首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Eselevich  V.G.  Fainshtein  V.G.  Eselevich  M.V. 《Solar physics》2001,200(1-2):259-281
A technique is proposed for separating the rays of the streamer belt with quasi-stationary and non-stationary solar wind (SW) flows. It is shown that the lifetime of rays with a quasi-stationary SW can exceed 20 days. A new method has been developed for measuring the relative density distribution of a quasi-stationary slow SW flowing along the streamer belt's ray of increased brightness, based on the LASCO/SOHO data. It is shown that the density n for such SW flows varies with the radius R according to the relationship nR , where =13.3–3.9 within 4 R 0 R 6 R 0 (here R 0 is the solar radius), and decreases gradually further away. It is also shown that the V(R)-profiles in some rays of the streamer belt differ little from each other, although the value of the mass flow density, j E, at the Earth's orbit in them can vary more than by a factor of 4. This distinguishes in a crucial respect a slow SW in the streamer belt's rays from a fast SW originating in coronal holes, for which j Econstant and the dependences V(R) in different fast flows can differ greatly.  相似文献   

2.
Eselevich  V.G.  Eselevich  M.V. 《Solar physics》2000,195(2):319-332
It is shown on the basis of analyzing the LASCO/SOHO data that the main quasi-stationary solar wind (SW), with a typical lifetime of up to 10 days, flows in the rays of the streamer belt. Depending on R, its velocity increases gradually from V3 km s–1 at R1.3 R to V170 km s–1 at R15 R . We have detected and investigated the movement of the leading edge of the main solar wind at the stage when it occupied the ray, i.e., at the formative stage of a quasi-stationary plasma flow in the ray. It is shown that the width of the leading edge of the main SW increases almost linearly with its distance from the Sun. It is further shown that the initial velocity of the inhomogeneities (`blobs') that travel in the streamer belt rays increases with the distance from the Sun at which they originate, and is approximately equal to the velocity of the main solar wind which carries them away. The characteristic width of the leading edge of the `blob' R , and remains almost unchanging as it moves away from the Sun. Estimates indicate that the main SW in the brightest rays of the streamer belt to within distances at least of order R3 R represents a flow of collisional magnetized plasma along a radial magnetic field.  相似文献   

3.
Jagdev Singh 《Solar physics》1985,95(2):253-262
The line and continuum intensities deduced from the multislit spectra of the (Fe X) coronal emission line taken at the 1980 eclipse are used to discuss the relative roles of radiative and collisional excitation mechanisms. It is shown that for R/R < 1.2, collisional excitation is the predominant mode. Collisional as well as radiative excitation is equally important for 1.2 < R/R < 1.4, whereas beyond 1.4 R radiative excitation becomes dominant. The line width measurements indicate that a large number of locations have half-widths around 1.3 Å. The maximum half-width is reached at 1.4 R with an average value of 1.6 Å.  相似文献   

4.
The radial nonlinear pulsations of a model withM=0.8M ,M bol=–6 mag andT eff=5500 K have been studied. The pulsations are shown to exist in the form of the standing wave only in the innermost layers withR<0.2R ph. In the outer layers, the standing wave transforms into running waves, the frequency of which decreases with an increasingR. the pulsation period at the photosphere is found to be twice as long as the pulsation period atR<0.2R ph. The difference between the pulsation periods causes alternation of deep and shallow minima in the temporal dependences of the kinetic energy and radii and can be used to explain the nature of RV Tau variables. It is shown that at the distanceR>3R ph, the time-independent mass flux caused by shocks takes place. The rate of mass loss is found to beM10–4 M yr–1.  相似文献   

5.
The published photometric and spectroscopic data of the symbiotic binary V 1329 Cyg are interpreted. It is shown, that V 1329 Cyg is an eclipsing binary with an elliptical orbit orbit (e=0.28). The cooler component fills up the Roche-lobe at periastron. A model of moving gaseous structures in the system is proposed and their influence on the radial velocity curve is shown. The following characteristics of the system are derived: the cooler component is an M6 giant with mass 7.9M , radius 339R and luminosityM bol=–5.42, the hot component is a white dwarf surrounded by an accretion disk. The mean distance between the components is 842R and in periastron it decreases to 605R .  相似文献   

