719 diatom taxa. Oligotrophic, acidophilous to circumneutral taxa were predominant in the reference samples of several of the deep lakes, and benthic Fragilaria spp. dominated the reference samples of two high alkalinity shallow lakes. The degree of floristic change from the reference sample, assessed using the squared chord distance (SCD) dissimilarity coefficient, revealed that two sites had experienced slight change (Lago Maggiore, Felbrigg Lake), five experienced moderate change (Mjoesa, Loch Davan, Loch Leven, White Lough, Esthwaite Water), and two showed evidence of major change (Groby Pool, Piburger See). For three lakes, there were no analogues in the diatom dataset owing to the uniqueness and diversity of the diatom reference assemblages. For the remaining six sites the number of analogues ranged from 2 to 44. For two deep lakes most of the analogues seemed appropriate as they were of the same type and had low TP concentrations. However, for two other deep lakes and two shallow lakes some of the analogues differed markedly in their depth and alkalinity from the lake in question or had TP concentrations seemingly too high to represent reference conditions suggesting that the analogues may not be suitable as reference sites. For the deep lakes, similar reference TP values were calculated using the EDDI Combined TP transfer function and the analogue matching technique with concentrations typically <20 ??g L?1. However, for the shallow lakes, the analogue matching method produced inferred values considerably higher than those of the transfer function. The wide ecological tolerances of many of the diatom taxa found in the reference samples most likely explain the selection of inappropriate analogue sites. In summary, the study demonstrates that palaeoecological techniques can play a valuable role in determining reference conditions and indicates that the analogue matching technique has the potential to be a useful tool for identifying appropriate reference sites for lakes impacted by eutrophication.  相似文献   

5.
Macrophytes are a critical component of lake ecosystems affecting nutrient and contaminant cycling, food web structure, and lake biodiversity. The long-term (decades to centuries) dynamics of macrophyte cover are, however, poorly understood and no quantitative estimates exist for pre-industrial (pre-1850) macrophyte cover in northeastern North America. Using a 215 lake dataset, we tested if surface sediment diatom assemblages significantly differed among lakes that have sparse (<10% cover; group 1), moderate (10–40% cover; group 2) or extensive (>40% cover; group 3) macrophyte cover. Analysis of similarity indicated that the diatom assemblages of these a priori groups of macrophyte cover were significantly different from one another (i.e., difference between: groups 1 and 3, R statistic = 0.31, P < 0.001; groups 1 and 2, R statistic = 0.049, P < 0.01; groups 3 and 2, R statistic = 0.112, P < 0.001). We then developed an inference model for macrophyte cover from lakes classified as sparse or extensive cover (145 lakes) based on the surface sediment diatom assemblages, and applied this model using the top-bottom paleolimnological approach (i.e., comparison of recent sediments to pre-disturbance sediments). We used the second axis of our correspondence analysis, which significantly divided sparse and extensive macrophyte cover sites, as the independent variable in a logistic regression to predict macrophyte cover as either sparse or extensive. Cross validation, using 48 randomly chosen sites that were excluded from model development, indicated that our model accurately predicts macrophyte cover 79% of the time (r 2 = 0.32, P < 0.001). When applied to the top and bottom sediment samples, our model predicted that 12.5% of natural lakes and 22.4% of reservoirs in the dataset have undergone a ≥30% change in macrophyte cover. For the sites with an inferred change in macrophyte cover, the majority of natural lakes (64.3%) increased in cover, while the majority of reservoirs (87.5%) decreased in macrophyte cover. This study demonstrates that surface sediment diatom assemblages from profundal zones differ in lakes based on their macrophyte cover and that diatoms are useful indicators for quantitatively reconstructing changes in macrophyte cover.  相似文献   

