首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polymetamorphic units are important constituents of continent–continent collisional orogens, and rift metamorphic assemblages are often overprinted by subsequent metamorphism during subduction and collision. This study reports the metamorphic conditions and evolution of the Dorud–Azna metamorphic units in the central part of the Sanandaj–Sirjan zone (SSZ), Iran. Here, new geothermobarometry results are integrated with 40Ar/39Ar mineral and Th–U–Pb monazite and thorite ages to provide new insight of polyphase metamorphism in the two different basement units of the SSZ, the lower Galeh-Doz orthogneiss and higher Amphibolite-Metagabbro units. In the Amphibolite-Metagabbro unit, staurolite micaschist underwent a prograde P–T evolution from 640 ± 20 °C/6.2 ± 0.8 kbar in garnet cores (M1) to 680 ± 20 °C/7.2 ± 1.0 kbar in garnet rims (M2). Three Th–U–Pb monazite ages of 306 ± 5 Ma, 322 ± 28 Ma and 336 ± 39 Ma from the garnet-micaschists testify the Carboniferous age of M1 metamorphism. In the same unit, the metagabbro records P–T conditions of 4.0 ± 0.8 kbar and 580 ± 50 °C in the (magmatic) amphibole core (Late Carboniferous intrusion) to 7.5 ± 0.7 kbar and 700 ± 20 °C in the amphibole rim indicating a prograde P–T path during subsequent burial (M1). New 40Ar/39Ar dating of white mica from the staurolite micaschist yielded a staircase pattern ranging from 36 ± 12 Ma to 170 ± 2 Ma. This implies polymetamorphism with a minimum Late Jurassic cooling age through the Ar retention temperature of ca. 425 ± 25 °C after M2 metamorphism and a Paleogene low-grade metamorphic overprint (M3), while 40Ar/39Ar white mica dating of garnet micaschist yielded a plateau age of 137.84 ± 0.65 Ma. We therefore interpret the amphibolite-grade metamorphism M2 to have predated 170 Ma and is likely between 180 and 200 Ma. Furthermore, it is overprinted at about 36 Ma under retrogressive low-grade M3 metamorphism (at temperatures of ~350–240 °C) during final shortening and exhumation. In the underlying Galeh-Doz unit, the Panafrican granitic orthogneiss intruded at P–T conditions of 3.2 ± 4 kbar and 700 ± 20 °C, then it was metamorphosed and deformed at 600 ± 50 °C and 2.0 ± 0.8 kbar (metamorphic stage M1) prior to Late Carboniferous intrusion of mafic dikes. 40Ar/39Ar dating of amphibole from the Galeh-Doz orthogneiss gave plateau-like steps between 260 and 270 Ma, representing the age of cooling through ca. 500 °C after the M1 metamorphic event. Interestingly, the results of this study demonstrate polyphase metamorphic histories in both the Galeh-Doz orthogneiss and Amphibolite-Metagabbro units at different P–T conditions and final thick-skinned Paleogene emplacement of these units over the underlying low-grade metamorphic June Complex. Our findings suggest that both units are affected by high-T/low-P Late Carboniferous orogenic metamorphism along with the bimodal magmatism, as result of rifting. We propose that the Early Jurassic amphibolite-grade M2 metamorphism of the SSZ is correlated with the initial subduction of the Neotethyan Ocean. Eventually, the investigated units reflect various stages of a Wilson cycle, from rifting to initiation of the subduction in final plate collision.  相似文献   

2.
Multi‐method thermochronology along the Vakhsh‐Surkhob fault zone reveals the thermotectonic history of the South Tian Shan–Pamirs boundary. Apatite U/Pb analyses yield a consistent age of 251 ± 2 Ma, corresponding to cooling below ~550–350°C, related to the final closure of the Palaeo‐Asian Ocean and contemporaneous magmatism in the South Tian Shan. Zircon (U–Th–Sm)/He ages constrain cooling below ~180°C to the end of the Triassic (~200 Ma), likely related either to deformation induced by the Qiangtang collision or to the closure of the Rushan Ocean. Apatite fission track thermochronology reveals two low‐temperature (<120°C) thermal events at ~25 Ma and ~10 Ma, which may be correlated with tectonic activity at the distant southern Eurasian margin. The late Miocene cooling is confirmed by apatite (U–Th–Sm)/He data and marks the onset of mountain building within the South Tian Shan that is ongoing today.  相似文献   

