首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Rainfall measurements by conventional raingauges provide relatively accurate estimates at a few points of a region. The actual rainfield can be approximated by interpolating the available raingauge data to the remaining of the area of interest. In places with relatively low gauge density such interpolated rainfields will be very rough estimates of the actual events. This is especially true for tropical regions where most rainfall has a convective origin with high spatial variability at the daily level. Estimates of rainfall by remote sensing can be very useful in regions such as the Amazon basin, where raingauge density is very low and rainfall highly variable. This paper evaluates the rainfall estimates of the Tropical Rainfall Measuring Mission (TRMM) satellite over the Tapajós river basin, a major tributary of the Amazon. Three-hour TRMM rainfall estimates were aggregated to daily values and were compared with catch of ground-level precipitation gauges on a daily basis after interpolating both data to a regular grid. Both daily TRMM and raingauge-interpolated rainfields were then used as input to a large-scale hydrological model for the whole basin; the calculated hydrographs were then compared to observations at several streamgauges along the river Tapajos and its main tributaries. Results of the rainfield comparisons showed that satellite estimates can be a practical tool for identifying damaged or aberrant raingauges at a basin-wide scale. Results of the hydrological modeling showed that TRMM-based calculated hydrographs are comparable with those obtained using raingauge data.  相似文献   

2.
River discharges vary strongly through time and space, and quantifying this variability is fundamental to understanding and modelling river processes. The river basin is increasingly being used as the unit for natural resource planning and management; to facilitate this, basin‐scale models of material supply and transport are being developed. For many basin‐scale planning activities, detailed rainfall‐runoff modelling is neither necessary nor tractable, and models that capture spatial patterns of material supply and transport averaged over decades are sufficient. Nevertheless, the data to describe the spatial variability of river discharge across large basins for use in such models are often limited, and hence models to predict river discharge at the basin scale are required. We describe models for predicting mean annual flow and a non‐dimensional measure of daily flow variability for every river reach within a drainage network. The models use sparse river gauging data, modelled grid surfaces of mean annual rainfall and mean annual potential evapotranspiration, and a network accumulation algorithm. We demonstrate the parameterization and application of the models using data for the Murrumbidgee basin, in southeast Australia, and describe the use of these predictions in modelling sediment transport through the river network. The regionalizations described contain less uncertainty, and are more sensitive to observed spatial variations in runoff, than regionalizations based on catchment area and rainfall alone. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Extreme precipitation event is rare and mostly occurs on a relatively small local scale, which presents marked uncertainties when analyzing its characteristics. Using daily precipitation data covering 1959–2009 from 62 stations over the Pearl River Basin, the percentile method (PM) and the absolute critical value method (ACVM) are applied to define extreme precipitation thresholds (EPT), and their different impacts on the spatial–temporal distribution of extreme precipitation event were analyzed in this study. The findings of this study show: (1) Using the K-means clustering algorithm in terms of precipitation indices and the topography, longitude and latitude of each station, the whole basin is divided into eight precipitation zones. (2) The extreme indices, including extreme precipitation frequency, extreme precipitation proportion and proportion of extremely n-day precipitation, calculated by PM are markedly higher than those calculated by ACVM during five decades, which is particularly obvious in the low precipitation area such as the west-northern of the basin since more daily precipitation events are treated as extreme precipitation in this region if EPT is defined by PM. (3) The spatial distributions of extreme frequencies respectively calculated by these two methods are quite different across the basin. The spatial distribution of extreme frequencies calculated by ACVM shows a high-value center in the southeast coastal areas and a low-value center in the northwest mountain areas. However, the extreme frequencies calculated by PM distribute evenly over the basin, which is obviously inconsistent with the empirical results, an area with heavy precipitation usually has a high extreme precipitation frequency, and vice versa.  相似文献   