6.
根据太白湖沉积柱中硅藻、孢粉、粒度、磁化率、元素含量等指标记录,冗余分析结果表明松孢粉的百分含量、沉积物磷浓度、频率磁化率及有机碳含量是能显著解释水环境变化的最小变量组合,解释的硅藻变率百分比达51.5%,仅比所有沉积指标共同解释的信息量少6.4%。主要根据该4指标的古环境意义,对该湖近200年来的营养演化驱动机制进行了探讨。太白湖近代富营养化过程表明:在温暖湿润的气候背景下,较高营养背景的湖泊极易在人类活动的驱动下发生富营养化,因此对湖泊资源必须进行合理的人为开发与利用。  相似文献   

7.
The primary producer community of Lake Apopka, a large (125 km2), shallow (mean depth, 1.7 m), polymictic Florida lake, shifted from macrophyte dominance to phytoplankton dominance in the 1940s. Today, frequent wind resuspension of highly organic, unconsolidated sediments supports a meroplanktonic community that is predominantly diatoms, but during calm periods the algal community is dominated by planktonic cyanobacteria. Sedimentary algal pigments (chlorophyll derivatives and carotenoids) and chemical proxies for nutrient enrichment (polyphosphate, total phosphorus and biogenic silica) in three sediment cores were used to investigate historic changes in primary producers. Sediments were separated into three stratigraphic zones using multivariate statistical techniques. Stratigraphic zonation was established in each core although sediment deposition at one site was insufficient to adequately resolve temporal changes. These results show the importance of selecting suitable sites for paleolimnological studies. The oldest zone represents macrophyte-derived sediments, and the two overlying zones represent phytoplankton-derived sediments deposited since the 1940s. Algal pigments in the most recent sediment zone show little degradation, which might be due to the presence of viable meroplankton in the sediment. After the initial primary producer shift from macrophytes to phytoplankton, the lake experienced a short period of cyanobacterial dominance followed by a period of benthic diatom abundance before being replaced by the present algal community consisting of cyanobacteria and meroplanktonic diatoms. Chlorophyll derivatives and carotenoids were highly correlated with total phosphorus. Historic trends inferred from the data include algal and cyanobacterial productivity that increased with increased phosphorus loading. The study demonstrates that valid paleolimnological proxies for historic eutrophication are available in loosely consolidated sediments of shallow, subtropical lakes.  相似文献   

8.
Aquatic macrophytes play a key role in providing habitat, refuge and food for a range of biota in shallow lakes. However, many shallow lakes have experienced declines in macrophyte vegetation in recent decades, principally due to eutrophication. As changes in macrophyte composition and abundance can affect overall ecological structure and function of a lake, an assessment of the timing and nature of such changes is crucial to our understanding of the wider lake ecosystem. In the typical absence of historical plant records, the macro-remains of macrophytes preserved in lake sediments can be used to assess long-term changes in aquatic vegetation. We generated recent (150–200 years) plant macrofossil records for six English lakes subject to conservation protection to define past macrophyte communities, assess trajectories of ecological change and consider the implications of our findings for conservation targets and strategies. The data for all six lakes reveal a diverse submerged macrophyte community, with charophytes as a key component, in the early part of the sedimentary records. The stratigraphies indicate considerable change to the aquatic vegetation over the last two centuries with a general shift towards species more typically associated with eutrophic conditions. A common feature is the decline in abundance of low-growing charophytes and an increase in tall canopy-forming angiosperms such as fine-leaved Potamogeton species, Zannichellia palustris and Callitriche species. We hypothesise, based on findings from long-term datasets and palaeoecological records from enriched shallow lakes where plants are now absent, that the observed shifts provide a warning to managers that the lakes are on a pathway to complete macrophyte loss such that nutrient load reduction is urgently needed. It is the sound understanding of present-day plant ecology that affords such reliable interpretation of the fossil data which, in turn, provide valuable context for current conservation decisions.  相似文献   