6.
Prentice (1978a) in his modern Laplacian theory of the origin of the solar system has established the scenario of the formation of the solar system on the basis of the usual laws of conservation of mass and angular momentum and the concept of supersonic turbulent convection that he has developed. In this, he finds the ratio of the orbital radii of successively disposed gaseous rings to be a constant - 1.69. This serves to provide a physical understanding of the Titius-Bode law of planetary distances. In an attempt to understand the law in an alternative way, Rawal (1984) starts with the concept of Roche limit. He assumes that during the collapse of the solar nebula, the halts at various radii are brought about by the supersonic turbulent convection developed by Prentice and arrives at the relation: R p= Rap, where R pare the radii of the solar nebula at various halts during the collapse, R the radius of the present Sun and a = 1.442. a is referred here as the Roche constant. In this context, it is shown here that Kepler's third law of planetary system assumes the form: T p = T 0(a3/2)p, where T p are the orbital periods at the radii R p, T 0 - 0.1216d - 3 h, and a the Roche constant. We are inclined to interpret T 0' to be the rotation period of the Sun at the time of its formation when it attained the present radius. It is also shown that the oribital periods T pcorresponding to the radii R psubmit themselves to the Laplace's resonance relation.  相似文献   

7.
A cosmological model describing the different stages of the universe, i.e.: inflation, radiation dominated period and matter dominated (Friedmann-like) period is shown. The model consists of the usual gravitational lagrangian with a R 2 term, and, for the matter content, the lagrangian of a massive conformally coupled scalar field. The effect of backreaction is evaluated by means of an extremum condition on the entropy at each time. The differential equation, obtained when the lowest quantum order is considered, describes all the periods of evolution of the universe. For a range of values of, inflation is unstable and the universe can reach the following regime.  相似文献   

8.
Theoretical ArXIII electron-density-sensitive emission line ratios, derived using electron impact excitation rates interpolated from accurateR-matrix calculations, are presented forR 1 =I(242.22 )/I(236.27 ),R 2 =I(210.46 )/I(236.27 ), andR 3 =I(248.68 )/I(236.27 ). Electron densities deduced from the observed values ofR 1,R 2, andR 3 for solar flares obtained with the NRL S082A slitless spectrograph on boardSkylab are in excellent agreement, and furthermore compare favorably with those determined from line ratios in CaXV, which is formed at a similar electron temperature to that of ArXIII. These results provide experimental support for the accuracy of the atomic data adopted in the analysis, as well as for the techniques used to calculate the line ratios.  相似文献   

9.
On the basis of observational data for the absolute R and relative R/R amplitudes of variations in radius of galactic classical cepheids (55 stars from Balona and Stobie (1979) and 30 stars from Sollazzoet al. (1981)), four kinds of empirical linear relations are obtained: log(P V)–logR, logP–logR, log(P V)–log(R/R), and logP–log(R/R);P, R, and V are the pulsation periods, the mean stellar radii, and the amplitudes of light variations, respectively. Three groups of stars are considered: short-period cepheids (SPC)-with logP1.1; long-period cepheids (LPC)-with logP>1.1; and s-cepheids (sC). Both the R values and the R/R values increase withP andP V, for a given group of variables. A comparison is performed with our results obtained from data in other sources (Kurochkin, 1966; Gieren, 1982; etc.). The investigated relations can be applied for determining R and R/R of galactic classical cepheids, by using their observedP and V. All studied galactic classical cepheids have R/R<0.35, R<10R for SPC and 10R <R60R for LPC. The sC have smaller R and R/R values than other classical cepheids, at the same periods (the difference is about 2 times for R and 1.4–2.8 times for R/R); the studied sC have R/R in the range 0.025–0.075 and R in the range 1–3R (only Y Oph has R8R ).  相似文献   

10.
Theoretical Ca X electron temperature sensitive emission line ratios, derived using electron excitation rates interpolated from accurateR-matrix calculations, are presented forR 1 =I(419.74 )/I(574.02 ,),R 2 =I(411.65 )/I(574.02 ),R 3 =I(419.74 )/I(557.75 ), andR 4 =I(411.65 )/I(557.75 ). A comparison of these with observational data for three solar flares, obtained by the Naval Research Laboratory's S082A slitless spectrograph on boardSkylab, reveals good agreement between theory and observation forR 1 andR 3 in one event, which provides limited support for the accuracy of the atomic data adopted in the analysis. However, in the other flares the observed values ofR 1R 4 are much larger than the theoretical high-temperature limits, which is probably due to blending of the 419.74 line with Civ 419.71 , and 411.65 with possibly Ciii 411.70 .  相似文献   

