首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The Montagne Noire in the southernmost French Massif Central is made of an ENE‐elongated gneiss dome flanked by Palaeozoic sedimentary rocks. The tectonic evolution of the gneiss dome has generated controversy for more than half a century. As a result, a multitude of models have been proposed that invoke various tectonic regimes and exhumation mechanisms. Most of these models are based on data from the gneiss dome itself. Here, new constraints on the dome evolution are provided based on a combination of very low‐grade petrology, K–Ar geochronology, field mapping and structural analysis of the Palaeozoic western Mont Peyroux and Faugères units, which constitute part of the southern hangingwall of the dome. It is shown that southward‐directed Variscan nappe‐thrusting (D1) and a related medium‐P metamorphism (M1) are only preserved in the area furthest away from the gneiss dome. The regionally dominant pervasive tectono‐metamorphic event D2/M2 largely transposes D1 structures, comprises a higher metamorphic thermal gradient than M1 (transition low‐P and medium‐P metamorphic facies series) and affected the rocks between c. 309 and 300 Ma, post‐dating D1/M1 by more than 20 Ma. D2‐related fabrics are refolded by D3, which in its turn, is followed by dextral‐normal shearing along the basal shear zone of both units at c. 297 Ma. In the western Mont Peyroux and Faugères units, D2/M2 is largely synchronous with shearing along the southern dome margin between c. 311 and 303 Ma, facilitating the emplacement of the gneiss dome into the upper crust. D2/M2 also overlaps in time with granitic magmatism and migmatization in the Zone Axiale between c. 314 and 306 Ma, and a related low‐P/high‐T metamorphism at c. 308 Ma. The shearing that accompanied the exhumation of the dome therefore was synchronous with a peak in temperature expressed by migmatization and intrusion of melts within the dome, and also with the peak of metamorphism in the hangingwall. Both, the intensity of D2 fabrics and the M2 metamorphic grade within the hangingwall, decrease away from the gneiss dome, with grades ranging from the anchizone–epizone boundary to the diagenetic zone. The related zonation of the pre‐D3 metamorphic field gradients paralleled the dome. These observations indicate that D2/M2 is controlled by the exhumation of the Zone Axiale, and suggest a coherent kinematic between the different crustal levels at some time during D2/M2. Based on integration of these findings with regional geological constraints, a two‐stage exhumation of the gneiss dome is proposed: during a first stage between c. 316 and 300 Ma dome emplacement into the upper crust was controlled by dextral shear zones arranged in a pull‐apart‐like geometry. The second stage from 300 Ma onwards was characterized by northeast to northward extension, with exhumation accommodated by north‐dipping detachments and hangingwall basin formation along the northeastern dome margin.  相似文献   

2.
New data suggest syn-convergent extrusion and polyphase tectonics followed by late Variscan extension in the Strudengau area of the southern Moldanubian zone in Austria. The tectonic history can be summarized as follows: (1) The oldest ductile event is observed in HT/LP metamorphic pelitic gneisses, which preserve E-dipping foliation planes (D1-fabric) with NW–SE-trending lineations. (2) The overlying gneisses record HT/HP conditions with decompression-induced anatexis in the central part of the domain. These gneisses exhibit N–S trending, horizontal lineations along steep-dipping foliation planes (D2-fabric) crosscutting the D1-fabric of the pelitic gneisses. Along the margin, these rocks have been strongly mylonitized under amphibolite facies conditions (D2). D2 is interpreted as a significant vertical shear zone, which juxtaposes the HT/LP rocks against the orogenic lower crust. (3) Lastly, the whole area is overprinted by localized shear zones (D3-fabric) with top-to-the-NW kinematics. This newly discovered Strudengau shearing event is associated with isoclinal folding that possesses axial planes parallel to the mylonitic foliation and fold axes parallel to the stretching lineations. Initial mylonitization occurred under greenschist facies, representing the latest ductile event of the Strudengau area. The new geochronological data presented here indicate a narrow time frame (c. 323–318 Ma) for the D3 deformation. Therefore, this event is contemporaneous with the intrusion of the granites of the South Bohemian Batholith (330–310 Ma). The nearby South Bohemian Batholith and generally steep dyke swarms in the Strudengau area and to the north trend in a NE–SW preferred orientation, interpreted to be D3-synkinematic magmatism. In a regional context, the NW–SE stretching during D3 together with the synkinematic intrusion of dykes is associated with late orogenic extension in the Austrian Moldanubian Zone. Kinematic data of brittle normal faults and tension gashes are consistent with NW–SE-oriented extension under cooler conditions.  相似文献   

