首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The “Autorité des amenegements des valées des Voltas (AVV)” is establishing new rural settlements in the Volta valleys. First, a survey of available water supplies is performed. Economic aquifers in Precambrian terrains are deep (15–50 m) and usually occur in fractured zones accompanying faults. Such zones can be identified on aerial photographs, but their precise location on the ground is virtually impossible by visual means. Because of the small size of the aquifers, a location error of 5 m can make the difference between a productive well and a dry hole. Traditionally, resistivity profiling has been used as the means of locating the fractured zones in the field. Our studies suggest that the task can be performed faster, cheaper and more accurately by VLF and EM methods. Because of the limited choice of transmitting stations reccivable in Upper Volta, the VLF method is not sufficiently sensitive to detect conductors with a strike between 45° and 105°. The results obtained with a multifrequency, horizontal-loop EM (HLEM) system were satisfactory in all investigated areas. During the 1980 field season, 35 target areas were surveyed. Of the 24 holes drilled so far, 23 are productive. The weathered layer is a source of distinctive HLEM anomalies, which are characteristic of the underlying rocks. Therefore, different interpretational procedures had to be developed for granitic and volcano-sedimentary areas. Despite the high background level of in-phase and quadrature components, which varied with thickness and conductivity of the weathered layer, aquifers could be detected at a depth greater than 30 m. Attempts were made to interpret the HLEM results quantitatively using two models: a three-layer medium and a valley discontinuity. The latter model is more realistic, but more scale modelling will have to be performed to permit development of viable interpretational procedures. Meanwhile, phasor diagrams based on drilling and resistivity sounding data can be used to estimate the aquifer depth.  相似文献   

2.
During 1999, horizontal-loop electromagnetic (HLEM) measurements were made over a buried dike in the Al Quweira area, southwest Jordan, using the APEX MAX MIN III instrument, as part of a mineral exploration project. The objectives of the study were (i) to evaluate the resolution of the HLEM technique in field work in detecting and locating anomalies caused by vein-like bodies, and (ii) to assess the capability of HLEM surveys for detecting targets in other locations throughout our geophysical survey programme. In-phase and quadrature anomalies were recorded with 50 m and 100 m coil separations and multiple frequencies across the strike of the buried dike. Data recorded at 43 locations, spaced 10 m apart along the survey line, were interpreted quantitatively. For a 50 m separation, corresponding to shallow depths of investigation, the results do not show any recognizable response from the buried dike. The HLEM data were modelled using a three-layer structure in order to estimate the thickness of the weathering layer along the survey line. Conversely, data obtained with a 100 m separation, corresponding to moderate depths of investigation, reveal significant anomalies from the buried dike at high frequencies. A phasor or vector diagram was used to calculate the response parameter, depth and dip of the buried dike.  相似文献   

3.
Faulting and weathering can endanger quarry operations by decreasing the total reserve, quarry’s useful life and production value. We investigated weathering and faulting problems in the Çatalca granite quarry at Istanbul in Turkey, using the Very Low Frequency (VLF) method. VLF method is an electromagnetic method which is very successful in locating vertical discontinuities such as faults and fracture zones. This method measures the apparent resistivity of the rocks in the region, besides the electromagnetic parameters such as tilt angle and ellipcity. Apparent resistivity is a very sensitive parameter to water presence inside the pores and fractures of the rocks. This feature enables the VLF method to map the boundaries between the fresh and cracked granite and altered zones in the quarry. In this work we mapped the faults and weathered zones within the granite in Çatalca quarry and found a high resistivity zone at the central part of the survey area which may be suitable for production. This study also shows the efficiency of the VLF method in understanding the structural and textural features of a quarry and estimating zones with high quality rocks for production planning.  相似文献   