9.
The Arctic treeline ecotone is characterised by a steep vegetation gradient from arctic tundra to northern taiga forests, which is thought to influence the water chemistry of thermokarst lakes in this region. Environmentally sensitive diatoms respond to such ecological changes in terms of variation in diatom diversity and richness, which so far has only been documented by microscopic surveys. We applied next-generation sequencing to analyse the diatom composition of lake sediment DNA extracted from 32 lakes across the treeline in the Khatanga region, Siberia, using a short fragment of the rbcL chloroplast gene as a genetic barcode. We compared diatom richness and diversity obtained from the genetic approach with diatom counts from traditional microscopic analysis. Both datasets were employed to investigate diversity and relationships with environmental variables, using ordination methods. After effective filtering of the raw data, the two methods gave similar results for diatom richness and composition at the genus level (DNA 12 taxa; morphology 19 taxa), even though there was a much higher absolute number of sequences obtained per genetic sample (median 50,278), compared with microscopic counts (median 426). Dissolved organic carbon explained the highest percentage of variance in both datasets (14.2 % DNA; 18.7 % morphology), reflecting the compositional turnover of diatom assemblages along the tundra-taiga transition. Differences between the two approaches are mostly a consequence of the filtering process of genetic data and limitations of genetic references in the database, which restricted the determination of genetically identified sequence types to the genus level. The morphological approach, however, allowed identifications mostly to species level, which permits better ecological interpretation of the diatom data. Nevertheless, because of a rapidly increasing reference database, the genetic approach with sediment DNA will, in the future, enable reliable investigations of diatom composition from lake sediments that will have potential applications in both paleoecology and environmental monitoring.  相似文献   

10.
A knowledge of pre-disturbance conditions is important for setting realistic restoration targets for lakes. For European waters this is now a requirement of the European Council Water Framework Directive where ecological status must be assessed based on the degree to which present day conditions deviate from reference conditions. Here, we employ palaeolimnological techniques, principally inferences of total phosphorus from diatom assemblages (DI-TP) and classification of diatom composition data from the time slice in sediment cores dated to ~1850 AD, to define chemical and ecological reference conditions, respectively, for a range of UK lake types. The DI-TP results from 169 sites indicate that reference TP values for low alkalinity lakes are typically <10 μg L−1 and in many cases <5 μg L−1, whilst those for medium and high alkalinity lakes are in the range 10–30 and 20–40 μg L−1, respectively. Within the latter two alkalinity types, the deeper waters (>3 m mean depth) generally had lower reference TP concentrations than the shallow sites. A small group of shallow marl lakes had concentrations of ~30 μg L−1. Cluster analysis of diatom composition data from 106 lakes where the key pressure of interest was eutrophication identified three clusters, each associated with particular lake types, suggesting that the typology has ecological relevance, although poor cross matching of the diatom groups and the lake typology at type boundaries highlights the value of a site-specific approach to defining reference conditions. Finally the floristic difference between the reference and present day (surface sample) diatom assemblages of each site was estimated using the squared chord distance dissimilarity coefficient. Only 25 of the 106 lakes experienced insignificant change and the findings indicate that eutrophication has impacted all lake types with >50% of sites exhibiting significant floristic change. The study illustrates the role of the sediment record in determining both chemical and ecological reference conditions, and assessing deviation from the latter. Whilst restoration targets may require modification in the future to account for climate induced alterations, the long temporal perspective offered by palaeolimnology ensures that such changes are assessed against a sound baseline.  相似文献   

