首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the formation of star clusters in an unbound giant molecular cloud, where the supporting kinetic energy is twice as large as the cloud's self-gravity. This cloud manages to form a series of star clusters and disperse, all within roughly two crossing times (10 Myr), supporting recent claims that star formation is a rapid process. Simple assumptions about the nature of the star formation occurring in the clusters allows us to place an estimate for the star formation efficiency at about 5–10 per cent, consistent with observations. We also propose that unbound clouds can act as a mechanism for forming OB associations. The clusters that form in the cloud behave as OB subgroups. These clusters are naturally expanding from one another due to the unbound nature of the flows that create them. The properties of the cloud we present here are consistent with those of classic OB associations.  相似文献   

2.
The ejection of the gas out of the disc in late-type galaxies is related to star formation and is due mainly to Type II supernovae. In this paper, we studied in detail the development of the Galactic fountains in order to understand their dynamical evolution and their influence on the redistribution of the freshly delivered metals over the disc. To this aim, we performed a number of 3D hydrodynamical radiative cooling simulations of the gas in the Milky Way where the whole Galaxy structure, the Galactic differential rotation and the supernova explosions generated by a single OB association are considered. A typical fountain powered by 100 Type II supernovae may eject material up to ∼2 kpc which than collapses back mostly in the form of dense, cold clouds and filaments. The majority of the gas lifted up by the fountains falls back on the disc remaining within a radial distance  Δ R = 0.5 kpc  from the place where the fountain originated. This localized circulation of disc gas does not influence the radial chemical gradients on large scale, as required by the chemical models of the Milky Way which reproduce the metallicity distribution without invoking large fluxes of metals. Simulations of multiple fountains fuelled by Type II supernovae of different OB associations will be presented in a companion paper.  相似文献   

3.
OB星协和年轻星团是恒星形成与早期演化的“化石”,同时也是研究初始重质量函数(IMF)的最好场所;文中就OB星协和年轻星团的形成和早期演化方面的研究进展作了一评述,还论述了IMF的测定和研究情况,并对相关的速逃OB星及蓝离散星问题作了简要介绍。  相似文献   

4.
A model is constructed of the material in front of the star Cygnus OB2 no. 12 in which dense cores are embedded in diffuse clumps of gas. The model reproduces the measured abundances of C2 and CO, and predicts a column density of 91010 cm2 for HCO+.  相似文献   

5.
We introduce a differential equation for star formation in galaxies that incorporates negative feedback with a delay. When the feedback is instantaneous, solutions approach a self-limiting equilibrium state. When there is a delay, even though the feedback is negative, the solutions can exhibit cyclic and episodic solutions. We find that periodic or episodic star formation only occurs when two conditions are satisfied. First the delay time-scale must exceed a cloud consumption time-scale. Secondly, the feedback must be strong. This statement is quantitatively equivalent to requiring that the time-scale to approach equilibrium be greater than approximately twice the cloud consumption time-scale. The period of oscillations predicted is approximately four times the delay time-scale. The amplitude of the oscillations increases with both feedback strength and delay time.
We discuss applications of the delay differential equation (DDE) model to star formation in galaxies using the cloud density as a variable. The DDE model is most applicable to systems that recycle gas and only slowly remove gas from the system. We propose likely delay mechanisms based on the requirement that the delay time is related to the observationally estimated time between episodic events. The proposed delay time-scale accounting for episodic star formation in galaxy centres on periods similar to   P ∼ 10 Myr  , irregular galaxies with   P ∼ 100 Myr  , and the Milky Way disc with   P ∼ 2  Gyr, could be that for exciting turbulence following creation of massive stars, that for gas pushed into the halo to return and interact with the disc and that for spiral density wave evolution, respectively.  相似文献   

6.
We have surveyed a ∼0.9 square degree area of the W3 giant molecular cloud (GMC) and star-forming region in the 850-μm continuum, using the Submillimetre Common-User Bolometer Array on the James Clerk Maxwell Telescope. A complete sample of 316 dense clumps were detected with a mass range from around 13 to  2500 M  . Part of the W3 GMC is subject to an interaction with the H  ii region and fast stellar winds generated by the nearby W4 OB association. We find that the fraction of total gas mass in dense, 850-μm traced structures is significantly altered by this interaction, being around 5–13 per cent in the undisturbed cloud but ∼25–37 per cent in the feedback-affected region. The mass distribution in the detected clump sample depends somewhat on assumptions of dust temperature and is not a simple, single power law but contains significant structure at intermediate masses. This structure is likely to be due to crowding of sources near or below the spatial resolution of the observations. There is little evidence of any difference between the index of the high-mass end of the clump mass function in the compressed region and in the unaffected cloud. The consequences of these results are discussed in terms of current models of triggered star formation.  相似文献   