3.
The present study provides new magnetic and microstructural data for the Eaux-Chaudes granodioritic massif (Western Axial Zone, Pyrenees) and contributes to the understanding of its geometry, internal structure and emplacement mechanism. Moreover, the geological cross-sections and field data allow to reconstruct the evolution of the whole area from Variscan to Alpine times and to integrate the emplacement of the igneous body in the context of the Variscan orogeny. The Eaux-Chaudes pluton (301?±?9?Ma) is mainly composed by granodiorite, describing a normal compositional zoning and an approximately concentric arrangement that is consistent with the zonation of the low-field magnetic susceptibility. Magnetic foliation is subhorizontal in the inner part of the intrusion and becomes parallel to the petrographical contacts along pluton margins, roughly describing the geometry of the intrusion. Magnetic lineations are dominantly subhorizontal, with E–W to ENE–WSW directional maximum. The general parallelism between Variscan structures of the host rock and the geometry and magmatic fabric of the intrusion reveals a late syn-Variscan emplacement. The tectonic regime registered during magma emplacement is in agreement with an N–S shortening and an E–W stretching direction, consistent with the transpressive regime deduced for other Pyrenean intrusions. Alpine overprint produced a slight tilting in the southern part of the intrusion, but it can be considered that the original Variscan structure is basically unchanged.  相似文献   

4.
A Late Palaeozoic accretionary prism, formed at the southwestern margin of Gondwana from Early Carboniferous to Late Triassic, comprises the Coastal Accretionary Complex of central Chile (34–41°S). This fossil accretionary system is made up of two parallel contemporaneous metamorphic belts: a high‐pressure/low temperature belt (HP/LT – Western Series) and a low pressure/high temperature belt (LP/HT – Eastern Series). However, the timing of deformation events associated with the growth of the accretionary prism (successive frontal accretion and basal underplating) and the development of the LP/HT metamorphism in the shallower levels of the wedge are not continuously observed along this paired metamorphic belt, suggesting the former existence of local perturbations in the subduction regime. In the Pichilemu region, a well‐preserved segment of the paired metamorphic belt allows a first order correlation between the metamorphic and deformational evolution of the deep accreted slices of oceanic crust (blueschists and HP greenschists from the Western Series) and deformation at the shallower levels of the wedge (the Eastern Series). LP/HT mineral assemblages grew in response to arc‐related granitic intrusions, and porphyroblasts constitute time markers recording the evolution of deformation within shallow wedge material. Integrated P–T–t–d analysis reveals that the LP/HT belt is formed between the stages of frontal accretion (D1) and basal underplating of basic rocks (D2) forming blueschists at c. 300 Ma. A timeline evolution relating the formation of blueschists and the formation and deformation of LP/HT mineral assemblages at shallower levels, combined with published geochronological/thermobarometric/geochemistry data suggests a cause–effect relation between the basal accretion of basic rocks and the deformation of the shallower LP/HT belt. The S2 foliation that formed during basal accretion initiated near the base of the accretionary wedge at ~30 km depth at c. 308 Ma. Later, the S2 foliation developed at c. 300 Ma and ~15 km depth shortly after the emplacement of the granitoids and formation of the (LP/HT) peak metamorphic mineral assemblages. This shallow deformation may reflect a perturbation in the long‐term subduction dynamics (e.g. entrance of a seamount), which would in turn have contributed to the coeval exhumation of the nearby blueschists at c. 300 Ma. Finally, 40Ar–39Ar cooling ages reveal that foliated LP/HT rocks were already at ~350 °C at c. 292 Ma, indicating a rapid cooling for this metamorphic system.  相似文献   

