首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents a stochastic model to generate daily rainfall occurrences at multiple gauging stations in south Florida. The model developed in this study is a space–time model that takes into account the spatial as well as temporal dependences of daily rainfall occurrence based on a chain-dependent process. In the model, a Markovian method was used to represent the temporal dependence of daily rainfall occurrence and a direct acyclic graph (DAG) method was introduced to encode the spatial dependence of daily rainfall occurrences among gauging stations. The DAG method provides an optimal sequence of generation by maximizing the spatial dependence index of daily rainfall occurrences over the region. The proposed space–time model shows more promising performance in generating rainfall occurrences in time and space than the conventional Markov type model. The space–time model well represents the temporal as well as the spatial dependence of daily rainfall occurrences, which can reduce the complexity in the generation of daily rainfall amounts.  相似文献   

2.
There is a great demand for statistical modeling of phenomena that evolve in both space and time, and thus, there is a growing literature on correlation function models for spatio-temporal processes. In particular, various properties of these correlation functions have been studied only for the merely spatial or temporal case, fact that constitutes a strong motivation for our work. The goal of this paper is to inspect some properties, obtained with respect to partial differentiation and integration, of stationary spatio-temporal correlation functions for which anisotropy is obtained through isotropy between components as in Fernández-Casal et al. (Stat Comput 13(2):127–136, 2003). We show that through partial differentiation and integration it is possible to obtain permissible spatio-temporal correlation functions in the space–time domain. Other new results regard specific classes of space–time correlations introduced in recent literature. A curious result arises by differentiating scale mixtures of Euclid’s hat. Work partially funded by grant MTM2004-06231 from the Spanish Ministery of Science and Education.  相似文献   

3.
Our research group recently developed Q-statistics for evaluating space–time clustering in case–control studies with residential histories. This technique relies on time-dependent nearest-neighbor relationships to examine clustering at any moment in the life-course of the residential histories of cases relative to that of controls. In addition, in place of the widely used null hypothesis of spatial randomness, each individual’s probability of being a case is based instead on his/her risk factors and covariates. In this paper, we extend this approach to illustrate how alternative temporal orientations (e.g., years prior to diagnosis/recruitment, participant’s age, and calendar year) influence a spatial clustering pattern. These temporal orientations are valuable for shedding light on the duration of time between clustering and subsequent disease development (known as the empirical induction period), and for revealing age-specific susceptibility windows and calendar year-specific effects. An ongoing population-based bladder cancer case–control study is used to demonstrate this approach. Data collection is currently incomplete and therefore no inferences should be drawn; we analyze these data to demonstrate these novel methods. Maps of space–time clustering of bladder cancer cases are presented using different temporal orientations while accounting for covariates and known risk factors. This systematic approach for evaluating space–time clustering has the potential to generate novel hypotheses about environmental risk factors and provides insights into empirical induction periods, age-specific susceptibility, and calendar year-specific effects.  相似文献   

4.
Many hydrological and agricultural studies require simulations of weather variables reflecting observed spatial and temporal dependence at multiple point locations. This paper assesses three multi-site daily rainfall generators for their ability to model different spatio-temporal rainfall attributes over the study area. The approaches considered consist of a multi-site modified Markov model (MMM), a reordering method for reconstructing space–time variability, and a nonparametric k-nearest neighbour (KNN) model. Our results indicate that all the approaches reproduce adequately the observed spatio-temporal pattern of the multi-site daily rainfall. However, different techniques used to signify longer time scale observed temporal and spatial dependences in the simulated sequences, reproduce these characteristics with varying successes. While each approach comes with its own advantages and disadvantages, the MMM has an overall advantage in offering a mechanism for modelling varying orders of serial dependence at each point location, while still maintaining the observed spatial dependence with sufficient accuracy. The reordering method is simple and intuitive and produces good results. However, it is primarily driven by the reshuffling of the simulated values across realisations and therefore may not be suited in applications where data length is limited or in situations where the simulation process is governed by exogenous conditioning variables. For example, in downscaling studies where KNN and MMM can be used with confidence.  相似文献   