4.
In recent years, geophysical methods (shallow seismic, electromagnetic, resistivity, ground penetrating radar) have been increasingly applied to overburden investigations. Their effectiveness has been found to depend significantly on local geological conditions. Compared with advanced seismic techniques, EM methods are faster and hence more cost-effective, but they have not been considered sufficiently accurate. Analysis is carried out of data obtained with the multifrequency horizontal-loop method (HLEM) in northeastern Ontario, where the overburden consists of Quaternary glacial and glaciolacustrine sediments. Surveying along 1-6 km long profiles permitted recognition of bedrock inhomogeneities and selection of sites suitable for HLEM data interpretation using the layered model. Phasor diagrams and computer inversion based on the ridge regression technique were used to interpret HLEM soundings obtained at eight frequencies. Interpreted layer resistivities and thicknesses were correlated with the results of Rotasonic drilling at 70 sites. Relatively accurate estimates of overburden thickness (within 10%) could be obtained in about 80% of the cases. Nine examples of HLEM soundings are given and discussed: three each of one-, two- and three-layer situations. An appropriate interpretation model cannot be selected simply by minimizing the rms error or by analysing the parameter resolution matrix. Frequently, the most effective way of evaluating a solution is to consider whether resistivity values determined by inversion fit any of the ranges determined by statistical analyses of sediment resistivities. A previously published study of electrical properties of Quaternary sediments indicated that resistivities of clay, till and sand are stable within a fairly large area, such as the one under investigation. While the application of HLEM methods to mapping of Quaternary sediments can be considered a success, interpretation of EM data in regions covered by glacial sediments is more difficult than in weathered terrains, where near-surface layering is more predictable. The problem of equivalence causes non-uniqueness in interpretation. Thickness equivalence, which results in poor resistivity estimates, was found to affect areas convered by sand and till. Conductance equivalence caused poor resolution of thickness and resistivity for thin clay layers (less than 10 m).  相似文献   

5.
6.
Geophysical Applications of Multidimensional Filtering with Wavelets   总被引:1,自引:0,他引:1  
--We present imaging results in geophysics based on using multidimensional Gaussian wavelets as a filter in a 2-D Cartesian domain. Besides decomposing the field into various distinct lengthscales, we have also constructed the 2-D maps describing the spatial distributions of the maximum of the wavelet-transformed L2-norm Emax (x,y) and its corresponding local wavenumber kmax (x,y), where x and y are the Cartesian coordinates. For geoid anomalies, using a wavelet filter extending to 90 degrees, we have discerned the distinct outlines of convergent and divergent tectonic zones and have conducted a quantitative comparison of the short-wavelength gravitational anomalies at those wavelengths between two different geographical locations. We have also compared the wavelet results with a nonlinear bandpass filter in the spectral domain where a Gaussian filter with the logarithm of the degree l acting as the argument has been employed. A wavelet solution, with a length-scale corresponding to 256 degrees, would need a filter with over 400 spherical harmonics centering around l=157 for an optimal spatial fit. The computational effort with the bandpass filter technique greatly exceeds those associated with wavelets. We have also shown the ability of the wavelets to analyze the vastly different scales present in high Rayleigh number convection and the mixing of passive heterogeneities driven by thermal convection. Wavelets will be a useful tool for rapid analyzing of the large multidimensional fields to be captured in many other geophysical endeavors, such as the upcoming gravity satellite missions and satellite radar interferometry images.  相似文献   

7.
We explore the contribution of fractures (joints) in controlling the rate of weathering advance for a low‐porosity rock by using methods of homogenization to create averaged weathering equations. The rate of advance of the weathering front can be expressed as the same rate observed in non‐fractured media (or in an individual block) divided by the volume fraction of non‐fractured blocks in the fractured parent material. In the model, the parent has fractures that are filled with a more porous material that contains only inert or completely weathered material. The low‐porosity rock weathers by reaction‐transport processes. As observed in field systems, the model shows that the weathering advance rate is greater for the fractured as compared to the analogous non‐fractured system because the volume fraction of blocks is < 1. The increase in advance rate is attributed both to the increase in weathered material that accompanies higher fracture density, and to the increase in exposure of surface of low‐porosity rock to reaction‐transport. For constant fracture aperture, the weathering advance rate increases when the fracture spacing decreases. Equations describing weathering advance rate are summarized in the ‘List of selected equations’. If erosion is imposed at a constant rate, the weathering systems with fracture‐bounded bedrock blocks attain a steady state. In the erosional transport‐limited regime, bedrock blocks no longer emerge at the air‐regolith boundary because they weather away. In the weathering‐limited (or kinetic) regime, blocks of various size become exhumed at the surface and the average size of these exposed blocks increases with the erosion rate. For convex hillslopes, the block size exposed at the surface increases downslope. This model can explain observations of exhumed rocks weathering in the Luquillo mountains of Puerto Rico. Published 2017. This article is a U.S. Government work and is in the public domain in the USA  相似文献   