3.
Petrochronology of magmatic monazite and apatite from a single paragneiss leucosome derived by in situ partial melting documents the thermal evolution of the Allochthonous Belt of the central Grenville Province. Monazite records suprasolidus metamorphism from ca. 1080 to 1020 Ma under high temperature up to 850°C. Apatite from the same leucosome yields an age of 960 Ma, consistent with cooling of this crustal segment down to subsolidus conditions of ca. 450°C. A pegmatitic granite dyke, with lobate contacts, previously dated at ca. 1005 Ma (Turlin et al., 2017 ) is interpreted to intrude the paragneisses at a temperature of ca. 650°C close to the wet‐solidus. These data document slow cooling at a rate of 2–6°C/Ma for the middle crust of this part of the Grenville hinterland marked by protracted suprasolidus conditions for at least 70 Ma. It supports the definition of the Grenville Orogen as a large, hot, long‐duration orogen.  相似文献   

4.
The Ross Sea is a crucial area to investigate pathways of ice during the Cenozoic as it records the evolution of both the East and West Antarctic Ice Sheets. This work is based on detrital apatite fission track (AFT) data extracted from the sedimentary record of well CIROS‐2, which spans the last 5 Ma. The AFT data show a large range of ages, and most of the grains fit well with two main components that fall between 24 and 42 Ma and between 43 and 70 Ma, whereas the other components are not regularly distributed through the well, thus indicating a mixture of provenance from different areas along the Transantarctic Mountains. As a whole, our work suggests glacial expansion over the McMurdo Sound during the Pliocene, and ice periodically invading and retreating in Pleistocene.  相似文献   

5.
6.
A garnet-bearing schist from the southernmost such exposure along the Himalaya in east central Nepal records prograde metamorphism at 32.4 ?± ?0.3 ?Ma. Phase equilibria modelling, combined with Ti-in-biotite and quartz c-axis thermometry, outline a tight-to-hairpin pressure-temperature (P-T) path extending from ~515 ?°C and 5.5 ?kbar to peak conditions at ~575 ?°C and 7 ?kbar followed by deformation during the retrograde phase at 480–515 ?°C and 6–7 ?kbar. The new geochronology data place an upper bound on the evolution of metamorphism and deformation in the frontal-most part of the Himalaya, which lasted until 17.5 ?Ma, as indicated by previously published 40Ar/39Ar data. The P-T-time data from this part of the Himalaya, as well as that from more hinterland-ward portions of the orogen, outline a progressive, stepwise, commonly out-of-sequence evolution. Further data from along the orogen indicates that this evolution is not a local phenomenon, but instead characterizes the tectonics of this system as a whole.  相似文献   

7.
The Beni Bousera peridotite massif and its metamorphic surrounding rocks have been analyzed by the fission track (FT) method. The aim was to determine the cooling and uplift history of these mantle and associated crustal rocks after the last major metamorphic event that dates back to the Lower Miocene–Upper Oligocene time (~22–24 Ma). The zircon FT analyses give an average cooling—i.e., below 320 °C—age of ~19.5 Ma. In addition, the apatite FT data give an average cooling—i.e., below 110 °C—age of ~15.5 Ma. Taking into account the thermal properties of the different thermochronological systems used in this work, we have estimated a rate of cooling close to 50 °C/Ma. This cooling rate constrains a denudation rate of about ~2 mm year?1 from 20 to 15 Ma. These results are similar to those determined in the Ronda peridotite massif of the Betic Cordilleras documenting that some ultrabasic massifs of the internal zones of the two segments of the Gibraltar Arc have a similar evolution. However, Burdigalian sediments occur along the Betic segment (Alozaina area, western Betic segment) unconformably overlying peridotite. At this site, ultramafic rock was exposed to weathering at ages ranging from 20.43 to 15.97 Ma. Since the Beni Bousera peridotite was still at depth until 15.5 Ma, we infer that no simple age projection from massif to massif is possible along the Gibraltar Arc. Moreover, the confined fission track lengths data reveal that a light warming (~100 °C) has reheated the massif during the Late Miocene before the Pliocene–Quaternary tectonic uplift.  相似文献   