11.
In a slab jet model the influence of strong magnetic fields and density contrasts on the development of instabilities caused by velocity contrasts is studied and applied to disc accretion onto magnetized compact object.The perturbations propagating transverse to a magnetic field in external regions are shown not to be stabilized. A strong density contrast at the jet boundary (R=ex/in 1) does not stabilize the instability of acoustic resonance type (ARTI), the fundamental symmetric and antisymmetric modes being still unstable for any finite value ofR. At the same time a criticalR-value exists (R1/M 2,M is the Mach number) at which the higher reflection harmonics are stabilized.A comparative analysis is made of ARTI and Kelvin-Helmholtz instability that is developed by surface modes of the interfaces between the disc material and magnetic field (magnetosphere) is performed. ARTI may be responsible for the accreting material penetration into the magnetosphere as well as other mechanisms.We have to note that the difference in names is rather traditional here and is to emphasize the difference in the models.  相似文献   

12.
Because of the bimodal distribution of sunspot cycle periods, the Hale cycle (or double sunspot cycle) should show evidence of modulation between 20 and 24 yr, with the Hale cycle having an average length of about 22 yr. Indeed, such a modulation is observed. Comparison of consecutive pairs of cycles strongly suggests that even-numbered cycles are preferentially paired with odd-numbered following cycles. Systematic variations are hinted in both the Hale cycle period and R sum (the sum of monthly mean sunspot numbers over consecutively paired sunspot cycles). The preferred even-odd cycle pairing suggests that cycles 22 and 23 form a new Hale cycle pair (Hale cycle 12), that cycle 23 will be larger than cycle 22 (in terms of R M, the maximum smoothed sunspot number, and of the individual cycle value of R sum), and that the length of Hale cycle 12 will be longer than 22 yr. Because of the strong correlation (r = 0.95) between individual sunspot cycle values of R sum and R M, having a good estimate of R Mfor the present sunspot cycle (22) allows one to predict its R sum, which further allows an estimation of both R Mand R sum for cycle 23 and an estimation of R sum for Hale cycle 12. Based on Wilson's bivariate fit (r = 0.98), sunspot cycle 22 should have an R Mequal to 144.4 ± 27.3 (at the 3- level), implying that its R sum should be about 8600 ± 2200; such values imply that sunspot cycle 23 should have an R sum of about 10500 ± 2000 and an R Mof about 175 ± 40, and that Hale cycle 12 should have an R sum of about 19100 ± 3000.  相似文献   

13.
Theoretical electron-temperature-sensitive Mgix emission line ratios are presented forR I =I(443.96 )/I(368.06 ),R 2 =I(439.17 )/I(368.06 ),R 3 =I(443.37 )/I(368.06 ),R 4 =I(441.22 )/I(368.06 ), andR 5 =I(448.28 )/I(368.06 ). A comparison of these with observational data for a solar active region, obtained during a rocket flight by the Solar EUV Rocket Telescope and Spectrograph (SERTS), reveals excellent agreement between theory and observation forR 1 throughR 4, with discrepancies that average only 9%. This provides experimental support for the accuracy of the atomic data adopted in the line ratio calculations, and also resolves discrepancies found previously when the theoretical results were compared with solar data from the S082A instrument on boardSkylab. However in the case ofR 5, the theoretical and observed ratios differ by almost a factor of 2. This may be due to the measured intensity of the 448.28 line being seriously affected by instrumental effects, as it lies very close to the long wavelength edge of the SERTS spectral coverage (235.46–448.76 ).  相似文献   

14.
The polarization structure in several spectral lines in solar type stars is computed using the method described by McKenna (1981, 1984a). The frequency redistribution function used for these calculations is a linear combination ofR II andR III. The line profiles and polarization structures have been computed for several weak solar resonance lines includingKi 7664 Å, Sri 4607 Å, Baii 4554 Å, for various polar angles along the stellar disk. Both the line profiles and polarization structures as well as the center to limb behavior of the line center polarization agree well with observations.The somewhat stronger resonance line Cai 4227 Å shows a different polarization structure when compared to the weaker solar resonance lines. It is found that for strong resonance lines the proper redistribution function to be used is a linear combination ofR III andR v (see McKenna, 1981, 1984b; Heinzel, 1981). The major reason for this is that for strong resonance lines both the upper and lower levels are broadened by collisions. This violates the assumptions upon which the redistribution functionsR II andR III are based.  相似文献   