5.
A complete section of the southern realm of the Variscan orogenic belt can be restored in the Corsica–Sardinia segment. Northern Corsica exposes a nonmetamorphosed Palaeozoic succession lying on Panafrican mica schist related to a microcontinent (most likely Armorica or from a microcontinent from the Hun superterrane) that had drifted away directly from Gondwana. These formations are thrust over the Variscan Internal Zone composed mainly of anatectic high-grade Palaeozoic formations that crop out from central Corsica to northern Sardinia; the metamorphic peak of the eclogite remnants has been dated at c. 420 Ma. The Variscan Internal Zone interpreted here as a collision zone, and also the Eovariscan suture, was intruded in Corsica by Mg–K granite from 345 to 335 Ma. The thrust of this Internal Zone onto the stack of parautochthonous nappes in central Sardinia is cross-cut by the Posada Asinara dextral shear zone. To the south, parautochthonous nappes overthrust the North-Gondwana margin which displays a possible Panafrican basement topped by an Iglesiente–Sulcis nonmetamorphic/anchimetamorphic Palaeozoic succession.  相似文献   

6.
For a long time the Moslavačka Gora Massif in Croatia has been regarded as a major outcrop of Variscan crystalline basement of the South Tisia block. However, new geochronological data indicate that this massif consists of a Cretaceous S-type granite pluton intruding a Cretaceous low-pressure/high-temperature (LP/HT) metamorphic envelope. The age of the LP/HT metamorphism is estimated at ~90–100 Ma using the method of electron microprobe based monazite dating. The Central Granite was dated at 82 ± 1 Ma (LA-SF-ICP-MS zircon age). The metamorphic complex comprises mainly felsic anatexites and orthogneisses of granitic composition, some metapelites (paragneisses and mica schists) and amphibolites. Zircons from three different samples of metagranite were dated at 486 ± 6, 483 ± 6, and 491 ± 1 Ma, suggesting that most of the metamorphic complex represents an Early Ordovician granitic series. The Cretaceous regional metamorphism culminated in granulite facies conditions of ~750°C and 3–4 kbar. A retrograde metamorphic event at lower amphibolite facies conditions overprinted the metamorphic complex. This event is probably related to the intrusion of the Central Granite. The southeastern sector of the massif was additionally affected by post-granitic, predominantly NE oriented shearing at greenschist facies conditions. As yet there is no clear evidence for Variscan events in the Moslavačka Gora Massif. Mineral relics of a medium-pressure amphibolite facies metamorphism are preserved in amphibolites. They are older than the Cretaceous LP/HT regional metamorphism, but their age is presently unknown. Some indications for a Permian regional metamorphic event are provided by inherited zircons in the Central Granite that have been dated with a Permian age, and by Permian monazite relics in metapelites. The Cretaceous high heat flow regime recorded in the Moslavačka Gora Massif is unique in the subcrop of the Pannonian Basin and may be a local feature triggered by a mafic intrusion in the lower crust.  相似文献   

7.
Analysis of the conodont colour alteration index and the Kübler index of illite allowed us the characterization of four types of very low‐ or low‐grade metamorphism in the Cantabrian Zone (CZ) and determination of their regional and temporal distribution. These types are: (1) an orogenic Variscan metamorphism present only in restricted areas of the western and north‐western parts of the CZ where epizonal conditions are reached; (2) a burial metamorphism that appears in the basal part of some nappes, where anchizonal conditions are sometimes achieved; the thermal peak preceded emplacement of the nappes; (3) a late‐Variscan metamorphism in the southern and south‐eastern parts of the CZ; a cleavage, cutting most of the Variscan folds, is associated with this metamorphism, which has been related to an extensional episode; (4) a contact metamorphism and hydrothermal activity associated with minor intrusive bodies. The extension continued after the Variscan deformation giving rise to hydrothermal activity during Permian times.  相似文献   