8.
The lowermost units of the nappe pile of the Lepontine Alps crop out in the Antigorio valley in the footwall of the Simplon Fault. The whole orthogneiss section of the Antigorio Unit is exposed on both sides of the valley, sandwiched between the Mesozoic metasedimentary sequences of the Baceno unit below and the Tèggiolo unit above. The petrography and mineral composition of tremolite–calcite veins occurring in dolomite marble in both metasedimentary sequences were investigated. Tremolite–calcite (with lesser talc and minor phlogopite) veins have rhythmic banded texture. Banding is due to cyclic differences in modal abundances and fabric of tremolite and calcite. These veins are very similar to those occurring in dolomite rafts within the Bergell granite and it is inferred that they formed by the same “fracture-reaction-seal” mechanism. Veins formed by reaction of a silica-rich aqueous fluid with the host dolomite marble along fractures. According to thermo-barometric calculations, based on electron microprobe analyses, reaction occurred at temperatures between 450 and 490°C and minimum pressure of 2–3 kbar. Such temperature conditions occurred in this footwall region of the Simplon Fault Zone around 15 Ma, during exhumation and cooling of the nappe pile and a transition to brittle behaviour. Aqueous, silica-rich fluids concentrated along fractures, forming tremolite–calcite veins in the dolomite marbles and quartz veins in the orthogneiss.  相似文献   

9.
Life spans and thermal evolution of hydrothermal systems are of fundamental metallogenic importance. We were able to establish the chronology and cooling history of the Zaldívar porphyry copper deposit (Northern Chile) by applying a combination of different isotopic dating methods in minerals with different closure temperatures, including 40Ar/39Ar geochronology and zircon fission track thermochronology, together with fluid inclusion thermometry and previous published U–Pb zircon geochronology. The hydrothermal mineralization in the Zaldívar deposit is genetically related to the Llamo Porphyry unit. Samples of igneous biotites from this intrusion yielded 40Ar/39Ar plateau ages between 35.5 ± 0.7 and 37.7 ± 0.4 Ma defining a weighted average of 36.6 ± 0.5 Ma (2σ). In contrast, one sample from the Zaldívar porphyry, one from the andesites, and two from the Llamo porphyry yielded considerably younger fission track ages of approximately 29 Ma with a weighted mean for all ages of 29.1 ± 1.7 Ma (2σ). Thermal and compositional constraints for the hydrothermal system in the Zaldívar deposit from fluid inclusions thermometry show that at least three fluid types broadly characterize two main hydrothermal episodes during the evolution of the deposit. The main mineralization and alteration event is characterized by high temperature (above 320°C) hypersaline fluids (salinity between 30 and 56 wt.% NaCl equivalents) coexisting with low-density gas-rich inclusions (salinity less than 17 wt.% NaCl equivalents) that homogenizing into the gas phase at temperatures above 350°C. The second episode corresponds to a low-temperature event which is characterized by liquid-rich fluid inclusions that homogenize into the liquid phase at temperatures ranging from 200°C to 300°C with salinities lower than 10 wt.% NaCl equivalents. The 40Ar/39Ar data (36.6 ± 0.5 Ma, weighted average) obtained from igneous biotites represent the minimum age for the last high-temperature (above 300°C) hydrothermal pulse. When compared with previously published U–Pb ages (38.7 ± 1.3 Ma) in zircons from the Llamo porphyry, a close temporal relationship between crystallization of the parental intrusion and the thermal collapse of the last high-temperature hydrothermal event is evident. Cooling took place from approximately 800°C (crystallization of the intrusive complex defined by zircon U–Pb ages) to below 300 ± 50°C (biotite 40Ar/39Ar closure temperature) within approximately 1.5 m.y. Because the thermal annealing of fission tracks in zircons occurs at temperatures of 240 ± 30°, the zircon fission track (ZFT) ages of 29.1 ± 1.7 Ma (2σ) mark the end of the thermal activity in the Zaldívar area, specifically the time when the whole area cooled below this temperature, well after the collapse of the main hydrothermal event in the Zaldívar porphyry copper deposit. This cooling age roughly coincides with the age defined for the emplacement of dacitic dikes at 31 ± 2.8 Ma (2σ) (published K–Ar whole rock), 5 km south of the Zaldívar deposit, in the Escondida area. This late magmatic pulse probably is responsible for high heat flow in the Zaldívar deposit as late as 29 Ma. There is no evidence that the low temperature hydrothermal pulse recognized by fluid inclusion studies is related to this thermal event. The zircon fission track cooling ages are interpreted to be related to the time lag required for complete relaxation of the perturbation of the isotherms in the geothermal field imposed by the intrusion of magmatic bodies, with or without any association with low temperature hydrothermal activity.  相似文献   