11.
The synergistic influence of multiple environmental stressors on lake ecosystems has typically been evaluated paleolimnologically, through examination of a single biological indicator. Aquatic organisms, however, may display heterogeneous responses because of differences in their ecological sensitivity, and/or because of ecological consequences caused by strong interactions among multiple stressors. We applied paleolimnological methods to compare patterns of algal and invertebrate response to multiple stressors in a large, shallow lake in southwest China over the last two centuries. Our multi-proxy records show a clear trajectory of lake eutrophication (greater total nitrogen) and increasing lake productivity (greater sediment Chlorophyll-a concentration) during the last century. Nutrient enrichment and lake productivity played significant, but different roles, in structuring diatom and cladoceran assemblages, accounting for 31.4 and 77.3% of the total variance in the communities, respectively. Furthermore, there was a pronounced influx of the endemic diatom species Cyclotella rhomboideo-elliptica Skuja, which was strongly associated with the second axis of a diatom PCA (Principal Component Analysis). This occurred synchronously with a documented reversal of hydrological connectivity with a downstream, nutrient-poor lake during the early twentieth century, suggesting a role for species dispersal in modulating community reorganization. There are also strong differences between the two organism groups in their sensitivity to hydrological fluctuations, as hydrodynamics, indicated by sand content, was a significant driver for cladocerans (>25%), but showed only minor influence on diatom assemblages in our selection of minimum adequate models. The proportion of the total variance explained by our measured variables (<30%) was much lower for diatom assemblages than for both cladoceran assemblage and accumulation data (~77%), reflecting differences in community reorganization between the two biological indicators. The sediment-based evaluation of community responses revealed the differential impact of eutrophication and hydrological fluctuations on the biota of this large, shallow lake. Therefore, multiple biological indicators should be evaluated in limnological surveys to assess the full scope of ecological changes in highly stressed lake systems targeted for conservation or restoration.  相似文献   

12.
A sample of a sediment record contains diatom species that have grown in disparate habitats and eventually accumulated in a deep part of the lake. The original habitats may differ in substrate, depth location, and availability of resources. Identifying the species characteristic of each habitat should improve our ecological and environmental interpretation of the sediment record by distinguishing habitat specific responses. With this aim, we studied the benthic diatom communities of a deep oligotrophic lake across several habitats. The main source of variation in the diatom composition was the substrate type; particularly, sediment biofilms. Depth was the second factor. The thermocline defined a shift in diatom communities that also included changes in the dominant lifeforms. A third factor was the mesoscale heterogeneity (i.e., rock sides). Although most species were present in many habitats, characteristic species were identified for all the main habitats and used for an improved interpretation of the deep sediment record. Appropriate standardization showed increasing species richness and diversity from epilimnetic epilithic samples to hypolimnetic sediment samples. We estimate that more than 5000 valve counts are required for appropriate comparisons. Consequently, in sediment records with lower counts per sample, one has to amalgamate samples—losing temporal resolution—to achieve reliable analyses of diversity changes over time. Deep sediment samples are representative of the gamma-diversity of the lake diatom metacommunity, which result from the local alpha diversity of the habitats and the beta-diversity of the variability in composition among them. This double source of diversity has to be taken into account when using the sediment record for estimating lake biodiversity changes. On the other hand, we show that an estimation of the spatial (habitat) heterogeneity of a reconstructed environmental variable can be achieved using subsets of species characteristic of each habitat. We demonstrate the procedure by reconstructing the pH fluctuations during the last 200 years in several habitats from a single sediment record. The results are coherent with the expected differences between predominantly trophogenic or tropholithic habitats.  相似文献   

13.
Eutrophication is perhaps the most pervasive form of pollution. Here we first review its effects on lake ecosystems based largely on modern ecological investigation. The longer time scale afforded by palaeolimnological investigation has seen an increase in the number of the publications since 1990 with a disproportionate increase in citations demonstrating the increasing use and usefulness of palaeolimnology to help understand lakes ecosystems and their response to eutrophication. We summarise briefly the history and origins of palaeolimnological investigation into eutrophication and its impacts in lakes. Then we review quantitative and qualitative palaeolimnological methods for tracking change in nutrient concentrations, algal community and abundance, macrophyte community composition and abundance and zooplanktivorous fish density. The usefulness of stable isotope analysis on sediment organic matter to track eutrophication is assessed and alternative methods discussed. A current challenge is to determine the effects of recent climate change on lake ecosystems. The impacts of climate change and eutrophication on the ecology of lakes have many similarities making it difficult to disentangle the impact of one from the other, in particular where the eutrophication impacts are greatest. We review a number of recent palaeolimnological studies, in particular those integrating long term monitoring data, which have gone some way to identifying when nutrients or climate may be having the greatest impact. Finally, we discuss possible future directions for the discipline, such as the greater integration of studies of evolutionary change using molecular techniques.  相似文献   

