首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lisa M. Fotherby   《Geomorphology》2009,103(4):562-576
The Platte River in Nebraska has evolved in the twentieth century from a predominantly braided river pattern to a mélange of meandering, wandering, anastomosed, island braided, and fully braided reaches. Identifying the factors that determine the occurrence of a fully braided main channel was the objective of this study. Aerial photography, gage flow data, ground-surveyed cross sections, bed material samples, and the results of sediment transport modeling were used to examine factors that control spatial change in main river pattern of the central Platte River. Valley confinement is identified as the determining factor of braided river in nine of eleven divisions of the central Platte River. Flow reduction and the interruption of sediment supply are identified as determining factors preventing fully braided river in the remaining two of eleven reaches.Valley confinement, the topography which limits the width of the floodplain, was initially measured as width between historical banks (predevelopment river banks). This metric was later refined to width between confining features (historical banks, remnant bars, bridge abutments, protected banks and levees). Under existing conditions, the main channel of the central Platte River is fully braided when valley confinement (width between confining features) is 600 m or less and begins to divide into the multiple channels of an anastomosed pattern when valley confinement (width between confining features) exceeds 600 m When Platte River flow is divided between two to four major anabranches, a fully braided pattern in the main channel of the main anabranch requires a more confined valley of 400 m or less.Valley confinement is demonstrated to be the dominant factor in determining river pattern in the central Platte River, although this factor is not normally considered in the continuum of channel pattern model. Conclusions from this study can be used to increase the occurrence of fully braided main channel in the central Platte River, to aid habitat recovery for endangered or threatened bird species that favor this river pattern. Consideration of valley confinement with river continuum factors can aid river managers by improving predictions of river pattern in response to management actions.  相似文献   

2.
密云水库以上的潮白河分为白河和潮河两支,分别穿行于燕山山区。两河的上段为顺直河型或游荡河型,下段为典型的深切曲流。河势及河型受地质构造的深刻影响。潮白两河的纵比降大,来水、来沙在时间和空间上的分配不均匀,对不同河型的形成有影响,这也表明密云水库以上的潮白河具有山地河流的特点。  相似文献   

3.
A.M. Harvey   《Geomorphology》2007,84(3-4):192
A 100-year storm that occurred in 1982 caused major geomorphic changes in the main valleys of the northern Howgill Fells, northwest England. Those changes, which were documented at that time, involved extensive hillslope gully erosion, alluvial fan sedimentation, and substantial sediment input to the stream systems. The streams channels, which had hitherto been dominantly single-thread, relatively stable channels, responded in many reaches by switching to wide shallow unstable locally braided channels. Over the 20 years since the event there has been a partial recovery to channel geometries similar to the pre-flood conditions, however the degree of recovery contrasts between two neighbouring valleys, Bowderdale and Langdale. The channel of Bowderdale Beck has largely recovered. Flood sedimentation zones have largely stabilised and new single-thread channels have cut through most of the former braided reaches. In some places channel widths remain higher than the pre-flood values, and locally recovery has been modified by a lagged complex response. In Langdale, recovery is only partial with many reaches demonstrating sustained instability over the 20-year post-flood period. Furthermore, the overall spatial patterns suggest some reach-to-reach transfer of coarse sediment, shifting zones of instability downstream. The contrasts between the two valleys appear to relate to different hillslope-to-channel coupling characteristics, themselves inherited from late Pleistocene conditions. These contrasts are also evident in the longer-term (post-1949) history of channel change and stability in these two streams, indicative of the higher intrinsic instability of the Langdale system.  相似文献   

4.
While studies on gravel mantled and mixed alluvial bedrock rivers have increased in recent decades, few field studies have focused on spatial distributions of bedrock and alluvial reaches and differences between reach types. The objective of this work is to identify the spatial distribution of alluvial and bedrock reaches in the Upper Guadalupe River. We compare reach length, channel and floodplain width, sinuosity, bar length and spacing, bar surface grain size, and slope in alluvial and bedrock reaches to identify whether major differences exist between channel reach types. We find that local disturbances, interaction of the channel and valley sides, variation in lithology, and regional structural control contribute to the distribution of bedrock reaches in the largely alluvial channel. Alluvial and bedrock channel reaches in the Upper Guadalupe River are similar, particularly with respect to the distribution of gravel bars, surface grain size distributions of bars, and channel slope and width. Our observations suggest that the fluvial system has adjusted to changes in base level associated with the Balcones Escarpment Fault Zone by phased incision into alluvial sediment and the underlying bedrock, essentially shifting from a fully alluvial river to a mixed alluvial bedrock river.  相似文献   