4.
Taiwan suffers from heavy storm rainfall during the typhoon season. This usually causes large river runoff, overland flow, erosion, landslides, debris flows, loss of power, etc. In order to evaluate storm impacts on the downstream basin, a real‐time hydrological modelling is used to estimate potential hazard areas. This can be used as a decision‐support system for the Emergency Response Center, National Fire Agency Ministry, to make ‘real‐time’ responses and minimize possible damage to human life and property. This study used 34 observed events from 14 telemetered rain‐gauges in the Tamshui River basin, Taiwan, to study the spatial–temporal characteristics of typhoon rainfall. In the study, regionalized theory and cross‐semi‐variograms were used to identify the spatial‐temporal structure of typhoon rainfall. The power form and parameters of the cross‐semi‐variogram were derived through analysis of the observed data. In the end, cross‐validation was used to evaluate the performance of the interpolated rainfall on the river basin. The results show the derived rainfall interpolator represents the observed events well, which indicates the rainfall interpolator can be used as a spatial‐temporal rainfall input for real‐time hydrological modelling. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents a quantitative ecohydrological framework for predicting regional distribution patterns of woody species in dryland ecosystems. The framework is based on an existing stochastic model for the daily mass balance of water that represents the interactions between soils, climate, and vegetation. Individual species selection is based on an optimality trade-off hypothesis, which states that dryland vegetation patterns are constrained by maximization of water use and simultaneous minimization of water stress. The relative importance of water use and stress avoidance to the overall fitness of three Acacia species is determined from the heterogeneous basin, the Upper Ewaso Ng’iro river basin, of the central Kenya highlands. The model results indicate that overall fitness is more strongly influenced by water use than stress avoidance but that consideration of both stress avoidance and water use is critical to predicting basin-scale patterns of species distribution. We identify a linear trend in the frequency and intensity of storms with the same annual total using a basin-wide gauge precipitation dataset. After calibration, we apply the basin average linear trends in time for average rain per storm and storm arrival rates. The model results indicate the upslope migration of two species, Acacia tortilis and Acacia xanthophloea to areas with higher total rainfall. Lastly, we explore the modeled changes of species cover in the basin influenced by changes in rainfall total holding growing season rainfall variability constant and changes in growing season rainfall variability holding total rainfall constant. We find that changes in dryland species distribution patterns and relative abundance may be as sensitive to growing season rainfall variability as they are to changes in total rainfall amounts.  相似文献   

6.
Summary A design flood for a Venezuelan river is computed in the absence of rainfall and stream-flow data of more than a few years. From synoptic studies of an area embracing northern South America and the Caribbean, the type of disturbance producing the abundant rains of the area is determined. A disturbance of this type is maximized on the basis of the ratio of energy dissipated through friction to released latent energy represented by rainfall — in other words, theefficiency of the system is given its highest reasonable value. The synthetic disturbance is moved over the river basin in a manner most favorable for heavy rain. Certain data available from other rivers are used as a cross-check on the resultant flood values.  相似文献   

7.
Abstract

Streamflow variability in the Upper and Lower Litani basin, Lebanon was modelled as there is a lack of long-term measured runoff data. To simulate runoff and streamflow, daily rainfall was derived using a stochastic rainfall generation model and monthly rainfall data. Two distinct synthetic rainfall models were developed based on a two-part probabilistic distribution approach. The rainfall occurrence was described by a Markov chain process, while the rainfall distribution on wet days was represented by two different distributions (i.e. gamma and mixed exponential distributions). Both distributions yielded similar results. The rainfall data were then processed using water balance and routing models to generate daily and monthly streamflow. Compared with measured data, the model results were generally reasonable (mean errors ranging from 0.1 to 0.8?m3/s at select locations). Finally, the simulated monthly streamflow data were used to investigate discharge trends in the Litani basin during the 20th century using the Mann-Kendall and Sen slope nonparametric trend detection methods. A significant drying trend of the basin was detected, reaching a streamflow reduction of 0.8 and 0.7 m3/s per decade in January for the Upper and Lower basin, respectively.

Editor D. Koutsoyiannis; Associate editor Sheng Yue

Citation Ramadan, H.H., Beighley, R.E., and Ramamurthy, A.S., 2012. Modelling streamflow trends for a watershed with limited data: case of the Litani basin, Lebanon. Hydrological Sciences Journal, 57 (8), 1516–1529.  相似文献   