5.
Abstract

Knowledge of the variability of soil water content (SWC) in space and time plays a key role in hydrological and climatic modelling. However, limited attention has been given to arid regions. The focus of this study was to investigate the spatio-temporal variability of surface soil (0–6 cm) water content and to identify its controlling factors in a region of the Gobi Desert (40 km2). The standard deviation of SWC decreased logarithmically as mean water content decreased, and the coefficient of variation of SWC exhibited a convex upward pattern. The spatial variability of SWC also increased with the size of the investigated area. The spatial dependence of SWC changed over time, with stronger patterns of spatial organization in drier and wetter conditions of soil wetness and stochastic patterns in moderate soil water conditions. The dominant factors regulating the variability of SWC changed from combinations of soil and topographical properties (bulk density, clay content and relative elevation) in wet conditions to combinations of soil and vegetation properties (bulk density, clay content and shrub coverage) in dry conditions. This study has important implications for the assessment of soil quality and the sustainability of land management in arid regions.  相似文献   

6.
When formulated properly, most geophysical transport-type process involving passive scalars or motile particles may be described by the same space–time nonlocal field equation which consists of a classical mass balance coupled with a space–time nonlocal convective/dispersive flux. Specific examples employed here include stretched and compressed Brownian motion, diffusion in slit-nanopores, subdiffusive continuous-time random walks (CTRW), super diffusion in the turbulent atmosphere and dispersion of motile and passive particles in fractal porous media. Stretched and compressed Brownian motion, which may be thought of as Brownian motions run with nonlinear clocks, are defined as the limit processes of a special class of random walks possessing nonstationary increments. The limit process has a mean square displacement that increases as tα+1 where α > −1 is a constant. If α = 0 the process is classical Brownian, if α < 0 we say the process is compressed Brownian while if α > 0 it is stretched. The Fokker–Planck equations for these processes are classical ade’s with dispersion coefficient proportional to tα. The Brownian-type walks have fixed time step, but nonstationary spatial increments that are Gaussian with power law variance. With the CTRW, both the time increment and the spatial increment are random. The subdiffusive Fokker–Planck equation is fractional in time for the CTRW’s considered in this article. The second moments for a Levy spatial trajectory are infinite while the Fokker–Planck equation is an advective–dispersive equation, ade, with constant diffusion coefficient and fractional spatial derivatives. If the Lagrangian velocity is assumed Levy rather than the position, then a similar Fokker–Planck equation is obtained, but the diffusion coefficient is a power law in time. All these Fokker–Planck equations are special cases of the general non-local balance law.  相似文献   

7.
The spatial distribution of residual light non-aqueous phase liquid (LNAPL) is an important factor in reactive solute transport modeling studies. There is great uncertainty associated with both the areal limits of LNAPL source zones and smaller scale variability within the areal limits. A statistical approach is proposed to construct a probabilistic model for the spatial distribution of residual NAPL and it is applied to a site characterized by ultra-violet-induced-cone-penetration testing (CPT–UVIF). The uncertainty in areal limits is explicitly addressed by a novel distance function (DF) approach. In modeling the small-scale variability within the areal limits, the CPT–UVIF data are used as primary source of information, while soil texture and distance to water table are treated as secondary data. Two widely used geostatistical techniques are applied for the data integration, namely sequential indicator simulation with locally varying means (SIS–LVM) and Bayesian updating (BU). A close match between the calibrated uncertainty band (UB) and the target probabilities shows the performance of the proposed DF technique in characterization of uncertainty in the areal limits. A cross-validation study also shows that the integration of the secondary data sources substantially improves the prediction of contaminated and uncontaminated locations and that the SIS–LVM algorithm gives a more accurate prediction of residual NAPL contamination. The proposed DF approach is useful in modeling the areal limits of the non-stationary continuous or categorical random variables, and in providing a prior probability map for source zone sizes to be used in Monte Carlo simulations of contaminant transport or Monte Carlo type inverse modeling studies.  相似文献   