10.
Zircon U-Pb SIMS dating combined with in-context (in thin section) monazite and xenotime U + Th-total Pb dating was used to clarify the Palaeozoic evolution of the ‘cold’ Chopok granite (Nízke Tatry Mountains, Slovakia). Four distinct zircon, monazite and xenotime age domains testify to a prolonged evolution from igneous formation to multi-stage metasomatism and hydrothermal overprinting. The geological interpretation of age patterns from ‘cold’ granites, expected to have low zircon saturation temperatures (<800 °C) and relatively high amounts of zircon inheritance, requires special care, especially for what concerns proper attribution of zircon inheritance and igneous growth ages. These issues can be resolved using zircon saturation temperatures (TZrn) as proxy for the amount of zircon inheritance in combination with the temperature differences between TZrn and the granite solidus. In this respect, the Chopok granite is an atypical ‘cold’ granite. Due to TZrn being substantially lower (ca. 80 °C ± 50 °C) than the granite solidus temperature, practically no zircon inheritance was found. The zircon age data indicates that the Chopok granite is a product of an Early Ordovician (475.8 ± 3.3 Ma) magmatic event, corresponding with the widespread Early Palaeozoic magmatism recorded throughout the European Variscan belt. This is further corroborated by phosphate mineral ages. The post-magmatic activity recorded in the U-Pb systematics of zircon and phosphates overgrowths can be related to the different phases of the evolution of the Variscan orogen: Early Carboniferous (ca. 352 Ma) metasomatism documents the main Variscan orogenic event, whereas the Permo-Triassic age (ca. 255 Ma) reflects thermo-tectonic activity associated with large-scale crustal extension, contemporaneous with the initial continental leading to the break-up of Pangea.  相似文献   

11.
Cooling rates based on the retrograde diffusion of Fe2+ and Mg between garnet and biotite inclusions commonly show two contrasting scenarios: a) narrow closure temperature range with apparent absence of retrograde diffusion; or b) high result dispersion due to compositional variations in garnet and biotite. Cooling rates from migmatites, felsic and mafic granulites from Ribeira Fold Belt (SE Brazil) also show these two scenarios. Although the former can be explained by very fast cooling, the latter is often the result of open-system behaviour caused by deformation. Retrogressive cooling during the exhumation of granulite-facies rocks is often processed by thrusting and shearing which may cause plastic deformation, fractures and cracks in the garnet megablasts, allowing chemical diffusion outside the garnet megablast – biotite inclusion system.However, a careful use of garnets and biotites with large Fe/Mg variation and software that reduces result dispersion provides a good correlation between closure temperatures and the size of biotite inclusions which are mostly due to diffusion and compositional readjustment to thermal evolution during retrogression.Results show that felsic and mafic granulites have low cooling rates (1–2 °C/Ma) at higher temperatures and high cooling rates (∼100 °C/Ma) at lower temperatures, suggesting a two-step cooling/exhumation process, whereas migmatites show a small decrease in cooling rates during cooling (from 2.0 to 0.5 °C/Ma). These results agree with previously obtained thermochronological data, which indicates that this method is a valid tool to obtain meaningful petrological cooling rates in complex high-grade orogenic belts, such as the Ribeira Fold Belt.  相似文献   