7.
HCO+ has been detected for the first time towards the star Cygnus OB2 No. 12 through emission of the 1–0 rotational transition at 89 GHz. The CO( J =2−1) transition has also been observed. The observations are consistent with a model of dense regions embedded in a low-density clump gas. If actually present, the dense component would have an aggregate size L 1300 au, in agreement with estimates of small-scale density fluctuations observed along diffuse lines of sight.  相似文献   

8.
9.
The Orion Nebula cluster (ONC) appears to be unusual on two grounds: the observed constellation of the OB stars of the entire ONC and its Trapezium at its centre implies a time-scale problem given the age of the Trapezium, and an initial mass function (IMF) problem for the whole OB star population in the ONC. Given the estimated crossing time of the Trapezium, it ought to have totally dynamically decayed by now. Furthermore, by combining the lower limit of the ONC mass with a standard IMF it emerges that the ONC should have formed at least about 40 stars heavier than  5 M  while only 10 are observed. Using the N -body experiments we (i) confirm the expected instability of the Trapezium and (ii) show that beginning with a compact OB-star configuration of about 40 stars both the number of observed OB stars after 1 Myr within 1 pc radius and a compact trapezium configuration can be reproduced. These two empirical constraints thus support our estimate of 40 initial OB stars in the cluster. Interestingly, a more-evolved version of the ONC resembles the Upper Scorpius OB association. The N -body experiments are performed with the new C-code catena by integrating the equations of motion using the chain-multiple-regularization method. In addition, we present a new numerical formulation of the IMF.  相似文献   

10.
Molecular clouds are clumpy on length scales down to the limits of observational resolution. At least some ultracompactHii regions (UCHiiR) may result from the interaction of a young early type star and this type of cloud. The clumps can act as reservoirs of ionized gas distributed within theHii region. These models reproduce the relatively long lifetimes implied by the population statistics of UCHiiR. We present line profile and emission measure plots based on the simplest case where the flow remains supersonic through to a recombination front. The morphology agrees with the shell-like UCHiiR as classified by Churchwell. The predicted line profiles are broad and double peaked with a separation of about 50 km s–1 for the example given.  相似文献   

11.
We investigate the relationship between the star formation rate per unit area and the surface density of the interstellar medium (ISM; the local Kennicutt–Schmitt law) using a simplified model of the ISM and a simple estimate of the star formation rate based on the mass of gas in bound clumps, the local dynamical time-scales of the clumps and an efficiency parameter of around  ε≈ 5  per cent. Despite the simplicity of the approach, we are able to reproduce the observed linear relation between star formation rate and surface density of dense (molecular) gas. We use a simple model for the dependence of H2 fraction on total surface density to argue why neither total surface density nor the H  i surface density is a good local indicator of star formation rate. We also investigate the dependence of the star formation rate on the depth of the spiral potential. Our model indicates that the mean star formation rate does not depend significantly on the strength of the spiral potential, but that a stronger spiral potential, for a given mean surface density, does result in more of the star formation occurring close to the spiral arms. This agrees with the observation that grand design galaxies do not appear to show a larger degree of star formation compared to their flocculent counterparts.  相似文献   

12.
We present NH3(1,1) and (2,2) observations of MBM 12, the closest known molecular cloud (65-pc distance), aimed at finding evidence for on-going star formation processes. No local temperature (with a T rot upper limit of 12 K) or linewidth enhancement is found, which suggests that the area of the cloud that we have mapped (15-arcmin size) is not currently forming stars. Therefore this nearby 'starless' molecular gas region is an ideal laboratory to study the physical conditions preceding new star formation.
A radio continuum source has been found in Very Large Array archive data, close to but outside the NH3 emission. This source is likely to be a background object.  相似文献   