14.
A paleolimnological evaluation of cladoceran microfossils was initiated to study limnological changes in Lake Apopka, a large (125 km2), shallow (mean depth = 1.6 m), warm, polymictic lake in central Florida. The lake switched from macrophyte to algal dominance in the late 1940s, creating a Sediment Discontinuity Layer (SDL) that can be visually used to separate sediments derived from macrophytes and phytoplankton. Cladoceran microfossils were enumerated as a means of corroborating extant eutrophication data from the sediment record. Inferences about the timing and trajectory of eutrophication were made using the cladoceran-based paleo-reconstruction. The cladoceran community of Lake Apopka began to change abruptly in both total abundance and relative percent abundance just before the lake shifted from macrophyte to algal dominance. Alona affinis, a mud-vegetation associated cladoceran, disappeared before the SDL was formed. Planktonic and benthic species also began to increase below the SDL, indicating an increase in production of both planktonic and benthic species. Chydorus cf. sphaericus, an indicator of nutrient loading, increased relative to all other cladocerans beginning in the layer below the SDL and continuing upcore. Changes in the transitional sediment layer formed before the lake switched to phytoplankton dominance, including an increase in total phosphorus concentration, suggest a more gradual eutrophication process than previously reported. Data from this study supported conclusions from other paleolimnological studies that suggested anthropogenic phosphorus loading was the key factor in the hypereutrophication of Lake Apopka.  相似文献   

15.
In order to assess how best to manage impacted lake systems, one needs to understand the trophic functioning of the lake system and the recent states through which the lake may have transitioned. Lakes in the middle and lower reaches of the Yangtze have been heavily impacted over recent decades. In order to understand recent changes in functional status, we examined sediment cores covering the last 120?years from two lakes in the same catchment with differing status: one algal-dominated (Taibai Lake) and the other macrophyte-dominated (Longgan Lake). Chironomid head capsules were identified from both sites and an expanded chironomid-total phosphorus (TP) transfer function (21 sites were added to the 30-lake model previously developed by Zhang et al. 2006) was used to assess the lakes?? response to recent anthropogenic change. Quantitative chironomid-inferred TP (CI-TP) reconstructions showed that Taibai Lake experienced clear changes in trophic status since the 1860s. Before the 1950s, the CI-TP concentration was relatively stable around 50?C80???g?L?1, while it reached to 80?C130???g?L?1 in the latter period. CI-TP for Longgan Lake, however, showed a relative decline from the range of 50?C75???g?L?1 since the 1880s to 30?C40???g?L?1 in recent years, accompanied by strong evidence from the chironomids for increased macrophyte biomass as TP levels declined. Both reconstructions agreed with diatom inferences of TP from the same lakes. The stark difference between these two sites is thought to reflect a function of macrophyte development, with Taibai Lake losing its plants through increased nutrient levels and internal recycling, whereas Longgan Lake, which is much bigger in area and hence potentially more resilient to change, was able to develop macrophyte communities over the same time period. The positive feedbacks associated with abundant macrophytes retained the clear water state of Longgan Lake, but a further increase in nutrients might lead to decrease in resilience of the relatively stable macrophyte state and loss of benthic pathways of primary production, which would push the lake towards eutrophication. Unless nutrient inputs to Longgan are controlled, Longgan Lake might lose macrophyte communities and follow a developmental pathway similar to that observed in Taibai Lake.  相似文献   