12.
This study investigates the behaviour of the geochronometers zircon, monazite, rutile and titanite in polyphase lower crustal rocks of the Kalak Nappe Complex, northern Norway. A pressure–temperature–time–deformation path is constructed by combining microstructural observations with P–T conditions derived from phase equilibrium modelling and U–Pb dating. The following tectonometamorphic evolution is deduced: A subvertical S1 fabric formed at ~730–775 °C and ~6.3–9.8 kbar, above the wet solidus in the sillimanite and kyanite stability fields. The event is dated at 702 ± 5 Ma by high‐U zircon in a leucosome. Monazite grains that grew in the S1 fabric show surprisingly little variation in chemical composition compared to a large spread in (concordant) U–Pb dates from c. 800 to 600 Ma. This age spread could either represent protracted growth of monazite during high‐grade metamorphism, or represent partially reset ages due to high‐T diffusion. Both cases imply that elevated temperatures of >600 °C persisted for over c. 200 Ma, indicating relatively static conditions at lower crustal levels for most of the Neoproterozoic. The S1 fabric was overprinted by a subhorizontal S2 fabric, which formed at ~600–660 °C and ~10–12 kbar. Rutile that originally grew during the S1‐forming event lost its Zr‐in‐rutile and U–Pb signatures during the S2‐forming event. It records Zr‐in‐rutile temperatures of 550–660 °C and Caledonian ages of 440–420 Ma. Titanite grew at the expense of rutile at slightly lower temperatures of ~550 °C during ongoing S2 deformation; U–Pb ages of c. 440–430 Ma date its crystallization, giving a minimum estimate for the age of Caledonian metamorphism and the duration of Caledonian shearing. This study shows that (i) monazite can have a large spread in U–Pb dates despite a homogeneous composition; (ii) rutile may lose its Zr‐in‐rutile and U–Pb signature during an amphibolite facies overprint; and (iii) titanite may record crystallization ages during retrograde shearing. Therefore, in order to correctly interpret U–Pb ages from different geochronometers in a polyphase deformation and reaction history, they are ideally combined with microstructural observations and phase equilibrium modelling to derive a complete P–T–t–d path.  相似文献   

13.
《Journal of Structural Geology》2001,23(6-7):1007-1013
The phenomenon of shear-heating is generally difficult to recognise from petrologic evidence alone. Establishing that shear zones attain higher temperatures than the surrounding country rocks requires independent evidence for temperature gradients. In the Musgrave Block, central Australia, there is a clear spatial association between shear zones and interpreted elevated temperatures. Eclogite facies shear zones that formed at ∼550 Ma record temperatures of ∼650–700°C. Outside the high-pressure shear zones, minerals with low closure temperatures such as biotite (∼450°C in the 40Ar–39Ar and Rb–Sr systems), preserve ages >800 Ma, suggesting that these rocks did not experience temperatures greater than about 450°C at ∼550 Ma for any extended period. Thus, the shear zones record temperatures that are ∼200°C higher than the surrounding country rocks. Simple calculations show that the combination of relatively high shear stresses (∼100 MPa) and high strain rates (∼10−11 s−1) for short durations (<1 Ma) can account for the observed apparent temperature variations. The evidence indicates that shear heating is the dominant mechanism for localised temperature increases in the shear zones, while the country rock remained at relatively lower temperatures.  相似文献   