15.
Examined are associational aspects as they relate the maximum amplitude R M for the sunspot cycle to the rate of rise R t during the ascending phase, where R M is the smoothed sunspot number at cycle maximum and R t is the sum of the monthly mean sunspot numbers for selected 6-month intervals (t) measured from cycle onset. One finds that, prior to about 2 yr into the cycle, the rate of rise is not a reliable predictor for maximum amplitude. Only during the latter half of the ascent do the fits display strong linearity, having a coefficient of correlation r 0.9 and a standard error S yx 20. During the first four intervals, the expected R M and the observed R M were found to differ by no more than 20 units of smoothed sunspot number only 25, 42, 50, and 58 % of the time; during the latter four intervals, they differed by no more than 20 units 67, 83, 92, and 100% of the time.  相似文献   

16.
In this paper we have obtained the general vacuum solution for Bianchi type-II in the Brans-Dicke theory for total anistropyR 1R 2R 3. It is known that by use of our method, we can find the general solution for Bianchi type-II vacuum case in the general relativity theory, first given by Taub (1951). Some physical properties of this model are also discussed.  相似文献   

17.
Correlated with the maximum amplitude (R max) of the sunspot cycle are the sum (R sum) and the mean (R mean) of sunspot number over the duration of the cycle, having a correlation coefficient r equal to 0.925 and 0.960, respectively. Runs tests of R max, R sum, and R mean for cycles 0–21 have probabilities of randomness P equal to 6.3, 1.2, and 9.2%, respectively, indicating a tendency for these solar-cycle related parameters to be nonrandomly distributed. The past record of these parameters can be described using a simple two-parameter secular fit, one parameter being an 8-cycle modulation (the so-called Gleissberg cycle or long period) and the other being a long-term general (linear) increase lasting tens of cycles. For each of the solar-cycle related parameters, the secular fit has an r equal to about 0.7–0.8, implying that about 50–60% of the variation in R max, R sum, and R mean can be accounted for by the variation in the secular fit.Extrapolation of the two-parameter secular fit of R max to cycle 22 suggests that the present cycle will have an R max = 74.5 ± 49.0, where the error bar equals ± 2 standard errors; hence, the maximum amplitude for cycle 22 should be lower than about 125 when sunspot number is expressed as an annual average or it should be lower than about 130 when sunspot number is expressed as a smoothed (13-month running mean) average. The long-term general increase in sunspot number appears to have begun about the time of the Maunder minimum, implying that the 314-yr periodicity found in ancient varve data may not be a dominant feature of present sunspot cycles.  相似文献   

18.
By analyzing observational data, it has been possible to determine quantitative relationships that represent the role of the interaction of fast and slow solar wind (SW) streams in the formation of characteristic SW properties at the Earth's orbit.It is shown that maximum values of magnetic field B M and density n M peaks in the neighbourhood of the sector boundary (SB) at the base of the high-speed stream front are associated with solar wind characteristics such as the SW minimum velocity near the SB, V m, the maximum velocity in the central part of the fast stream, V M, and the slope of the magnetic field neutral line to the solar equatorial plane at R = 2.5 R (R is the solar radius).It is concluded that enhancements of absolute values of the z-component of the magnetic field, ¦B z¦, recorded at the Earth's orbit, are largely attributable, at sufficiently large values of , to the interaction of different-velocity SW streams.  相似文献   

19.
Emission gradient curves for extreme ultraviolet (EUV) resonance lines of O vi and Mg x have been constructed from spectroheliograms of quiet limb regions observed with the Harvard experiment on Skylab. An analysis of these data suggests that the coronal temperature rises throughout the height range 1.03R r1.3R . This result implies that in quiet regions there is significant coronal heating beyond r = 1.3R .Now at E.O. Hulburt Center for Space Research, Naval Research Laboratory, Washington, D.C., U.S.A.  相似文献   

20.
Steven T. Suess 《Solar physics》1982,75(1-2):145-159
Polar coronal plumes are modeled using concentrations of magnetic flux at 1.01R , and assuming the field is current-free, or a potential field. Identifying the density enhancement of plumes with magnetic flux concentration produces good agreement between 1.01R and 1.10R , for model conditions of a large background magnetic field and a plume separation of 50 000 to 70 000 km at the base. Beyond 1.10R , both plumes and the potential field diverge very nearly as r 2.Also Department of Astrogeophysics, University of Colorado, Boulder, Colo. 80309, U.S.A. Presently visiting Stanford University Institute for Plasma Research, Via Crespi, Stanford, Calif. 94303, U.S.A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号