8.
C. Fleurant  B. Kartiwa  B. Roland 《水文研究》2006,20(18):3879-3895
The rainfall‐runoff modelling of a river basin can be divided into two processes: the production function and the transfer function. The production function determines the proportion of gross rainfall actually involved in the runoff. The transfer function spreads the net rainfall over time and space in the river basin. Such a transfer function can be modelled using the approach of the geomorphological instantaneous unit hydrograph (GIUH). The effectiveness of geomorphological models is actually revealed in rainfall‐runoff modelling, where hydrologic data are desperately lacking, just as in ungauged basins. These models make it possible to forecast the hydrograph shape and runoff variation versus time at the basin outlet. This article is an introduction to a new GIUH model that proves to be simple and analytical. Its geomorphological parameters are easily available on a map or from a digital elevation model. This model is based on general hypotheses on symmetry that provide it with multiscale versatile characteristics. After having validated the model in river basins of very different nature and size, we present an application of this model for rainfall‐runoff modelling. Since parameters are determined relying on real geomorphological data, no calibration is necessary, and it is then possible to carry out rainfall‐runoff simulations in ungauged river basins. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Rajib Maity 《水文研究》2012,26(21):3182-3194
In this paper, Split Markov Process (SMP) is developed to assess one‐step‐ahead variation of daily rainfall at a rain gauge station. SMP is an advancement of general Markov Process and specially developed for probabilistic assessment of change in daily rainfall magnitude. The approach is based on a first‐order Markov chain to simulate daily rainfall variation at a point through state/sub‐state transitional probability matrix (TPM). The state/sub‐state TPM is based on the historical transitions from a particular state to a particular sub‐state, which is the basic difference between SMP and general Markov Process. The cumulative state/sub‐state TPM is represented in a contour plot at different probability levels. The developed cumulative state/sub‐state TPM is used to assess the possible range of rainfall in next time step, in a probabilistic sense. Application of SMP is investigated for daily rainfall at four rain gauge stations – Khandwa, Jabalpur, Sambalpur, and Puri, located at various parts in India. There are 99 years of record available out of which approximately 80% of data are used for calibration, and 20% of data are used to assess the performance. Thus, 80 years of daily monsoon rainfall is used to develop the state/sub‐state TPM, and 19 years data are used to investigate its performance. Model performance is assessed in terms of hit rate (HR), false alarm rate (FAR), and percentage captured. It is found that percentage captured is maximum for Khandwa (70%) and minimum for Sambalpur (44%) whereas hit rate is maximum for Sambalpur and minimum for Khandwa (73%). FAR is around 30% or below for Jabalpur, Sambalpur, and Puri. FAR is maximum for Khandwa (37%). Overall, the assessed range, particularly the upper limit, provides a quantification possible extreme value in the next time step, which is a very useful information to tackle the extreme events, such as flooding, water logging and so on. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Climate change has significant impacts on water availability in larger river basins. The present study evaluates the possible impacts of projected future daily rainfall (2011–2099) on the hydrology of a major river basin in peninsular India, the Godavari River Basin, (GRB), under RCP4.5 and RCP8.5 scenarios. The study highlights a criteria-based approach for selecting the CMIP5 GCMs, based on their fidelity in simulating the Indian Summer Monsoon rainfall. The nonparametric kernel regression based statistical downscaling model is employed to project future daily rainfall and the variable infiltration capacity (VIC) macroscale hydrological model is used for hydrological simulations. The results indicate an increase in future rainfall without significant change in the spatial pattern of hydrological variables in the GRB. The climate-change-induced projected hydrological changes provide a crucial input to define water resource policies in the GRB. This methodology can be adopted for the climate change impacts assessment of larger river basins worldwide.  相似文献   

11.
Many hydrological and agricultural studies require simulations of weather variables reflecting observed spatial and temporal dependence at multiple point locations. This paper assesses three multi-site daily rainfall generators for their ability to model different spatio-temporal rainfall attributes over the study area. The approaches considered consist of a multi-site modified Markov model (MMM), a reordering method for reconstructing space–time variability, and a nonparametric k-nearest neighbour (KNN) model. Our results indicate that all the approaches reproduce adequately the observed spatio-temporal pattern of the multi-site daily rainfall. However, different techniques used to signify longer time scale observed temporal and spatial dependences in the simulated sequences, reproduce these characteristics with varying successes. While each approach comes with its own advantages and disadvantages, the MMM has an overall advantage in offering a mechanism for modelling varying orders of serial dependence at each point location, while still maintaining the observed spatial dependence with sufficient accuracy. The reordering method is simple and intuitive and produces good results. However, it is primarily driven by the reshuffling of the simulated values across realisations and therefore may not be suited in applications where data length is limited or in situations where the simulation process is governed by exogenous conditioning variables. For example, in downscaling studies where KNN and MMM can be used with confidence.  相似文献   

12.
Abstract

Important characteristics of an appropriate river basin model, intended to study the effect of climate change on basin response, are the spatial and temporal resolution of the model and the rainfall input. The effects of input and model resolution on extreme discharge of a large river basin are assessed to give some indication on appropriate resolutions. A simple stochastic rainfall model and a river basin model with uniform parameters and multiple rainfall input have been developed and applied to the River Meuse basin in northwestern Europe. The results show that the effect of model resolution on extreme river discharge is much greater than that of input resolution. The highest model resolution seems to be quite accurate in determining extreme discharge. Although the results should be interpreted with caution, they may give some indication of appropriate input and model resolutions for the determination of extreme discharge of a large river basin.  相似文献   