8.
The ENE–WSW Autun Shear Zone in the northeastern part of the French Massif Central has been interpreted previously as a dextral wrench fault. New field observations and microstructural analyses document a NE–SW stretching lineation that indicates normal dextral motions along this shear zone. Further east, similar structures are observed along the La Serre Shear Zone. In both areas, a strain gradient from leucogranites with a weak preferred orientation to highly sheared mylonites supports a continuous Autun–La Serre fault system. Microstructural observations, and shape and lattice-preferred orientation document high-temperature deformation and magmatic fabrics in the Autun and La Serre granites, whereas low- to intermediate-temperature fabrics characterize the mylonitic granite. Electron microprobe monazite geochronology of the Autun and La Serre granites yields a ca. 320 Ma age for pluton emplacement, while mica 40Ar-39Ar datings of the Autun granite yield plateau ages from 305 to 300 Ma. The ca. 300 Ma 40Ar-39Ar ages, obtained on micas from Autun and La Serre mylonites, indicate the time of the mylonitization. The ca. 15-Ma time gap between pluton emplacement and deformation along the Autun–La Serre fault system argue against a synkinematic pluton emplacement during late orogenic to postorogenic extension of the Variscan Belt. A ductile to brittle continuum of deformation is observed along the shear zone, with Lower Permian brittle faults controlling the development of sedimentary basins. These results suggest a two-stage Late Carboniferous extension in the northeastern French Massif Central, with regional crustal melting and emplacement of the Autun and La Serre leucogranites around 320 Ma, followed, at 305–295 Ma, by ductile shearing, normal brittle faulting, and subsequent exhumation along the Autun–La Serre transtensional fault system.  相似文献   

9.
Hot collisional orogens are characterized by abundant syn-kinematic granitic magmatism that profoundly affects their tectono-thermal evolutions. Voluminous granitic magmas, emplaced between 360 and 270 Ma, played a visibly important role in the evolution of the Variscan Orogen. In the Limousin region (western Massif Central, France), syntectonic granite plutons are spatially associated with major strike–slip shear zones that merge to the northwest with the South Armorican Shear Zone. This region allowed us to assess the role of magmatism in a hot transpressional orogen. Microstructural data and U/Pb zircon and monazite ages from a mylonitic leucogranite indicate synkinematic emplacement in a dextral transpressional shear zone at 313 ± 4 Ma. Leucogranites are coeval with cordierite-bearing migmatitic gneisses and vertical lenses of leucosome in strike–slip shear zones. We interpret U/Pb monazite ages of 315 ± 4 Ma for the gneisses and 316 ± 2 Ma for the leucosomes as the minimum age of high-grade metamorphism and migmatization respectively. These data suggest a spatial and temporal relationship between transpression, crustal melting, rapid exhumation and magma ascent, and cooling of high-grade metamorphic rocks.Some granites emplaced in the strike–slip shear zone are bounded at their roof by low dip normal faults that strike N–S, perpendicular to the E–W trend of the belt. The abundant crustal magmatism provided a low-viscosity zone that enhanced Variscan orogenic collapse during continued transpression, inducing the development of normal faults in the transpression zone and thrust faults at the front of the collapsed orogen.  相似文献   

10.
The Monte Ollasteddu deposit represents a major gold discovery in the Variscan basement of southeastern Sardinia. Gold occurs in late-Variscan extensional brittle structures hosted by meta-volcanic, and subordinately meta-sedimentary, rocks. The vein mineralogy is dominated by quartz; arsenopyrite is the main sulphide. Reconnaissance 40Ar–39Ar dating gives ages around ∼260 Ma on K-feldspar from mineralized veins, whereas metamorphic white mica from the host rock gives ages clustering at ∼307 Ma. The best age estimate for biotite from a nearby leucogranite body is 286.3±2.2 Ma. The Pb isotope signature of ore and gangue minerals is entirely consistent with literature data for Variscan deposits of Sardinia, and for European Variscan gold deposits. Fluid inclusion data point to the presence of both CO2-bearing and CO2-free fluids, with homogenization temperatures ranging from 220 to 415°C, with low-to-moderate salinities (0.4–6.2 wt% NaCl equivalent). Monte Ollasteddu shows several features similar to European Variscan gold deposits; however, the age of mineralization might post-date granitoid intrusion by as much as 30 Ma, being instead coeval with very late calc-alkaline basaltic dykes, marking the transition to a post-orogenic, pre-Tethyan geodynamic setting. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