8.
This paper describes the spatiotemporal epistematics knowledge synthesis and graphical user interface (SEKS–GUI) framework and its application in medical geography problems. Based on sound theoretical reasoning, the interactive software library of SEKS–GUI explores heterogeneous (spatially non-homogeneous and temporally non-stationary) health attribute distributions (disease incidence, mortality, human exposure, epidemic propagation etc.); expresses the health system’s dependence structure using (ordinary and generalized) spatiotemporal covariance models; synthesizes core knowledge bases, empirical evidence and multi-sourced system uncertainty; and generates a meaningful picture of the real-world system using space–time dependent probability functions and associated maps of health attributes. The implementation stages of the SEKS–GUI library are described in considerable detail using appropriate screens. The wide applicability of SEKS–GUI is demonstrated by reviewing a selection of real-world case studies. An erratum to this article can be found at  相似文献   

9.
Coseismic deformation can be determined from strong-motion records of large earthquakes. Iwan et al. (Bull Seismol Soc Am 75:1225–1246, 1985) showed that baseline corrections are often required to obtain reliable coseismic deformation because baseline offsets lead to unrealistic permanent displacements. Boore (Bull Seismol Soc Am 91:1199–1211, 2001) demonstrated that different choices of time points for baseline correction can yield realistically looking displacements, but with variable amplitudes. The baseline correction procedure of Wu and Wu (J Seismol 11:159–170, 2007) improved upon Iwan et al. (Bull Seismol Soc Am 75:1225–1246, 1985) and achieved stable results. However, their time points for baseline correction were chosen by a recursive process with an artificial criterion. In this study, we follow the procedure of Wu and Wu (J Seismol 11:159–170, 2007) but use the ratio of energy distribution in accelerograms as the criterion to determine the time points of baseline correction automatically, thus avoiding the manual choice of time points and speeding up the estimation of coseismic deformation. We use the 1999 Chi-Chi earthquake in central Taiwan and the 2003 Chengkung and 2006 Taitung earthquakes in eastern Taiwan to illustrate this new approach. Comparison between the results from this and previous studies shows that our new procedure is suitable for quick and reliable determination of coseismic deformation from strong-motion records.  相似文献   

10.
Managing environmental and social systems in the face of uncertainty requires the best possible forecasts of future conditions. We use space–time variability in historical data and projections of future population density to improve forecasting of residential water demand in the City of Phoenix, Arizona. Our future water estimates are derived using the first and second order statistical moments between a dependent variable, water use, and an independent variable, population density. The independent variable is projected at future points, and remains uncertain. We use adjusted statistical moments that cover projection errors in the independent variable, and propose a methodology to generate information-rich future estimates. These updated estimates are processed in Bayesian Maximum Entropy (BME), which produces maps of estimated water use to the year 2030. Integrating the uncertain estimates into the space–time forecasting process improves forecasting accuracy up to 43.9% over other space–time mapping methods that do not assimilate the uncertain estimates. Further validation studies reveal that BME is more accurate than co-kriging that integrates the error-free independent variable, but shows similar accuracy to kriging with measurement error that processes the uncertain estimates. Our proposed forecasting method benefits from the uncertain estimates of the future, provides up-to-date forecasts of water use, and can be adapted to other socio-economic and environmental applications.  相似文献   

11.
Long-term time-dependent stochastic modelling of extreme waves   总被引:4,自引:3,他引:1  
This paper presents a literature survey on time-dependent statistical modelling of extreme waves and sea states. The focus is twofold: on statistical modelling of extreme waves and space- and time-dependent statistical modelling. The first part will consist of a literature review of statistical modelling of extreme waves and wave parameters, most notably on the modelling of extreme significant wave height. The second part will focus on statistical modelling of time- and space-dependent variables in a more general sense, and will focus on the methodology and models used also in other relevant application areas. It was found that limited effort has been put on developing statistical models for waves incorporating spatial and long-term temporal variability and it is suggested that model improvements could be achieved by adopting approaches from other application areas. In particular, Bayesian hierarchical space–time models were identified as promising tools for spatio-temporal modelling of extreme waves. Finally, a review of projections of future extreme wave climate is presented.  相似文献   

12.
Dynamic life tables arise as an alternative to the standard (static) life tables with the aim of incorporating the evolution of mortality over time. These tables can be considered as a two-way table on a grid equally spaced in either the vertical (age) or horizontal (year) directions, and the data can be decomposed into a deterministic large-scale variation (trend) plus a stochastic small-scale variation (residuals). In this context, space–time geostatistical methods can be used for fitting and predicting the dynamic mortality. We use four different space–time covariance functions for fitting and predicting mortality in Spain during the period 1980–2005. In particular, we aim at showing the behavior of separable versus nonseparable fitted structures on one hand, and the behavior of simple structures given by combinations of products and sums versus more complicated negative structures on the other hand.  相似文献   