13.
Simulation of rainfall-runoff process in urban areas is of great importance considering the consequences and damages of extreme runoff events and floods. The first issue in flood hazard analysis is rainfall simulation. Large scale climate signals have been proved to be effective in rainfall simulation and prediction. In this study, an integrated scheme is developed for rainfall-runoff modeling considering different sources of uncertainty. This scheme includes three main steps of rainfall forecasting, rainfall-runoff simulation and future runoff prediction. In the first step, data driven models are developed and used to forecast rainfall using large scale climate signals as rainfall predictors. Due to high effect of different sources of uncertainty on the output of hydrologic models, in the second step uncertainty associated with input data, model parameters and model structure is incorporated in rainfall-runoff modeling and simulation. Three rainfall-runoff simulation models are developed for consideration of model conceptual (structural) uncertainty in real time runoff forecasting. To analyze the uncertainty of the model structure, streamflows generated by alternative rainfall-runoff models are combined, through developing a weighting method based on K-means clustering. Model parameters and input uncertainty are investigated using an adaptive Markov Chain Monte Carlo method. Finally, calibrated rainfall-runoff models are driven using the forecasted rainfall to predict future runoff for the watershed. The proposed scheme is employed in the case study of the Bronx River watershed, New York City. Results of uncertainty analysis of rainfall-runoff modeling reveal that simultaneous estimation of model parameters and input uncertainty significantly changes the probability distribution of the model parameters. It is also observed that by combining the outputs of the hydrological models using the proposed clustering scheme, the accuracy of runoff simulation in the watershed is remarkably improved up to 50% in comparison to the simulations by the individual models. Results indicate that the developed methodology not only provides reliable tools for rainfall and runoff modeling, but also adequate time for incorporating required mitigation measures in dealing with potentially extreme runoff events and flood hazard. Results of this study can be used in identification of the main factors affecting flood hazard analysis.  相似文献   

14.
This study examined trends and change points in 100-year annual and seasonal rainfall over hot and cold arid regions of India. Using k-means clustering, 32 stations were classified into two clusters: the coefficient of variation for annual and seasonal rainfall was relatively high for Cluster-II compared to Cluster-I. Short-term and long-term persistence was more dominant in Cluster-II (entirely arid) and Cluster-I (partly arid), respectively. Trend tests revealed prominent increasing trends in annual and wet season rainfall of Cluster-II. Dry season rainfall increased by 1.09 mm year?1 in the cold arid region. The significant change points in annual and wet season rainfall mostly occurred in the period 1941–1955 (hot and cold), and in the dry season in the period 1973–1975 (hot arid) and in 1949 (cold arid). The findings are useful for managing a surplus or deficiency of rainwater in the Indian arid region.
EDITOR A. Castellarin; ASSOCIATE EDITOR S. Kanae  相似文献   

15.
Abstract

The development of statistical relationships between local hydroclimates and large-scale atmospheric variables enhances the understanding of hydroclimate variability. The rainfall in the study basin (the Upper Chao Phraya River Basin, Thailand) is influenced by the Indian Ocean and tropical Pacific Ocean atmospheric circulation. Using correlation analysis and cross-validated multiple regression, the large-scale atmospheric variables, such as temperature, pressure and wind, over given regions are identified. The forecasting models using atmospheric predictors show the capability of long-lead forecasting. The modified k-nearest neighbour (k-nn) model, which is developed using the identified predictors to forecast rainfall, and evaluated by likelihood function, shows a long-lead forecast of monsoon rainfall at 7–9 months. The decreasing performance in forecasting dry-season rainfall is found for both short and long lead times. The developed model also presents better performance in forecasting pre-monsoon season rainfall in dry years compared to wet years, and vice versa for monsoon season rainfall.

Editor Z.W. Kundzewicz

Citation Singhrattna, N., Babel, M.S. and Perret, S.R., 2012. Hydroclimate variability and long-lead forecasting of rainfall over Thailand by large-scale atmospheric variables. Hydrological Sciences Journal, 57 (1), 26–41.  相似文献   

16.
On the basis that hydrological users need to know the forecast uncertainty at the time that the forecast is issued, we computed distributions of radar rainfall forecast uncertainty as a function of forecast lead time, basin size, and forecasted rainfall intensity using data from the US 3-D National Mosaic of radar data. We document how exceptional forecasts such as those of heavy rainfall are generally biased. Since forecast uncertainty is also weather dependent, we tried to find good predictors to help either reduce the forecast uncertainty or better define it. These predictors were based either on characteristics of the current precipitation field or on the performance of the nowcast in the immediate past. The value of some predictors, especially those based on the properties of large-scale rainfall patterns, was significant though modest, the predictors being generally more skillful at characterizing forecast uncertainty than at improving forecast accuracy.  相似文献   