5.
陆中臣 《地理研究》1984,3(2):35-44
本文采用黄河下游的实测资料,分析了三门峡水库下洩清水阶段,河床的调整及其对基准面的反应。认为在来水来沙条件变化的情况下,河床纵剖面以近于平行的方式调整;横断面形态向窄深式发展;河型的转化主要取决于地貌临界值和粉沙—粘土含量。从长时间看,下游的淤积特性不会发生根本性的变化。  相似文献   

6.
Results are presented from a new cellular model of braided river dynamics that simulates flow, sediment transport, morphological change and the effects of braidplain vegetation. This model is used to investigate the effect of changes in upstream sediment supply on braided river systems over simulation periods of 200 years. Modelled changes in channel morphology, associated with both aggradation and degradation, were seen to be consistent with those reported in the literature. In addition, simulation results allowed the identification of diagnostic characteristics of aggrading and degrading reaches, in the form of relationships between the age, extent and relative elevation of fluvial surfaces. Interpretation of spatial patterns of valley floor surface characteristics in the Avoca River, New Zealand, on the basis of these relationships, allowed the identification of channel reaches that appear to be experiencing either aggradation or degradation. These inferences are shown to be consistent with independent evidence of spatial patterns of sediment supply to the main valley floor, derived from aerial photographs and an existing sediment source inventory. These results illustrate the potential for using cellular models to develop an improved understanding of natural river behaviour.  相似文献   

7.
Based on geographical and hydrological extents delimited, four principles are identified, as the bases for delineating the ranges of the source regions of the Yangtze and Yellow rivers in the paper. According to the comprehensive analysis of topographical characteristics, climate conditions, vegetation distribution and hydrological features, the source region ranges for eco-environmental study are defined. The eastern boundary point is Dari hydrological station in the upper reach of the Yellow River. The watershed above Dari hydrological station is the source region of the Yellow River which drains an area of 4.49×104 km2. Natural environment is characterized by the major topographical types of plateau lakes and marshland, gentle landforms, alpine cold semi-arid climate, and steppe and meadow vegetation in the source region of the Yellow River. The eastern boundary point is the convergent site of the Nieqiaqu and the Tongtian River in the upstream of the Yangtze River. The watershed above the convergent site is the source region of the Yangtze River, with a watershed area of 12.24×104 km2. Hills and alpine plain topography, gentle terrain, alpine cold arid and semi-arid climate, and alpine cold grassland and meadow are natural conditions in the source region of the Yangtze River.  相似文献   

8.
Prediction of alluvial channel pattern of perennial rivers   总被引:2,自引:0,他引:2  
Purely braided, meandering and straight channels can be considered as end-members of a continuum of alluvial channel patterns. Several researchers have succeeded in separating channel patterns in fields defined by flow related parameters. However, the discriminators of the principal channel patterns derived from these diagrams all require some a priori knowledge of the channel geometry. In this paper a method is presented which enables prediction of the equilibrium conditions for the occurrence of braided and high sinuosity meandering rivers in unconfined alluvial floodplains. The method is based on two, almost channel pattern independent, boundary conditions: median grain size of the river bed material, and a potential specific stream power parameter related to bankfull discharge or mean annual flood and valley gradient. This can be regarded as a potential maximum of the available flow energy corresponding to the minimum sinuosity condition, P = 1. Based on an analysis of 228 datasets of measurement sites along rivers from many parts of the world an independent discriminating function was found that separates the occurrence of braided rivers and meandering rivers with P > 1.5. The function applies to equilibrium conditions of rivers that neither incise nor show rapid aggradation, with a bankfull or mean annual flood discharge above 10 m3/s and a median bed material grain size between 0.1 and 100 mm.  相似文献   