14.
Miocene Intrusives and Lower Cretaceous siliciclastic sedimentary rocks from the Basal Complex in western-Fuerteventura were analyzed with low-temperature thermochronometric methods such as fission-track, and (U–Th–Sm)/He dating, in order to reveal the evolution of the island’s exhumation history. The obtained thermochronometric data yields a very slow rate of cooling in the order of 1.5–3°C/Myr from ~50 to 20 Ma for the Early Cretaceous siliciclastic rocks. These sedimentary units have never been heated significantly above 240°C after deposition and still record the submarine onset of the island’s formation in the Eocene. Intrusive bodies associated with the early Miocene magmatic activity of the central volcanic complex of the island show rapid initial cooling rates of 50–70°C/Myr from ~20 to 14 Ma. Contemporaneous with the intrusions the cooling rate of the Cretaceous sedimentary units increased to 25–35°C/Myr and it is inferred that this increase is associated with enhanced uplift and erosion of the Central Volcanic Complex. After ~14 Ma rates slowed down to 3–6°C/Myr. Palaeosols overlying the sedimentary units are themselves covered by Pliocene basalt flows and reveal that the sedimentary rocks reached the surface before ~5 Ma. The thermochronometric data obtained in this study for central Fuerteventura is difficult to reconcile with the cooling history derived from previously obtained fission-track and K–Ar data from the north-western part of the island. This inconsistency is likely to indicate that the exhumation history of Fuerteventura is more complex and regionally subdivided than previously believed.  相似文献   

15.
《Gondwana Research》2014,25(1):235-256
Zircon from the North-East Greenland ultrahigh-pressure (UHP) terrane formed over a 45 million year period from peak UHP conditions through the amphibolite facies. Our study utilizes sensitive high resolution ion microprobe-reverse geometry (SHRIMP-RG) mass spectrometry to assess the multiple ages and trace element patterns preserved in zircon from samples chosen to capture the exhumation history of these rocks. Peak UHP conditions from 365 to 350 Ma are derived from coesite-bearing samples, while a suite of progressively retrogressed quartzofeldspathic host gneisses and late-stage, leucocratic melts emplaced into the gneisses track exhumation. Melting occurred during all stages of exhumation, beginning with H2O-absent dehydration melting of phengite on the decompression path. A garnet-bearing leucosome in the neck of a kyanite-eclogite boudin that gives an age of 347 Ma is taken as the beginning of phengite melting. Leucosomes formed in HP granulite to amphibolite facies gneisses between 350 and 340 Ma, and fluid assisted melting continued until 320 Ma in the form of late, cross cutting pegmatites. Changes in the zircon trace element patterns are linked to decreasing temperature, and show that significant new zircon grew during melting on the exhumation path. Zircon cores recording protolith ages generally preserve magmatic temperatures (700 °C) and typical igneous REE patterns (Yb/Gd = 10). UHP/HP eclogite-facies zircon records higher T (900 °C) and flat HREE patterns (Yb/Gd = 1). Granulite to amphibolite facies zircon in quartzofeldspathic gneisses records both flat (Yb/Gd = 1) and steep (Yb/Gd = 100) HREE patterns at ca 700 °C suggesting the variable effects of garnet during decompression. Amphibolite facies pegmatites and leucosomes document a transition from moderate HREE (Yb/Gd = 10) at 700 °C to steep HREE (Yb/Gd = 100–1000) patterns at 600 °C. The pronounced steepening of the HREE patterns is attributed to garnet breakdown during amphibolite-facies metamorphism. The 30–50 million year spread of ages observed in individual samples records multiple periods of zircon growth and is interpreted as a characteristic signature of slowly exhumed UHP terranes. The data show that zircon ages combined with trace element and textural characterization of zircon from a broad suite of samples can successfully define the exhumation history of UHP terranes.  相似文献   