13.
This paper presents a visually enhanced evaluation of the spatio-temporal patterns of the dam-induced hydrologic alteration in the middle and upper East River, south China over 1952–2002, using the range of variability approach (RVA) and visualization package XmdvTool. The impacts of climate variability on hydrological processes have been removed for wet and dry periods, respectively, so that we focus on the impacts of human activities (i.e., dam construction). The results indicate that: (1) along the East River, dams have greatly altered the natural flow regime, range condition and spatial variability; (2) six most remarkable indicators of hydrologic alteration induced by dam-construction are rise rate (1.16), 3-day maximum (0.91), low pulse duration (0.88), January (0.80), July (0.80) and February (0.79) mean flow of the East River during 1952–2002; and (3) spatiotemporal hydrologic alterations are different among three stations along Easter River. Under the influence of dam construction in the upstream, the degree of hydrologic changes from Lingxia, Heyuan to Longchuan station increases. This study reveals that visualization techniques for high-dimensional hydrological datasets together with RVA are beneficial for detecting spatio-temporal hydrologic changes.  相似文献   

14.
Long-term trends in the ocean wave climate because of global warming are of major concern to many stakeholders within the maritime industries, and there is a need to take severe sea state conditions into account in design of marine structures and in marine operations. Various stochastic models of significant wave height are reported in the literature, but most are based on point measurements without exploiting the flexible framework of Bayesian hierarchical space–time models. This framework allows modelling of complex dependence structures in space and time and incorporation of physical features and prior knowledge, yet remains intuitive and easily interpreted. This paper presents a Bayesian hierarchical space–time model with a log-transform for significant wave height data for an area in the North Atlantic ocean. The different components of the model will be outlined, and the results from applying the model to data of different temporal resolutions will be discussed. Different model alternatives have been tried and long-term trends in the data have been identified for all model alternatives. Overall, these trends are in reasonable agreement and also agree fairly well with previous studies. The log-transform was included in order to account for observed heteroscedasticity in the data, and results are compared to previous results where a similar model was employed without a log-transform. Furthermore, a discussion of possible extensions to the model, e.g. incorporating regression terms with relevant meteorological data, will be presented.  相似文献   

15.
Obtaining new and flexible classes of nonseparable spatio-temporal covariances and variograms has resulted a key point of research in the last years. The goal of this paper is to introduce and develop new spatio-temporal covariance models taking into account the problem of spatial anisotropy. Recent literature has focused on the problem of full symmetry and the problem of anisotropy has been overcome. Here we propose a generalization of Gneiting’s (J Am Stat Assoc 97:590–600, 2002a) approach and obtain new classes of stationary nonseparable spatio-temporal covariance functions which are spatially anisotropic. The resulting structures are proved to have certain interesting mathematical properties, together with a considerable applicability.Work partially funded by grant MTM2004-06231 from the Spanish Ministry of Science and Education.  相似文献   

16.
Rainfall extremes often result in the occurrence of flood events with associated loss of life and infrastructure in Malawi. However, an understanding of the frequency of occurrence of such extreme events either for design or disaster planning purposes is often limited by data availability at the desired temporal and spatial scales. Regionalisation, which involves “trading time for space” by pooling together observations for stations with similar behavior, is an alternative approach for more accurate determination of extreme events even at ungauged areas or sites with short records. In this study, regional frequency analysis of rainfall extremes in Southern Malawi, large parts of which are flood prone, was undertaken. Observed 1-, 3-, 5- and 7-day annual maximum rainfall series for the period 1978–2007 at 23 selected rainfall stations in Southern Malawi were analysed. Cluster analysis using scaled at-site characteristics was used to determine homogeneous rainfall regions. L-moments were applied to derive regional index rainfall quantiles. The procedure also validated the three rainfall regions identified through homogeneity and heterogeneity tests based on Monte Carlo simulations with regional average L-moment ratios fitted to the Kappa distribution. Based on assessments of the accuracy of the derived index rainfall quantiles, it was concluded that the performance of this regional approach was satisfactory when validated for sites not included in the sample data. The study provides an estimate of the regional characteristics of rainfall extremes that can be useful in among others flood mitigation and engineering design.  相似文献   