9.
江河源区NDVI时空变化及其与气候因子的关系(英文)   总被引:5,自引:3,他引:2  
The source regions of the Yangtze and Yellow rivers are important water conservation areas of China. In recent years, ecological deterioration trend of the source regions caused by global climate change and unreasonable resource development increased gradually. In this paper, the spatial distribution and dynamic change of vegetation cover in the source regions of the Yangtze and Yellow rivers are analyzed in recent 10 years based on 1-km resolution multitemporal SPOTVGT-DN data from 1998 to 2007. Meanwhile, the correlation relationships between air temperature, precipitation, shallow ground temperature and NDVI, which is 3×3 pixel at the center of Wudaoliang, Tuotuohe, Qumalai, Maduo, and Dari meteorological stations were analyzed. The results show that the NDVI values in these two source regions are increasing in recent 10 years. Spatial distribution of NDVI which was consistent with hydrothermal condition decreased from southeast to northwest of the source regions. NDVI with a value over 0.54 was mainly distributed in the southeastern source region of the Yellow River, and most NDVI values in the northwestern source region of the Yangtze River were less than 0.22. Spatial changing trend of NDVI has great difference and most parts in the source regions of the Yangtze and Yellow rivers witnessed indistinct change. The regions with marked increasing trend were mainly distributed on the south side of the Tongtian River, some part of Keqianqu, Tongtian, Chumaer, and Tuotuo rivers in the source region of the Yangtze River and Xingsuhai, and southern Dari county in the source region of the Yellow River. The regions with very marked increasing tendency were mainly distributed on the south side of Tongtian Rriver and sporadically distributed in hinterland of the source region of the Yangtze River. The north side of Tangula Range in the source region of the Yangtze River and Dari and Maduo counties in the source region of the Yellow River were areas in which NDVI changed with marked decreasing tendency. The NDVI change was980 Journal of Geographical Sciences positively correlated with average temperature, precipitation and shallow ground temperature. Shallow ground temperature had the greatest effect on NDVI change, and the second greatest factor influencing NDVI was average temperature. The correlation between NDVI and shallow ground temperature in the source regions of the Yangtze and Yellow rivers increased significantly with the depth of soil layer.  相似文献   

10.
中国退耕还林综合区划   总被引:4,自引:0,他引:4  
李世东  翟洪波 《山地学报》2004,22(5):513-520
退耕还林工程涉及我国自然、经济和社会条件各不相同的广大区域,只有基于科学的综合区划,才能保证工程建设的圆满成功。根据我国退耕还林工作的实际需要,研究以退耕还林工程的整个工程区25个省(区、市)1897个县(市、区、旗)为研究对象,引入Matlab等先进理论和技术,横跨自然、经济、社会科学3大领域,共获取原始数据60000多个,采用以定量为主,适当结合定性的方法,实行定性分析与定量分析相结合,对退耕还林区划进行了系统研究。对于较高级别的分区,采用自上而下的、定性与定量相结合的分析方法。对于较低级别的分区,采用自下而上的、定量分析的方法,即以Matlab为平台,运用层次分析法和系统聚类分析法(HCM)进行分区。建立了退耕还林类型区划体系,即大区-区-亚区-小区,将退耕还林工程区区划为4个大区、12个区、39个亚区、116个小区。  相似文献   

11.
江河源区生态环境范围的探讨   总被引:8,自引:0,他引:8  
The Tibetan Plateau, as the origin of the Yangtze and Yellow rivers, is the region of climate variation and is very sensitive to climate change in China (Feng etal., 1998). The runoff in the upper reaches of the Yellow River has been decreasing at a rate of 9.8 m3/s per decade due to rapid climate warming in the Tibetan Plateau since the mid- and late 1980s (Zhang etal., 2000). Eco-environmental change is also extremely substantial in the source regions of the Yangtze and Yellow rivers. T…  相似文献   

12.
论文基于长江上游271个气象站点1961—2017年逐日降水量数据及三峡水库日入库流量资料,辅以差异t检验、合成分析、相关分析和聚类分析等方法,就长江上游降水对三峡水库入库流量的影响进行了分析,结果表明:① 三峡水库蓄水期关键月的入库流量受同年8月及9月的降水影响最为明显;② 依据降水特征将长江上游进行分区的结果是在沿江及以南遵循自然流域划分,长江以北则不同,6个区分别为:I区(嘉陵江流域南部)、II区(金沙江上游、岷沱江北部、嘉陵江北部)、III区(重庆—宜昌)、IV区(乌江)、V区(宜宾—重庆)、VI区(金沙江流域中下游);③ 6个区对三峡水库蓄水关键月的入库流量贡献:I区和III区的降水量最大,汇流距离短,相较其他4个区,贡献最大;II区站点稀疏,降水量最少,汇流距离长,贡献最小;其他3个区(IV、V、VI区)贡献相近;④ 分析2003年以来蓄水期遭遇的3次流量峰值超50000 m3/s的洪水过程,其中2014年9月11—18日I区出现连续强降水,同时叠加III区过程性强降水,导致了19—20日三峡水库入库出现超过50000 m3/s的超大洪峰,证实了I区和III区降水对三峡入库流量的高贡献影响分析结论可靠,该结论也对三峡水库合理蓄水调度具有一定的参考价值。  相似文献   