8.
A statistical treatment of MT data from the Pannonian Basin, Hungary, based on the distortion theory of the S-effect suggests that the local increase in crustal conductivity is connected with deep fractures. Field model measurements have recently been carried out in a shallow, quasi two-dimensional basin of well known tectonics using MT station distances of 1–3 km. The results of the investigation and numerical modelling of near surface distortions, support the idea that deep fractures (faults) contain the conducting formations. According to 2-D model computations, several conducting dykes at considerable depths can cause anomalies which are indiscernible from an anomaly due to a conducting layer. The significance of these results is discussed from the point of view of geothermal energy exploitation.  相似文献   

9.
Numerical Simulation of Fault Zone Guided Waves: Accuracy and 3-D Effects   总被引:3,自引:0,他引:3  
-- Fault zones are thought to consist of regions with reduced seismic velocity. When sources are located in or close to these low-velocity zones, guided seismic head and trapped waves are generated which may be indicative of the structure of fault zones at depth. Observations above several fault zones suggest that they are common features of near fault radiation, yet their interpretation may be highly ambiguous. Analytical methods have been developed to calculate synthetic seismograms for sources in fault zones as well as at the material discontinuities. These solutions can be used for accurate modeling of wave propagation in plane-parallel layered fault zone structures. However, at present it is not clear how modest deviations from such simplified geometries affect the generation efficiency and observations of trapped wave motion. As more complicated models cannot be solved by analytical means, numerical methods must be employed. In this paper we discuss 3-D finite-difference calculations of waves in modestly irregular fault zone structures. We investigate the accuracy of the numerical solutions for sources at material interfaces and discuss some dominant effects of 3-D structures. We also show that simple mathematical operations on 2-D solutions generated with line sources allow accurate modeling of 3-D wave propagation produced by point sources. The discussed simulations indicate that structural discontinuities of the fault zone (e.g., fault offsets) larger than the fault zone width affect significantly the trapping efficiency, while vertical properly gradients, fault zone narrowing with depth, small-scale structures, and moderate geometrical variations do not. The results also show that sources located with appropriate orientations outside and below a shallow fault zone layer can produce considerable guided wave energy in the overlying fault zone layer.  相似文献   

10.
The evolution of volcanic landscapes and their landslide potential are both dependent upon the weathering of layered volcanic rock sequences. We characterize critical zone structure using shallow seismic Vp and Vs profiles and vertical exposures of rock across a basaltic climosequence on Kohala peninsula, Hawai’i, and exploit the dramatic gradient in mean annual precipitation (MAP) across the peninsula as a proxy for weathering intensity. Seismic velocity increases rapidly with depth and the velocity–depth gradient is uniform across three sites with 500–600 mm/yr MAP, where the transition to unaltered bedrock occurs at a depth of 4 to 10 m. In contrast, velocity increases with depth less rapidly at wetter sites, but this gradient remains constant across increasing MAP from 1000 to 3000 mm/yr and the transition to unaltered bedrock is near the maximum depth of investigation (15–25 m). In detail, the profiles of seismic velocity and of weathering at wet sites are nowhere monotonic functions of depth. The uniform average velocity gradient and the greater depths of low velocities may be explained by the averaging of velocities over intercalated highly weathered sites with less weathered layers at sites where MAP > 1000 mm/yr. Hence, the main effect of climate is not the progressive deepening of a near‐surface altered layer, but rather the rapid weathering of high permeability zones within rock subjected to precipitation greater than ~1000 mm/yr. Although weathering suggests mechanical weakening, the nearly horizontal orientation of alternating weathered and unweathered horizons with respect to topography also plays a role in the slope stability of these heterogeneous rock masses. We speculate that where steep, rapidly evolving hillslopes exist, the sub‐horizontal orientation of weak/strong horizons allows such sites to remain nearly as strong as their less weathered counterparts at drier sites, as is exemplified by the 50°–60° slopes maintained in the amphitheater canyons on the northwest flank of the island. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
This paper describes the results of using geophysical techniques to investigate three columns of the Pronaos of the Antonino and Faustina temple ( AD  141) in Rome, Italy; the columns are of cipollino marble which shows alternate sequences of mica and calcite beds. We applied seismic refraction using traditional interpretation, and seismic transmission tomography. The comparison between the results of the refraction study and the 2D and 3D isotropic tomographic analyses suggested anisotropic characteristics for the marble, and this prompted us to perform a further tomographic experiment, taking into account these characteristics of the material. Assuming an elliptical model, the main directions of anisotropy were detected. Two velocity fields corresponding to the main directions of the anisotropy were measured and anomalies such as cracks and fractures were noted. The conjugate-gradient algorithm was used to invert the data. The results of the isotropic and anisotropic models were compared. The correlation between the methods highlighted the characteristics of the marble, i.e. anisotropy, depth of the weathering, fractures and small cracks. The results show that the material of the columns is in reasonable condition, with the exception of a surface area 6 cm to 15 cm deep that we estimate has been weathered for 2000 years, and that has been particularly affected by pollution in the last century.  相似文献   