16.
The processes leading to the assembly of the Rodinia supercontinent through Grenvillian collisional orogeny are relatively well known. In contrast, accretionary orogenic processes occurring at the supercontinent periphery following Rodinia assembly are poorly understood. To fill this gap, we have identified metamorphic rocks in the Mongolia collage of the Central Asian Orogenic Belt, where numerous data testify for Meso- to Neoproterozoic magmatic reworking. The tectono-metamorphic evolution of the peri-Siberian tract of the Central Asian Orogenic Belt is mainly characterized by the late Proterozoic–early Cambrian (Baikalian) cycle. However, we document here a Tonian age metamorphism at the northern part of the Precambrian Baidrag block, previously considered as a typical example of the Baikalian metamorphic belt. This study incorporates zircon and in-situ monazite geochronology linked to P-T modelling of Grt-Sil-Ky migmatite gneiss and Grt-St micaschist. Grt-Sil-Ky gneiss records initial burial to the sillimanite stability field at ~720 °C and 6.0 kbar followed by further burial to the kyanite stability field at ~750 °C and ~9 kbar and decompression to ~650 °C and ~8 kbar. The Grt-St schist records initial burial to the staurolite stability field at ~620 °C and 6 kbar, followed by further burial to ~590 °C and 8.5 kbar. The monazite data yield a continuum of 207Pb-corrected 238U/206Pb dates of ca. 926–768 Ma in the Grt-Sil-Ky gneiss, and ca. 937–754 Ma in the Grt-St schist. Based on monazite textural positon, internal zoning, and REE patterns, the time of prograde burial to 6.0 kbar under a thermal gradient of 27–32 °C/km is estimated at ca. 890–853 Ma. It is not clear whether such high-grade conditions prevailed until a phase of further burial under a geothermal gradient of 18–22 °C/km dated at ca. 835–815 Ma. The late monazite recrystallization at ca. 790 Ma is related to decompression. Additionally, monazite with dates of ca. 568–515 Ma occur as whole grains or as rims with sharp boundaries on Tonian monazite in Grt-St schist suggesting a minor Baikalian overprint. Metamorphic zircon rims with Th/U ratios of ~ 0.01–0.06 in Grt-Sil-Ky gneiss with 877 ± 7 Ma age, together with lower intercepts of detrital zircon discordia lines in both Grt-Sil-Ky gneiss and Grt-St schist further support the Tonian age of high-grade metamorphism. The anticlockwise P-T evolution is interpreted as a result of thickening of a supra-subduction extensional and hot edifice – probably of back-arc or arc type. This kind of prograde metamorphism has so far only been described on the northern part of the Tarim block and was interpreted to be a result of initiation of peri-Rodinian subduction of the Mirovoi Ocean. The geodynamic consequences of a unique discovery of Tonian metamorphism are discussed in terms of tectonic switch related to initiation of peri-Rodinian oceanic subduction during supercontinent assembly, followed by strong mechanical coupling potentially related to onset of Rodinia dispersal.  相似文献   

17.
The Mount Woods Domain in the Gawler Craton, South Australia records a complex tectonic evolution spanning the Palaeoproterozoic and Mesoproterozoic. The regional structural architecture is interpreted to represent a partially preserved metamorphic core complex that developed during the ~1600–1580 Ma Hiltaba Event, making this one of the oldest known core complexes on Earth. The lower plate is preserved in the central Mount Woods Domain, which comprises the Mount Woods Metamorphics. These rocks yield a detrital zircon maximum depositional age of ~1860 Ma and were polydeformed and metamorphosed to upper amphibolite to granulite facies during the ~1740–1690 Ma Kimban Orogeny. The upper plate comprises a younger succession (the Skylark Metasediments) deposited at ~1750 Ma. Within the upper plate, sedimentary and volcanic successions of the Gawler Range Volcanics were deposited into half graben that evolved during brittle normal faulting. The Skylark Shear Zone represents the basal detachment fault separating the upper and lower plate of the core complex. The geometry of normal faults in the upper plate is consistent with NE-SW extension.Both the upper and lower plates are intruded by ~1795–1575 Ma Hiltaba Suite granitic and mafic plutons. The core complex was extensively modified during the ~1570–1540 Ma Kararan Orogeny. Exhumation of the western and eastern Mount Woods Domain is indicated by new 40Ar/39Ar biotite cooling ages that show that rock packages in the central Mount Woods Domain cooled past ~300 °C ± 50 °C at ~1560 Ma, which was ~20 million years before equivalent cooling in the western and eastern Mount Woods Domain. Exhumation was associated with activity along major syn-Kararan Orogeny faults.  相似文献   