13.
The Spiti River that drains through the arid Trans-Himalayan region is studied here. The relict deposits exposed along the river provide an opportunity to understand the interaction between the phases of intense monsoon and surface processes occurring in the cold and semi arid to-arid Trans-Himalayan region. Based on geomorphological observation the valley is broadly divided into the upper and lower Spiti Valley. The braided channel and the relict fluvio-lacustrine deposits rising from the present riverbed characterize the upper valley. The deposits in the lower valley occur on the uplifted bedrock strath and where the channel characteristics are mainly of meandering nature. Conspicuous is the occurrence of significantly thick lacustrine units within the relict sedimentary sequences of Spiti throughout the valley. The broad sedimentary architecture suggests the formation of these palaeolakes due landslide-driven river damming. The Optically Stimulated Luminescence (OSL) dating of quartz derived from the bounding units of the lacustrine deposits suggests that the upper valley preserves the phase of deposition around 14–6 ka and in the lower valley around 50–30 ka. The review of published palaeoclimatic palaeolake chronology of Spiti Valley indicates that the lakes were probably formed during the wetter conditions related to Marine Isotope Stage III and II. The increased precipitation during these phases induced excessive landsliding and formation of dammed lakes along the Spiti River. The older lacustrine phase being preserved on the uplifted bedrock strath in the lower valley indicates late Pleistocene tectonic activity along the Kaurick Chango normal fault.  相似文献   

14.
黄河下游河槽横断面调整规律及治理方式探讨   总被引:7,自引:0,他引:7  
通过对影响河槽挟沙能力诸因素的分析,作者认为目前黄河下游只有河槽形态是一个人为可调节的控制河道淤积的要素。分析黄河下游河道横剖面形态的特征及其调整规律,考虑来沙组成变化、河槽综合阻力变化,计算得到黄河下游典型断面的实际挟沙能力及平均水沙条件下河槽平衡输沙横剖面,经与实际断面形态对比,得出必须以多级河槽方式缩窄7000m3/s流量以下即中、小水期的河槽,方能显着减少黄河下游河槽中的淤积的结论。这样才能真正实现潘季驯的“束水攻沙”的治黄方略。  相似文献   

15.
The change characteristics and trends of the regional climate in the source region of the Yellow River, and the response of runoff to climate change, are analyzed based on observational data of air temperature, precipitation, and runoff at 10 main hydrological and weather stations in the region. Our results show that a strong signal of climate shift from warm-dry to warm-humid in the western parts of northwestern China (Xinjiang) and the western Hexi Corridor of Gansu Province occurred in the late 1980s, and a same signal of climate change occurred in the mid-2000s in the source region of the Yellow River located in the eastern part of northwestern China. This climate changeover has led to a rapid increase in rainfall and stream runoff in the latter region. In most of the years since 2004 the average annual precipitation in the source region of the Yellow River has been greater than the long-term average annual value, and after 2007 the runoff measured at all of the hydrologic sections on the main channel of the Yellow River in the source region has also consistently exceeded the long-term average annual because of rainfall increase. It is difficult to determine the prospects of future climate change until additional observations and research are conducted on the rate and temporal and spatial extents of climate change in the region. Nevertheless, we predict that the climate shift from warm-dry to warm-humid in the source region of the Yellow River is very likely to be in the decadal time scale, which means a warming and rainy climate in the source region of the Yellow River will continue in the coming decades.  相似文献   

16.
黄河流域河型转化现象初探   总被引:9,自引:0,他引:9  
黄河以其高含沙水流以及下游河道的高沉积速率而著称于世。迄今的研究, 主要针对黄河中下游流域的 侵蚀、水文泥沙和河床演变方面的研究, 而对黄河流域主支流发生河型转化的现象关注不够。在黄河的不同河段, 河型的变化频繁, 类型多样, 现象复杂, 是研究者不可回避的科学问题。本文选取黄河上游第一弯的玛曲河段、黄河 上游末段托克托附近河段及黄河下游高村上下河段来研究河型转化的形式及影响因素。玛曲河段沿流向发生网状 河型→弯曲河型→辫状河型的转化现象, 该系列转化呈现出由极稳定河型向极不稳定河型的转化, 这与世界上通 常可以观察到的沿流向不稳定河型向稳定河型转化的情况完全相反。这主要受到地壳的抬升、上下峡谷卡口、水动 力特征、边界沉积物特征及植被的区域分布等因素的控制。托克托附近沿流向发生了弯曲河型→顺直河型转化的 现象, 这是较稳定河型向极稳定河型的转化, 主要受到边界沉积物、水动力等因素的控制。高村上下河段沿流向发 生的辫状河型→弯曲河型转化的现象, 是由极不稳定河型向较稳定河型转化的现象, 河道边界沉积物及水动力是 其主要控制因素, 人工大堤只是限制了河道摆动的最大幅度, 对河型的性质影响不大, 但其上游河段修筑的水库导 致下泻的水流在辫状河段的侵蚀能力增强而使其边界沉积物粗化, 并将泥质物大量沉积在弯曲河段, 客观上促进 了河型的转化。  相似文献   