17.
Spatio-temporal estimation of precipitation over a region is essential to the modeling of hydrologic processes for water resources management. The changes of magnitude and space–time heterogeneity of rainfall observations make space–time estimation of precipitation a challenging task. In this paper we propose a Box–Cox transformed hierarchical Bayesian multivariate spatio-temporal interpolation method for the skewed response variable. The proposed method is applied to estimate space–time monthly precipitation in the monsoon periods during 1974–2000, and 27-year monthly average precipitation data are obtained from 51 stations in Pakistan. The results of transformed hierarchical Bayesian multivariate spatio-temporal interpolation are compared to those of non-transformed hierarchical Bayesian interpolation by using cross-validation. The software developed by [11] is used for Bayesian non-stationary multivariate space–time interpolation. It is observed that the transformed hierarchical Bayesian method provides more accuracy than the non-transformed hierarchical Bayesian method.  相似文献   

18.
A quantification of the spatio-temporal dependence among precipitation extremes is important for investigating the properties of intense storms as well as flood or flash-flood related hazards. Extreme value theory has been widely applied to the hydrologic sciences and hydraulic engineering. However, rigorous approaches to quantify dependence structures among extreme values in space and time have not been reported in the literature. Previous researchers have quantified the dependence among extreme values through the concept of (pairwise bivariate) tail dependence coefficients. For estimation of the tail dependence coefficients, we apply a recently developed method [Kuhn G. On dependence and extremes. PhD thesis (Advisor: C. Klüppelberg), Munich University of Technology, 2006] which utilized the multivariate tail dependence function of a subclass of elliptical copulas. This study extends the previous approach in the context of space and time by considering pairs of spatial grids in South America and quantifying the dependence among precipitation extremes based on the time series at each spatial grid. In addition, Kendall’s τ is used to estimate the pairwise copula correlation (for an elliptical copula) of precipitation between all grids in South America. The geospatial–temporal dependence measures are applied to precipitation observations from 1940 to 2005 as well as simulations from the Community Climate System Model version 3 (CCSM3) for 1940–2099. New insights are obtained regarding the spatio-temporal dependence structures for precipitation over South America both with regard to correlation as well as tail dependence.  相似文献   

19.
The 3 310-m-high Chia-min Lake records the climatic history since 4 ka B. P. in Taiwan. The warm/wet period before 2.2 ka B.P. seemed to correspond to the later part of the Holocene Megathermal, and the cold/dry period during 0–2.2 ka B. P. corresponded to the Katathermal. Before the termination of the Megathermal, an especially warm and humid segment (2.2–2.4 ka B. P.) emerged. The paleoclimatic records from Yuen-yang and Chi-tsai Lakes support the notion that the Megathermal in Taiwan terminated during 2—2.3 ka B. P. A warm segment (820–1 320 AD) in the Katathermal could be considered the Medieval Warm Period. The climate turned cold and dry after 1 320 AD and this indicated the onset of the Little Ice Age. These paleoclimatic variations are also in good agreement with those recorded in Great Ghost Lake.  相似文献   

20.
This paper presents a combined validation method of radar-sensed rainfall, using rain gauge data and hydrologic closure, with an application to the Rio Escondido basin (North-East of Mexico). The space–time scaling behavior of rainfall between rain gauge and radar scales is compared with the intrinsic variability of rainfall, for a statistical validation of space–time variability. For hydrological validation purposes, the CEQUEAU model is used to perform rainfall-runoff routing. It provides a basin-wide water balance, to be compared with the measured water flow at the Villa de Fuentes hydrometric station, for mean-value gauging closure. A good qualitative agreement in terms of hydrograph shape and timing is obtained between the simulated and the observed water flows, and a multiplicative correction factor of an initially proposed Z–R relationship is adopted for the watershed under study, which agrees approximately with other authors’ findings about that relationship. The results are considered particularly useful as a validation-and-correction methodology of radar rainfall estimates for areas sparsely covered by rain gauges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号