11.
We present geochronological data for late-Variscan magmatism in the Lausitz Block of the Saxo-Thuringian Zone, Germany. The Th–U–total Pb age of uraninite and the Re–Os age of molybdenite from the composite biotite–monzogranite pluton of K?nigshain overlap at the 2σ confidence limit: 328.6 ± 1.9 Ma (uraninite), and 327.0 ± 1.3 Ma and 327.6 ± 1.3 Ma (molybdenite), indicating that crystallization of magmatic uraninite and deposition of molybdenite were nearly contemporaneous. These data imply that magmatic processes in this part of the Variscan orogen already started in latest Visean time, about 10 Ma earlier than previously assumed (315–320 Ma). The new ages correspond to ages for plutonic rocks in the Elbe Zone immediately west of the Lausitz (around 335–325 Ma) and the bulk of late-Variscan igneous rocks in the Saxo-Thuringian Zone (335–320 Ma).  相似文献   

12.
The first U–Pb geochronological results on the magmatic alignment of the Los Pedroches batholith are presented. The batholith is composed of a main granodioritic unit, several granite plutons and an important acid to basic dyke complex, all of them intrusive after the main Variscan regional deformation phase, D1, along the boundary between the Ossa-Morena and Central Iberian zones (SW Iberian Massif). Zircons from samples on both extremes of the granodiorite massif record nearly simultaneous magmatic crystallization at ca. 308 Ma, while the emplacement of granite plutons was diachronic between 314 and 304 Ma. The U–Pb results combined with new field and textural observations allow to better constrain the age of Variscan deformations D2 and D3 across the region, while the age of D1 remains imprecise. Transcurrent D2 shearing-tightening of D1 folds occurred around 314 Ma (lower Westphalian) in relation to the emplacement of the first granitic magmas. D3 faults and shear bands bearing a strong extensional component developed at ca. 308 Ma (upper Westphalian), associated to the intrusion of the main granodiorite pluton (granodiorite) of the batholith. Together with available geochemical and geophysical information, these results point to the Variscan reactivation of lithospheric fractures at the origin and subsequent emplacement of hybrid magmas within this sector of the Massif.  相似文献   

13.
Indications of intense deformation in the Anyui-Chukotka Fold System and the South Anyui Suture Zone have been noted for a long time [3, 5, 19, 36]. The character and age of the deformation, however, remain a matter of debate. Using structural paragenetic and deformational kinematic analyses, we establish three deformation stages in the Anyui-Chukotka Fold System. The structural assembly comprising open folds and NW-trending axial-plane cleavage was formed during the stage of regional compression (D1) related to the collision of the Chukotka-Arctic Alaska microcontinent with Eurasia. The assembly of the second stage in the Alyarmaut Rise is distinguished by isoclinal folds F2, gently dipping metamorphic schistosity, and pervasive cleavage in combination with folded quartz veins and lenses. Planar structural elements of the second stage are disturbed by low-amplitude normal and reverse faults and kink folds of stage D3. The U-Pb (SHRIMP-RG) and 40/39Ar methods were used for determination of the isotopic age of the deformations. The Aptian-Albian zircon age (117–108 Ma) has been established for six postcollision granitic plutons of the Anyui-Chukotka Fold System and the South Anyui Suture. Syncollision deformation completed 125–117 Ma ago. The extensional tectonic stage D2 accompanied by emplacement of the Lyupveem pluton occurred 120–105 Ma ago. The 40/39Ar age of the biotite from the metamorphic rocks marks the age of syndeformation metamorphism (109–103 Ma). The lower limit of brittle failure and deformation D3 is estimated at 105 Ma.  相似文献   