16.
Fragilarioid diatom taxa are often deemed ubiquitous in shallow lake systems. Their presence has been described as contributing to statistical noise in paleolimnological studies of cold-temperate lakes. In shallow, warm-temperate lakes of Florida, long-term transitions from assemblages dominated by Aulacoseira spp. to fragilarioid taxa, particularly Pseudostaurosira brevistriata, Staurosira construens var. venter, and Staurosirella pinnata, often occur. Distinctly higher limnetic nutrient optima are demonstrated by these fragilarioid taxa than by planktonic Aulacoseira spp. Community successions occur during eutrophication, and progressive replacement of Aulacoseira spp. and other planktonic taxa by fragilarioid taxa is concurrent with and apparently related to the onset of cyanobacterial dominance. We examine successions from Aulacoseira-dominated to fragilarioid-dominated assemblages in sediment cores from subtropical Florida lakes that have undergone eutrophication. Diatom profiles are compared with sedimented pigments, nitrogen stable isotopes of organic matter, and with silica accumulation rates. These study lakes have little if any macrophyte presence. Their light-extinction depths are extremely shallow, yet diatom communities are dominated by bottom-dwelling rather than planktonic taxa. Frequent wind-generated mixing, sometimes to lake bottoms, is sufficient to sustain the light needs of benthic and tychoplanktonic taxa. We conclude that assemblage changes generally are not caused by reduced water depths, silica limitation, nor increased incipient stratification, but that cyanobacteria are responsible for reducing planktonic Aulacoseira in favor of fragilarioid taxa. Cyanobacteria blooms persist over a wide seasonal range because of warm climate and high limnetic nutrient concentrations in Florida lakes. Cyanobacteria progressively displace and outcompete Aulacoseira and other planktonic taxa as eutrophication proceeds. Reduced light availability, changes in mineral/nutrient availability, and other aspects of competitive exclusion, such as cyanobacterial allelotoxins, might contribute to observed changes. Climate warming is not likely to account for Aulacoseira reduction as in colder regions because it is less pronounced in this subtropical district. Lakes with low nutrient levels and less cyanobacteria still sustain large Aulacoseira populations, and decreases in limnetic nutrients sometimes lead to the return of planktonic Aulacoseira. Rather than simply representing statistical noise for paleolimnological reconstructions, shifts to certain fragilarioid taxa indicate when subtropical Florida lakes progressed to hypereutrophic conditions that were marked by cyanobacterial proliferation.  相似文献   

17.
Thermokarst lakes in the Siberian Arctic contain sediment archives that can be used for paleoenvironmental inference. Until now, however, there has been no study from the inner Lena River Delta with a focus on diatoms. The objective of this study was to investigate how the diatom community in a thermokarst lake responded to past limnogeological changes and what specific factors drove variations in the diatom assemblage. We analysed fossil diatom species, organic content, grain-size distribution and elemental composition in a sediment core retrieved in 2009 from a shallow thermokarst lake in the Arga Complex, western Lena River Delta. The core contains a 3,000-year record of sediment accumulation. Shifts in the predominantly benthic and epiphytic diatom species composition parallel changes in sediment characteristics. Paleoenvironmental and limnogeological development, inferred from multiple biological and sedimentological variables, are discussed in the context of four diatom zones, and indicate a strong relation between changes in the diatom assemblage and thermokarst processes. We conclude that limnogeological and thermokarst processes such as lake drainage, rather than direct climate forcing, were the main factors that altered the aquatic ecosystem by influencing, for example, habitat availability, hydrochemistry, and water level.  相似文献   

18.
Musky Bay in Lac Courte Oreilles, Wisconsin, USA, is currently eutrophic. This large, shallow bay of an oligotrophic lake possesses the densest aquatic plant growth and a floating algal mat. Paleoecological reconstructions encompassing the last 130 years, were based on multiproxy analyses of sediment cores from three coring sites, two within the bay and one in the lake itself. These data were compared to historical records of the construction and expansion of two commercial cranberry bogs and shoreline residential homes to identify temporal and causal relations of eutrophication. The proxies investigated included: minor and trace elements; biogenic silica; and the diatom community. Post-depositional diagenesis of organic carbon, nitrogen, and phosphorus in the upper 30 cm of the core obscured records of historical ambient nutrient concentrations in the bay obviating their usefulness for this purpose. In contrast, calcium, magnesium, and potassium concentration profiles appeared to reflect runoff of soil amendments applied to the cranberry bogs and aerial fertilizer spraying over the eastern bog adjacent to Musky Bay. The increase in aluminum content since about 1930 coincided with the historical trend in shoreland development and construction of the original commercial cranberry farm. The biogenic silica profile recorded a steady increase of nutrients to Musky Bay over the last several decades. Stratigraphic changes in the diatom community indicated that nutrient input began to increase in the 1940s and accelerated in the mid-1990s with the onset of a noxious floating algal mat. The diatom community indicates the bay has possessed a significant macrophyte community for at least the last 200 years, but increased nutrient input was manifested by a change in the composition, and an increase in the density of the epiphytic diatom community. Cranberry farming appeared to be the major source of nutrients because the diatom community changes occurred prior to the significant increase in residential housing.  相似文献   