12.
-- We propose a thermal-mechanical model of shear deformation of a viscoelastic material to describe the temperature-dependence of friction law. We consider shear deformation of one-dimensional layer composed of a Maxwell linear viscoelastic material under a constant velocity V and temperature Tw at the boundary. The strain rate due to viscous deformation depends both on temperature and shear stress. The temperature inside the layer changes owing to frictional heating and conductive cooling. Steady-state calculations show that the sign of dss/dV, where †ss is steady-state stress, changes from positive to negative as V increases, and that the threshold velocity above which the sign of dss/dV is negative increases with increasing Tw. These results are in accordance with the conjecture that the downdip limit of seismogenic zones is marked by the transition in the sign of dss/dV due to temperature rise with depth. We also find that the response of steady state to a step change in V is quite similar to the response of frictional slip with constitutive laws which employ state variables. These findings suggest that by further improving the present model a model of constitutive relations along faults or plate boundaries can be developed which contains temperature-dependence in a physically-sound manner.  相似文献   

13.
Electromagnetic (EM) techniques are extremely important as a direct detection geophysical tool utilized in the base metal industry. They were developed in countries such as Canada, whose thin conductive weathering overburden did not hamper the penetration of EM signals and enabled exploration to depths on the order of 300 m. As a result, EM techniques were used widely in North America and Scandinavia for many years before they became common in countries with a thick conductive overburden, such as Australia. The 1980s and 1990s have seen the use of EM methods move from anomaly finding to mapping, as well as the development of better, faster and more accurate computer modelling algorithms. A review of EM papers, for the years 1998 to 2002, showed that most dealt with EM techniques as mapping tools. Airborne, ground and marine EM techniques are still being developed, as are data processing and interpretation software. The advent of robust 2-D and 3-D computer modelling and inversion algorithms has led to the acceptance of EM methods as a mapping tool for many environmental and petroleum industry applications, a trend which is expected to increase.  相似文献   

14.
Rock texture has a critical influence on the way rocks weather. The most important textural factors affecting weathering are grain size and the presence of cracks and stylolites. These discontinuities operate as planes of mechanical weakness at which chemical weathering is enhanced. However, it is unclear how different rock textures impact weathering rates and the size of weathered grains. Here, we use a numerical model to simulate weathering of rocks possessing grain boundaries, cracks, and stylolites. We ran simulations with either synthetic or natural patterns of discontinuities. We found that for all patterns, weathering rates increase with discontinuity density. When the density was <~25%, the weathering rate of synthetic patterns followed the order: grid > honeycomb > Voronoi > brick wall. For higher values, all weathering rates were similar. We also found that weathering rates decreased as the tortuosity of the pattern increased. Moreover, we show that textural patterns strongly impact the size distributions of detached grains. Rocks with an initial monomodal grain size distribution produce weathered fragments that are normally distributed. In contrast, rocks with an initial log-normal size distribution produce weathered grains that are log-normally distributed. For the natural patterns, weathering produced lower modality distributions.  相似文献   

15.
Simulation of the Micro-physics of Rocks Using LSMearth   总被引:4,自引:0,他引:4  
-- The particle-based Lattice Solid Model (LSM) was developed to provide a basis to study the physics of rocks and the nonlinear dynamics of earthquakes (M0ra and Place, 1994; Place and Mora, 1999). A new modular and flexible LSM approach has been developed that allows different micro-physics to be easily included in or removed from the model. The approach provides a virtual laboratory where numerical experiments can easily be set up and all measurable quantities visualised. The proposed approach provides a means to simulate complex phenomena such as fracturing or localisation processes, and enables the effect of different micro-physics on macroscopic behaviour to be studied. The initial 2-D model is extended to allow three-dimensional simulations to be performed and particles of different sizes to be specified. Numerical bi-axial compression experiments under different confining pressure are used to calibrate the model. By tuning the different microscopic parameters (such as coefficient of friction, microscopic strength and distribution of grain sizes), the macroscopic strength of the material and can be adjusted to be in agreement with laboratory experiments, and the orientation of fractures is consistent with the theoretical value predicted based on Mohr-Coulomb diagram. Simulations indicate that 3-D numerical models have different macroscopic properties than in 2-D and, hence, the model must be recalibrated for 3-D simulations. These numerical experiments illustrate that the new approach is capable of simulating typical rock fracture behaviour. The new model provides a basis to investigate nucleation, rupture and slip pulse propagation in complex fault zones without the previous model limitations of a regular low-level surface geometry and being restricted to two-dimensions.  相似文献   