14.
Precise U-Pb zircon ages have been obtained for samples from the Molson dyke swarm and the Fox River sill in NE Manitoba, Canada. The ages determined for the Cross Lake and Cuthbert Lake dykes are 1,883.7 –1.5 +1.7 and 1,883±2 Ma, respectively, and are in excellent agreement with the 1,882.9 –1.4 +1.5 Ma age obtained for the Fox River sill. These results support the contention that the emplacement of the Fox River sill and the Molson Dyke swarm was contemporaneous and also demonstrate the potential for correlating mafic igneous activity in widely spaced localities. The timing of Early Proterozoic mafic magmatism in the western Superior Province appears to be synchronous with igneous activity in other parts of the Circum-Superior Belt and in the Trans Hudson orogen to the west. The emplacement of the Molson dyke swarm at 1,883 Ma indicates a 700 Ma interval of quiescence between the final igneous activity that is recorded in the Archean basement and dyke intrusion. The presence of deformed equivalents of Molson dykes in the Thompson Nickel Belt indicates that the intense deformation in this belt occurred sometime after 1,883 Ma.  相似文献   

15.
Emplacement of the Mooselookmeguntic pluton, located in the western Maine region of the northern Appalachians, was thought to have occurred towards the end of the Acadian deformation at around 370 Ma. Crystallization ages from different parts of the pluton suggest a more sequential emplacement history over a period of c. 20 Myr. Foliation inflection/intersection axes (FIAs) within porphyroblasts from its aureole reveal at least five periods of garnet and staurolite growth. The orientation of FIAs in both garnet and staurolite porphyroblasts trend successively from ESE–WNW, NNW–SSE, E–W, ENE–WSW to NE–SW. Electron probe microanalysis dating of monazite grains included in staurolite porphyroblasts containing one of these five periods of FIA development reveals a succession of apparent ages from 410 Ma to 345 Ma. A similar spread of crystallization ages can be observed for plutons from Maine and adjacent regions. This succession indicates that deformation and metamorphism began well before and continued long after what is classically regarded as the Acadian orogeny. The thermal structure of the orogen progressively evolved to enable pluton emplacement, and it continued to develop afterwards with magmatic fluids still forming at depth.  相似文献   

16.
The Brunovistulian terrane represents a microcontinent of enigmatic Proterozoic provenance that was located at the southern margin of Baltica in the early Paleozoic. During the Variscan orogeny, it represented the lower plate at the southern margin of Laurussia, involved in the collision with the Armorican terrane assemblage. In this respect, it resembles the Avalonian terrane in the west and the Istanbul Zone in the east. There is a growing evidence about the presence of a Devonian back-arc at the margin of the Brunovistulian terrane. The early Variscan phase was characterized by the formation of Devonian extensional basins with the within-plate volcanic activity and formation of narrow segments of oceanic crust. The oldest Viséan flysch of the Rheic/Rhenohercynian remnant basin (Protivanov, Andelska Hora and Horní Benesov formations) forms the highest allochthonous units and contains, together with slices of Silurian Bohemian facies, clastic micas from early Paleozoic crystalline rocks that are presumably derived from terranes of Armorican affinity although provenance from an active Brunovistulian margin cannot be fully excluded either. The development of the Moravo–Silesian late Paleozoic basin was terminated by coal-bearing paralic and limnic sediments. The progressive Carboniferous stacking of nappes and their impingement on the Laurussian foreland led to crustal thickening and shortening and a number of distinct deformational and folding events. The postorogenic extension led to the formation of the terminal Carboniferous-early Permian Boskovice Graben located in the eastern part of the Brunovistulian terrane, in front of the crystalline nappes. The highest, allochthonous westernmost flysch units, locally with the basal slices of the Devonian and Silurian rocks thrusted over the Silesicum in the NW part of the Brunovistulian terrane, may share a similar tectonic position with the Giessen–Harz nappes. The Silesicum represents the outermost margin of the Brunovistulian terrane with many features in common with the Northern Phyllite Zone at the Avalonia–Armorica interface in Germany.  相似文献   