13.
We report on the discovery of over 50 strong Hα emitting objects towards the large OB association Cyg OB2 and the H  ii region DR 15 on its southern periphery. This was achieved using the INT Photometric Hα Survey of the Northern Galactic Plane (IPHAS), combined with follow-up spectroscopy using the MMT multi-object spectrometer HectoSpec. We present optical spectra, supplemented with optical r ',  i ' and H α photometry from IPHAS, and near-infrared J ,  H and K photometry from Two Micron All Sky Survey. The position of the objects in the ( J − H ) versus ( H − K ) diagram strongly suggests most of them are young. Many show Ca  ii infrared triplet emission indicating that they are in a pre-main-sequence phase of evolution of T Tauri and Herbig Ae nature. Among these, we have uncovered pronounced clustering of T Tauri stars roughly a degree south of the centre of Cyg OB2, in an arc close to the H  ii region DR 15, and the radio ring nebula G79.29+0.46, for which we discuss its candidacy as a luminous blue variable. The emission-line objects towards Cyg OB2 itself could be the brightest most prominent component of a population of lower mass pre-main-sequence stars that has yet to be uncovered. Finally, we discuss the nature of the ongoing star formation in Cyg OB2 and the possibility that the central OB stars have triggered star formation in the periphery.  相似文献   

14.
The northern section of the molecular cloud complex NGC 6334 has been mapped in the CO and CS spectral line emission and in continuum emission at a wavelength of 1300 μm. Our observations highlight the two dominant sources, I and I(N), and a host of weaker sources. NGC 6334 I is associated with a cometary ultracompact H  ii region and a hot, compact core ≤10 arcsec in size. Mid-infrared and CH3OH observations indicate that it is also associated with at least two protostellar sources, each of which may drive a molecular outflow. For region I we confirm the extreme high-velocity outflow first discovered by Bachiller & Cernicharo and find that it is very energetic with a mechanical luminosity of 390 L. A dynamical age for the outflow is ∼3000 yr. We also find a weaker outflow originating from the vicinity of NGC 6334 I. In CO and CS this outflow is quite prominent to the north-west, but much less so on the eastern side of I, where there is very little molecular gas. Spectral survey data show a molecular environment at position I which is rich in methanol, methyl formate and dimethyl ether, with lines ranging in energy up to 900 K above the ground state. NGC 6334 I(N) is more dense than I, but cooler, and has none of the high-excitation lines observed toward I. I(N) also has an associated outflow, but it is less energetic than the outflow from I. The fully sampled continuum map shows a network of filaments, voids and cores, many of which are likely to be sites of star formation. A striking feature is a narrow, linear ridge which defines the western boundary. It is unclear if there is a connection between this filament and the many potential sites of star formation, or if the filament existed prior to the star formation activity.  相似文献   

15.
We present results from observations of H110 α recombination-line emission at 4.874 GHz and the related 4.8-GHz continuum emission towards the Carina nebula using the Australia Telescope Compact Array. These data provide information on the velocity, morphology and excitation parameters of the ionized gas associated with the two bright H  ii regions within the nebula, Car I and Car II. They are consistent with both Car I and Car II being expanding ionization fronts arising from the massive star clusters Trumpler 14 and Trumpler 16, respectively. The overall continuum emission distribution at 4.8 GHz is similar to that at lower frequencies. For Car I, two compact sources are revealed that are likely to be young H  ii regions associated with triggered star formation. These results provide the first evidence of ongoing star formation in the northern region of the nebula. A close association between Car I and the molecular gas is consistent with a scenario in which Car I is currently carving out a cavity within the northern molecular cloud. The complicated kinematics associated with Car II point to expansion from at least two different centres. All that is left of the molecular cloud in this region are clumps of dense gas and dust which are likely to be responsible for shaping the striking morphology of the Car II components.  相似文献   

16.
We present new spectroscopy in the optical range and 21-cm H  i data covering the Ruprecht 55 (Ru 55) field in the Puppis window where several authors have proposed the existence of one (or two) clusters.
We have determined new MK spectral types for about 50 stars in the region, finding 43 OB-type stars among them. LS 985 was found to be an O9 V + O9.5 III binary and it is the earliest type of star in our observed sample.
We have identified a stellar OB association (Ru 55), which is most likely related to a depletion detected in our H  i data, as: (i) they are located at the same distance (6 kpc), within observational errors; (ii) both have similar radial velocities (∼67 km s−1); (iii) current OB stars could have provided the energy needed to blow the cavity; (iv) the dynamical time-scale for the hole buildup matches the age estimated for the earliest OB stars; and (v) LS 985 might be responsible for ionizing the H  i cavity inner walls close to it.  相似文献   