17.
By decomposing and reconstructing the runoff information from 1965 to 2007 of the hydrologic stations of Tuotuo River and Zhimenda in the source region of the Yangtze River, and Jimai and Tangnaihai in the source region of the Yellow River with db3 wavelet, runoff of different hydrologic stations tends to be declining in the seasons of spring flood, summer flood and dry ones except for that in Tuotuo River. The declining flood/dry seasons series was summer > spring > dry; while runoff of Tuotuo River was always increasing in different stages from 1965 to 2007 with a higher increase rate in summer flood seasons than that in spring ones. Complex Morlet wavelet was selected to detect runoff periodicity of the four hydrologic stations mentioned above. Over all seasons the periodicity was 11-12 years in the source region of the Yellow River. For the source region of the Yangtze River the periodicity was 4-6 years in the spring flood seasons and 13-14 years in the summer flood seasons. The differences of variations of flow periodicity between the upper catchment areas of the Yellow River and the Yangtze River and between seasons were considered in relation to glacial melt and annual snowfall and rainfall as providers of water for runoff.  相似文献   

18.
Source-bordering dunefields have been reported in some drylands of the planet, but scarcely in China where there are extensive drylands. This article reports them in China for the first time, and presents a model for their active origin and development on a semiarid fluvial plain by means of satellite image analyses and field investigations. Local- and regional-scale examples are chosen to analyze the spatial patterns of dunefields, as well as the relationships with the fluvial systems in the central part of Naiman Banner where the Jiaolai River runs, and the lower Laoha River, and the middle and lower Ulijimulun River (principal tributaries of the Xiliaohe River). The active origin and development of source-bordering dunefields can be divided into four stages in terms of the spatial patterns of dunefields and channel dynamics: Stage I — individual dunes on the downwind margins of river valleys where running water constantly erodes the steep slopes of valley and where the downwind slopes orient to local dominant winds; Stage II — individual local-scale dunefields formed by deflation of the steep valley slopes and extending antecedent dunes downwind, together with the downstream displacement of meanders; Stage III — individual large-scale dunefield belts along the downwind margins of river valleys formed through frequent lateral migrations of channel; Stage IV — regional-scale dunefields formed mainly by river diversions due to climatic changes or tectonic movements. On the one hand, it is the running water's lateral migration, especially meandering, that prepares suitable places for aeolian systems in terms of both wind flow fields and sand sources, and subsequently it can further cause separate local-scale source-bordering dunefields to link together as a regional-scale dunefield belt given sufficient time. On the other hand, diversions of the river are bound to occur following changing hydrologic regimes resulting from tectonic movements or significant climate change (at regional and millennium scales). As a result, when some dunefield belts as well as the adjacent channels are abandoned, new channels work elsewhere in the same way to actively form new source-bordering dunefields and even dunefield belts at a regional scale.  相似文献   

19.
分汊型河床的形成与演变——以长江中下游为例   总被引:8,自引:0,他引:8  
尤联元 《地理研究》1984,3(4):12-24
本文根据多年的地质、地貌,来水来沙等考察资料,河道变迁的历史记载以及实验研究成果,分析了分汊型河床的两个必要条件及三方面的演变特征,最后用河流力图使自己的能量损耗率达于最小的假说对汊河的形成和演变作了解释。  相似文献   

20.
黄河下游河道断面形态参数变化及其水沙过程响应   总被引:1,自引:0,他引:1  
刘慰  王随继  王彦君 《地理科学》2020,40(9):1563-1572
基于1965—2015年黄河下游花园口、高村、泺口站的逐年水文和汛前河道断面的实测资料,分析了河道断面形态参数(河道断面面积,河道宽深比等)的变化,以及对河道断面形态与来水来沙间的关系做出定量化分析。结果表明:主槽断面形态参数与水沙搭配以及前期断面形态密切相关,沿程3个断面形态参数调整方式存在显著差异。河宽调整幅度沿程减小,辫状河段变幅最大,尤其在1986—1999年,辫状河段萎缩程度最为严重,其次为弯曲河段,顺直河段横向调整幅度最小。受到前期断面形态的影响,辫状河段河道断面调整方式既有横向展宽(萎缩)又有垂直加深(淤积);弯曲河段河道宽深比与流量呈较弱的正相关关系,具有横向和垂向的调整方式;而顺直河段的宽深比与流量呈负相关关系,与来沙系数呈正相关关系,河道以垂直加深(淤积)为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号