18.
《Applied Geochemistry》2005,20(6):1099-1105
Fluorite is one of the secondary minerals precipitated in pore spaces at the future nuclear waste repository site at Yucca Mountain, Nevada. The authors have conducted (U–Th)/He dating of this fluorite in an attempt to constrain the temperature and timing of paleo-fluid flux into the site. Repeated analysis of colourless fluorite yielded a weighted average age of 9.7 ± 0.15 Ma (2σ), younger than previously determined sanidine 40Ar/39 Ar ages (12.8 Ma) for deposition of the tuff.Laboratory He-diffusion experiments conducted on the Yucca fluorite yield a preliminary He closure temperature (Tc) of 90 ± 10 °C (cooling rate of 10 °C/Ma) and previous studies have determined that the fluorite precipitated from warm fluids (65–80 °C) at depths of <400 m. However, minerals can experience partial He loss at temperatures well below the Tc and therefore the (U–Th)/He age of 9.7 Ma is interpreted to be a cooling age. This result implies that the last period of elevated temperature fluid circulation through the Yucca site was approximately 9.7 Ma ago.It was observed that the purple coloured outer portion of the fluorite nodule yielded non-reproducible and invariably older ages than colourless fluorite. Several possible reasons are suggested.  相似文献   

19.
《地学前缘(英文版)》2020,11(6):1915-1934
The first data on P-T metamorphic conditions coupled with U-Pb monazite and zircon age obtained for the Neoarchean Kitoy granulite-gneiss terrane (SW Siberian Craton). Alumina gneisses of the Kitoy terrane indicate two-staged metamorphic evolution. The first stage of regional metamorphism (M1) occurred at high-amphibolite facies conditions at T ​= ​780–800 ​°C and P ​= ​8–9 ​kbar. The second stage (M2) belongs to MT-HT/LP type of metamorphism with the wide temperature interval 600–750 ​°C and pressure 2–4 ​kbar. Two age peaks were established on the basis of U-Pb monazite and zircon dating in garnet-anthophyllite gneisses. Both of them correspond to the Neoarchean age: the age of M1 falls into the interval of ca. 2489–2496 ​Ma, the age of M2 – ca. 2446–2456 ​Ma. The high-temperature metamorphism of the Kitoy block and nearly coeval granitoid magmatism can be an evidence for the Neoarchean collision in SW Siberian craton.  相似文献   

20.
The last glacial–interglacial transition encompassed rapid climate oscillations that affected both hemispheres. At low latitudes, the pattern of oscillations is not well established. To address this issue, pollen analysis was performed at Ciénega San Marcial, a monsoon‐influenced site located on the southeastern edge of the Sonoran Desert at the limit of the tropical thornscrub. The pollen record covers the Late Wisconsinan glacial termination II, from 15 650 to 13 400 cal. a BP, including GS‐2 and the Lateglacial interstadial, and a recent historical period (AD c. 1919 to 2004). We applied the modern analogue technique, in which pollen taxa are assigned to plant functional types (PFTs), to reconstruct the past climates. At the end of GS‐2, a Juniperus–Pinus woodland is indicative of annual temperatures 10±2 °C colder than present and higher annual precipitation dominated by winter rains. The onset of the Lateglacial interstadial occurs at c. 15 500 cal. a BP, resulting in a lower sedimentation rate and the spread of a xeric grassland. This period is associated with an increase in summer insolation. A weak signal of summer monsoon intensification is dated to 14 825 cal. a BP but is associated with colder winter temperatures. A wider spread of tropical taxa occurs after 13 800 cal. a BP, along with the loss of Juniperus, suggesting a temperature increase of approximately 3 °C. In spite of the earlier Lateglacial warming, the transition from glacial to interstadial conditions seems to be related to North Atlantic atmospheric variations. We conclude that during the last glacial–interglacial transition, the Sonoran Desert at 28.5° latitude was sensitive to climate variations originating in northern latitudes. The recent historical sequence displays summer‐dominant precipitation and additional drivers of climate change, including anthropogenic factors and El Niño, thus showing a stronger Pacific circulation influence in the subrecent period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号