17.
We have used the Australia Telescope Compact Array (ATCA) to make a sensitive  (5 σ ≃100 mJy)  search for maser emission from the 4765-MHz 2Π1/2   F =1→0  transition of OH. 55 star formation regions were searched and maser emission with a peak flux density in excess of 100 mJy was detected toward 14 sites, with 10 of these being new discoveries. In addition we observed the 4750-MHz 2Π1/2   F =1→1  transition towards a sample of star formation regions known to contain 1720-MHz OH masers, detecting marginal maser emission from G348.550−0.979. If confirmed this would be only the second maser discovered from this transition.
The occurrence of 4765-MHz OH maser emission accompanying 1720-MHz OH masers in a small number of well-studied star formation regions has led to a general perception in the literature that the two transitions favour similar physical conditions. Our search has found that the presence of the excited-state 6035-MHz OH transition is a much better predictor of 4765-MHz OH maser emission from the same region than 1720-MHz OH maser emission is. Combining our results with those of previous high-resolution observations of other OH transitions we have examined the published theoretical models of OH masers and find that none of them predicts any conditions in which the 1665-, 6035- and 4765-MHz transitions are inverted simultaneously.  相似文献   

18.
The Ophiuchus molecular cloud complex has produced in Lynds 1688 the richest known embedded cluster within ∼300 pc of the Sun. Unfortunately, distance estimates to the Oph complex vary by nearly ∼40% (∼120–165 pc). Here I calculate a new independent distance estimate of 135±8 pc to this benchmark star‐forming region based on Hipparcos trigonometric parallaxes to stars illuminating reflection nebulosity in close proximity to Lynds 1688. Combining this value with recent distance estimates from reddening studies suggests a consensus distance of 139±6 pc (4% error), situating it within ∼11 pc of the centroid of the ∼5 Myr old Upper Sco OB subgroup of Sco OB2 (145 pc). The velocity vectors for Oph and Upper Sco are statistically indistinguishable within ∼1 km s–1 in each vector component. Both Oph and Upper Sco have negligible motion (<1 km s–1) in the Galactic vertical direction with respect to the Local Standard of Rest, which is inconsistent with the young stellar groups having formed via the high velocity cloud impact scenario. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We present submillimetre data for the L1689 cloud in the ρ Ophiuchi molecular cloud complex. We detect a number of starless and pre-stellar cores and protostellar envelopes. We also detect a number of filaments for the first time in the submillimetre continuum that are parallel both to each other, and to filaments observed in the neighbouring L1688 cloud. These filaments are also seen in the 13CO observations of L1689. The filaments contain all of the star-formation activity in the cloud. L1689 lies next to the well-studied L1688 cloud that contains the ρ Oph-A core. L1688 has a much more active star-formation history than L1689 despite their apparent similarity in 13CO data. Hence, we label L1689 as the dog that didn't bark. We endeavour to explain this apparent anomaly by comparing the total mass of each cloud that is currently in the form of dense material such as pre-stellar cores. We note firstly that L1688 is more massive than L1689, but we also find that when normalized to the total mass of each cloud, the L1689 cloud has a much lower percentage of mass in dense cores than L1688. We attribute this to the hypothesis of Loren that the star formation in the ρ Ophiuchi complex is being affected and probably dominated by the external influence of the nearby Upper Scorpius OB association and predominantly by σ Sco. L1689 is further from σ Sco and is therefore less active. The influence of σ Sco appears none the less to have created the filaments that we observe in L1689.  相似文献   

20.
The Herschel Space Observatory is well suited to address several important questions in star‐ and planet formation, as is evident from its first year of operation. This paper focuses on observations of water, a key molecule in the physics and chemistry of star‐formation. In the WISH Key Program, a comprehensive set of water lines is being obtained with the HIFI and PACS instruments toward a large sample of well‐characterized protostars, covering a wide range of luminosities and evolutionary stages. Lines of H2O, CO and their isotopologues, as well as chemically related hydrides, [O I] and [C II] are observed. Together, the data determine the abundance of water in cold and warm gas, reveal the entire CO ladder up to 4000 K above ground, elucidate the physical processes responsible for the warm gas (passive heating, UV or X‐ray‐heating, shocks), quantify the main cooling agents, and probe dynamical processes associated with forming stars and planets (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号