17.
The Cadomian basement of the Teplá–Barrandian unit is characterized by a classic Barrovian-type metamorphism, the degree of which increases considerably towards the west reaching amphibolite facies conditions in the Domaz?lice crystalline complex (DCC). The number and volume of plutons also increases towards the west. The emplacement ages of the Te?s?ovice granite and the Mrac?nice trondhjemite have been determined at 521.7±2?Ma and 523+4/–5?Ma, respectively, applying conventional U–Pb analyses of zircons. Pervasive high-temperature prolate fabrics and north-/northwest-dipping, dextral oblique-slip shear zones within the Mrac?nice trondhjemite suggest a synkinematic melt emplacement within a Lower Cambrian transtensional setting. Transtension is probably related to early-stage rifting that introduced the separation of the Teplá–Barrandian unit (as part of Armorica) from Gondwana. Structural and petrological data of the country rocks show that the Barrovian-type metamorphism and two deformation stages (D1 with unknown kinematics and D2 top-to-the-north shearing) are older than the melt emplacement, and thus can be attributed to the Cadomian orogeny. The intrusion depth of both plutons is nearly the same (ca. 7?km), although the degree of Barrovian-type metamorphism differs significantly within the country rocks. This suggests late Cadomian eastward tilting of the metamorphic isograd planes. The weak post-plutonic, lower-greenschist to subgreenschist facies folding and thrusting result from Variscan northwest/southeast compression.  相似文献   

18.
The NW–SE Irtysh Shear Zone is a major tectonic boundary in the Central Asian Orogenic Belt (CAOB), which supposedly records the amalgamation history between the peri-Siberian orogenic system and the Kazakhstan/south Mongolia orogenic system. However, the tectonic evolution of the Irtysh Shear Zone is not fully understood. Here we present new structural and geochronological data, which together with other constraints on the timing of deformation suggests that the Irtysh Shear Zone was subjected to three phases of deformation in the late Paleozoic. D1 is locally recognized as folded foliations in low strain areas and as an internal fabric within garnet porphyroblasts. D2 is represented by a shallowly dipping fabric and related ∼ NW–SE stretching lineations oriented sub-parallel to the strike of the orogen. D2 foliations are folded by ∼ NW–SE folds (F3) that are bounded by a series of mylonite zones with evidence for sinistral/reverse kinematics. These fold and shear structures are kinematically compatible, and thus interpreted to result from a transpressional deformation phase (D3). Two samples of mica schists yielded youngest detrital zircon peaks at ∼322 Ma, placing a maximum constraint on the timing of D1–D3 deformation. A ∼ NE–SW granitic dyke swarm (∼252 Ma) crosscuts D3 fold structures and mylonitic fabrics in the central part of the shear zone, but is displaced by a mylonite zone that represents the southern boundary of the Irtysh Shear Zone. This observation indicates that the major phase of D3 transpressional deformation took place prior to ∼252 Ma, although later phases of reactivation in the Mesozoic and Cenozoic are likely. The late Paleozoic deformation (D1–D3 at ∼322–252 Ma) overlaps in time with the collision between the Chinese Altai and the intra-oceanic arc system of the East Junggar. We therefore interpret that three episodes of late Paleozoic deformation represent orogenic thickening (D1), collapse (D2), and transpressional deformation (D3) during the convergence between the Chinese Altai and the East Junggar. On a larger scale, late Paleozoic sinistral shearing (D3), together with dextral shearing farther south, accommodated the eastward migration of internal segments of the western CAOB, possibly associated with the amalgamation of multiple arc systems and continental blocks during the late Paleozoic.  相似文献   

19.
Abstract

The Cadomian Dyje Batholith, in the foot–wall of the Variscan Moravian nappe pile, has been involved in Variscan ductile deformation. The Cadomian Brunovistulian rocks were obliquely underthrusted during Carboniferous dextral transpression.

Strain intensity is inversely proportional to the distance from the contact of the Variscan thrust front. The microstructures of deformed granodiorites and quartz–diorites show a characteristic zonality marked by relatively high temperature flow in the west (550–580 °C) characterized by dynamic recrystallization of feldspars and grain boundary migration recrystallization of quartz. The size of quartz grains decreases with decreasing strain towards the east. At the easternmost part of the autochthonous Dyje massif, fracturing of feldspar and subgrain rotation recrystallization of quartz predominate. Flow stress estimates calculated from recrystallized quartz grain size show a regional increase of stress intensity from the highly strained margin towards the less deformed core of the Dyje massif. This microstructural zonation is oblique with respect to the major thrust boundary and corresponds roughly to metamorphic isogrades. The microstructural zonation reflects underthrusting of the Brunovistulian domain below the Moldanubian nappe.