17.
Modeling of sediment transport in relation to changing land-surface conditions against a background of considerable natural variability is a challenging area in hydrology. Bayesian dynamic linear models (DLMs) however, offer opportunities to account for non-stationarity in relationships between hydrologic input and basin response variables. Hydrologic data are from a 40 years long record (1951–1990) from the 5905 km2 Yadkin River basin in North Carolina, USA. DLM regressions were estimated between log-transformed volume-weighted sediment concentration as a response and log-transformed rainfall erosivity and river flow, respectively, as input variables. A similar regression between log-transformed river flow and log-transformed basin averaged rainfall was also analyzed. The dynamic regression coefficient which reflects the erodibility of the basin decreased significantly between 1951 and 1970, followed by a slowly rising trend. These trends are consistent with observed land-use shifts in the basin. Bayesian DLMs represent a substantial improvement over traditional monotonic trend analysis. Extensions to incorporate multiple regression and seasonality are recommended for future applications in hydrology.  相似文献   

18.
This paper presents the development and the application of techniques for the integration of information coming from Meteosat satellite images and rain-gauge measurements, with the purpose of estimating the rainfall pattern on a certain river basin. The proposed integration techniques are based on the definition of a data coherence problem and on the application of mathematical programming methods. The quality of the estimation procedure is evaluated by using a rainfall/runoff model for the basin which allows the generation of a hydrograph at a given section of the river, on the basis of the above estimated rainfall pattern in the upstream watershed. The comparison of the hydrograph with the observed one allows the parametric tuning of the integration procedure.  相似文献   

19.
Gerard Govers  Jan Diels 《水文研究》2013,27(25):3777-3790
Experimental work has clearly shown that the effective hydraulic conductivity (Ke) or effective infiltration rate (fe) on the local scale of a plot cannot be considered as constant but are dependent on water depth and rainfall intensity because non‐random microtopography‐related variations in hydraulic conductivity occur. Rainfall–runoff models generally do not account for this: models assume that excess water is uniformly spread over the soil surface and within‐plot variations are neglected. In the present study, we propose a model that is based on the concepts of microtopography‐related water depth‐dependent infiltration and partial contributing area. Expressions for the plot scale Ke and fe were developed that depend on rainfall intensity and runon from upslope (and thus on water depth). To calibrate and validate the model, steady state infiltration experiments were conducted on maize fields on silt loam soils in Belgium, with different stages and combinations of rainfall intensity and inflow, simulating rainfall and runon. Water depth–discharge and depth–inundation relationships were established and used to estimate the effect of inundation on Ke. Although inflow‐only experiments were found to be unsuitable for calibration, the model was successfully calibrated and validated with the rainfall simulation data and combined rainfall–runon data (R²: 0.43–0.91). Calibrated and validated with steady state infiltration experiments, the model was combined with the Green–Ampt infiltration equation and can be applied within a two‐dimensional distributed rainfall–runoff model. The effect of water depth–dependency and rainfall intensity on infiltration was illustrated for a hillslope. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The infrared‐microwave rainfall algorithm (IMRA) was developed for retrieving spatial rainfall from infrared (IR) brightness temperatures (TBs) of satellite sensors to provide supplementary information to the rainfall field, and to decrease the traditional dependency on limited rain gauge data that are point measurements. In IMRA, a SLOPE technique (ST) was developed for discriminating rain/no‐rain pixels through IR image cloud‐top temperature gradient, and 243K as the IR threshold temperature for minimum detectable rainfall rate. IMRA also allows for the adjustment of rainfall derived from IR‐TB using microwave (MW) TBs. In this study, IMRA rainfall estimates were assessed on hourly and daily basis for different spatial scales (4, 12, 20, and 100 km) using NCEP stage IV gauge‐adjusted radar rainfall data, and daily rain gauge data. IMRA was assessed in terms of the accuracy of the rainfall estimates and the basin streamflow simulated by the hydrologic model, Sacramento soil moisture accounting (SAC‐SMA), driven by the rainfall data. The results show that the ST option of IMRA gave accurate satellite rainfall estimates for both light and heavy rainfall systems while the Hessian technique only gave accurate estimates for the convective systems. At daily time step, there was no improvement in IR‐satellite rainfall estimates adjusted with MW TBs. The basin‐scale streamflow simulated by SAC‐SMA driven by satellite rainfall data was marginally better than when SAC‐SMA was driven by rain gauge data, and was similar to the case using radar data, reflecting the potential applications of satellite rainfall in basin‐scale hydrologic modelling. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号