19.
Diatom preservation can be a major taphonomic issue in many lakes but is often unrecognised and its impacts on qualitative and quantitative inferences (such as productivity and biodiversity estimates) from sedimentary archives are seldom explored. Here two palaeolimnological case studies of 20th-century anthropogenic eutrophication of freshwater lakes in Northern Ireland (Lough Neagh and Lough Augher) are re-visited and new data presented on diatom preservation. Assessing problems of taphonomy challenges previous interpretations of silica dynamics and diatom productivity at these sites. Diatom preservation was assessed in both sediment trap material and sediment cores from Lough Neagh, and in sediment cores from Lough Augher. Preservation data, combined with geochemical analysis (Si, Fe), provide an insight into silica cycling and diatom accumulation over a range of temporal scales from these lakes. Diatom preservation was generally good for the Lough Neagh material, although differential (better) preservation of the smaller Aulacoseira subarctica compared to the larger Stephanodiscus neoastraea sensu lato valves was clear, especially in sediments. Porewater silica showed a complex seasonal pattern in the upper sediment, against expectations of steady-state. The Lough Augher material was generally poorly preserved, although preservation (dissolution) was significantly (and positively) correlated to bulk sedimentation rate, and was found to be a major control on (net) diatom accumulation rate across the basin. Past seasonal and severe anoxia at Lough Augher did not improve diatom preservation, contrary to some previous studies, which may be due to extreme changes in sedimentary redox conditions. Finally, using published experimental relationships between dissolution and diatom valve loss, correction factors were applied to previously published profiles of diatom accumulation over the last ~150 years (biovolume from Lough Neagh and frustule accumulation rate from Lough Augher), which suggest that diatom productivity estimates from sedimentary records are underestimated by a factor of 2–4 due to dissolution effects alone. The results clearly have implications for the reliability and accuracy of diatom-based inferences made from sediment records, both qualitative and quantitative, especially for those that employ diatoms as direct measures of productivity or biodiversity.  相似文献   

20.
Glacier shrinkage and melting of snow patches caused by the current phase of warming is having a profound impact on lake ecosystems located in glacierized environments at high altitude and/or latitude because it alters the hydrology and the physico-chemistry of the river discharges and catchment runoff. These changes, in turn, have a major impact on the biota of these lakes. In this study, we combined geochemical and diatom analyses of a sediment core retrieved from Lake Kanas (N.W. China) to assess how climate change has affected this ecosystem over the past ~ 100 years. Our results show that the aquatic ecosystem of Lake Kanas was sensitive to changes in the regional climate over that period of time. The lake has been affected by change in hydrology (e.g. influx of glacier meltwater, variations in precipitation) and change in hydrodynamics (water column stability). The variations in abundance and composition of the diatom assemblages observed in the sedimentary record have been subtle and are complex to interpret. The principal changes in the diatom community were: (1) a rise in diatom accumulation rates starting in the AD 1970s that is coeval with changes observed in temperate lakes of the Northern Hemisphere and (2) an increase in species diversity and assemblage turnover and a faster rate-of-change since ~ AD 2000. The diatom community is expected to change further with the projected melting of the Kanas glacier throughout the twenty-first century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号