The main ductile tectonic event D1 is followed by a retrogressive brittle–ductile and brittle deformation D2. D2 results in the development of shear zones and faults superimposed on the D1 mylonite fabric. D2 is related to extension oblique to the D1 fabric, associated with detachment and the westward movement of the Moravian nappes. © Elsevier, Paris  相似文献   

20.
The Tanami Region, a poorly exposed, mostly Paleoproterozoic province within the North Australian Craton, hosts a number of significant gold deposits in diverse settings. Rare exposures of 2,520–2,500 Ma amphibolite facies Archean gneiss and metasedimentary rocks form basement to the thick overlying metasedimentary succession of the 1,880–1,830 Ma Tanami Group. The basal unit of the Tanami Group is the Dead Bullock Formation, a fining-upward deep-water succession dominated by siltstone, carbonaceous siltstone, iron-rich siltstone and mafic sills. Carbonaceous- and iron-rich lithologies in the upper Dead Bullock Formation represent important hosts for gold mineralization. The conformably overlying Killi Killi Formation represents turbiditic sedimentary rocks that are correlated with the widespread Lander Rock beds of the Arunta Region. Sedimentation of the Tanami Group was terminated by regional deformation and greenschist to amphibolite facies metamorphism during the Tanami Event (D1/M1), at around 1,830 Ma. The Tanami Group is unconformably overlain by rhyolite, siliciclastic sedimentary rocks, and felsic ignimbrite of the Ware Group that were deposited at about 1,825–1,810 Ma. Subsequent ESE–WNW to SE–NW directed shortening (D2), followed by NE–SW to E–W directed shortening (D3), has resulted in open NE F2- and NW F3-trending folds in both the Tanami and Ware Groups. Voluminous granitoids, dominated by I-type, biotite granodiorite, and monzogranite were intruded in the interval 1,825–1,790 Ma and have been subdivided using geochemical criteria into the Birthday, Frederick, and Grimwade Suites. Basalt and immature sedimentary rocks of the Mount Charles Formation are restricted in extent to the Tanami mine corridor, and are interpreted to reflect a continental rift succession that was deposited around 1,800 Ma, with an early Archean sedimentary provenance. Steep S to SE dipping F4-fold structures of Tanami and Ware Group metasedimentary rocks, many spatially associated with 1,825–1,790 Ma granitoid intrusions, indicate a period of SSE-directed regional shortening (D4) syn-to-post the regional granitoid intrusive phase. A network of N to NW striking faults, several of which are interpreted as oblique thrusts with a component of left lateral movement, indicates a period of D5 convergence during WSW–ENE to E–W directed shortening. The Tanami mine corridor fault system comprises a network of N, NE to ENE striking D5 faults that merge with N to NW striking faults and probably accommodated movement between granite core domains. D5 faulting is associated with the main phase of gold mineralization in suitable structural–lithological traps. The Paleoproterozoic basement of the Tanami Region is unconformably overlain by quartz sandstone, lithic arenite, and conglomerate of the Pargee Sandstone. Pargee Sandstone may represent syn-tectonic sedimentation related to the 1,730 Ma Strangways Orogeny, and is unconformably overlain by the late Paleoproterozoic platform cover succession of the Birrindudu Group. The Paleoproterozoic basement and cover sequences have subsequently undergone several episodes of faulting, collectively termed D6+. The Paleoproterozoic evolution of the Tanami Region is interpreted to have occurred in an intracratonic setting, but was fundamentally influenced by tectonic events in the adjacent Halls Creek Orogen (1,835–1,805 Ma Halls Creek Orogeny) and Arunta Region (1,815–1,800 Ma Stafford Event). The boundaries between the Tanami Region and Kimberley Region to the northwest and the Arunta Region to the southeast are transitional, and are largely defined by the presence or absence of identifiable Dead Bullock Formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号