16.
Geodynamic activity in the area of West Bohemia is typified by the occurrence of earthquake swarms, Quaternary volcanism and high flux of mantle-derived CO2. The highest swarm activity occurs beneath the eastern edge of the Cheb basin, which is delineated by the NW-SE trending morphologically pronounced Mariánské Lázn?? Fault (MLF) controlling the formation of the basin. The previous trenching survey across the MLF zone has identified several fault strands with possible Quaternary activity. In this paper we present the results of the geophysical survey focused to trace the faults signatures in geophysical sections and to build an image of near surface tectonics. The method of electric resistivity tomography (ERT) along two profiles parallel to the trench identified a strong resistivity contrast between the bodies of sandy gravels in the middle and conductive clayey sands to the west and weathered crystalline basement to the east. The 2-D ground penetration radar (GPR) sections show direct correlation of reflections with lithological boundaries identified in the trench. As expected, the GPR signal amplitudes increase with the resistivities found in the ERT sections. Two of the four faults identified in the trench are indicated in the resistivity and GPR sections. A 3-D GPR measurement has identified a spot of high amplitudes elongated parallel to the MLF trend, which coincides with the high resistivity body. To improve the signal-to-noise ratio of the time slices we stacked the GPR time slices within vertically homogeneous blocks. This provided a contrast image of the sand-gravel body including its boundaries in three dimensions. The detailed analysis of the 3-D GPR cube revealed additional fault that limits the highly reflective sands and appears to be offset by another younger fault. Our results suggest a complex fault pattern in the studied area, which deserves a further study.  相似文献   

17.
Flow and Containment of Injected Wastes   总被引:2,自引:0,他引:2  
Proper design, construction, testing and maintenance of Class 1 (hazardous waste) injection wells can guarantee that all waste is delivered to the injection zone. To assess the effects of waste injection, analytical models were developed which predict waste movement and pressure increases within the injection zone, and describe upward permeation through confining layers.
A basic plume model was used to track waste from several injection wells with varied injection history at DuPont's Victoria Texas site. To determine the maxi-mum distance that any portion of the waste might travel, special purpose models were employed to account for (1) density differences between the waste and the native formation brine, and (2) layered permeability variation within the injection zone. The results were generalized to a "multiplying factor concept," which facilitates development of a worst-case scenario.
A pressure distribution model based on the Theis (1935) equation for radial flow was applied to the Victoria site, with modifications to account for multiple wells, injection history and geological complexities.
Permeation into an intact confining layer was investigated by a new technique based on the Hantush and Jacob (1955) "leaky aquifer" theory. The model defines the maximum permeation distance, taking into account post-injection pressure decay.
Defects within confining layers, such as faults, fractures and abandoned wells, have been considered. Studies to evaluate their detailed characteristics are continuing. Initial results indicate that faults and fractures are not likely to provide conductive pathways in Gulf Coast settings, and site-specific evaluations are required to assess the impact of abandoned wells.  相似文献   

18.
We present a combined 3-D geoelectric and seismic tomography study conducted on the large Åknes rockslide in western Norway. Movements on the slope are strongly influenced by water infiltration, such that the hydrogeological regime is considered as a critical factor affecting the slope stability. The aim of our combined geophysical study was to identify and visualize the main shallow tension fractures and to determine their effect on hydraulic processes by comparing the geophysical results with information from borehole logging and tracer tests. To resolve the complex subsurface conditions of the highly fractured rock mass, a three-dimensional set-up was chosen for our seismic survey. To map the water distribution within the rock mass, a pattern of nine intersecting 2-D geoelectric profiles covered the complete unstable slope. Six of them that crossed the seismic survey area were considered as a single data set in a 3-D inversion. For both methods, smoothing-constraint inversion algorithms were used, and the forward calculations and parameterizations were based on unstructured triangular meshes. A pair of parallel shallow low-velocity anomalies (< 1400 m/s) observed in the final seismic tomogram was immediately underlain by two anomalies with resistivities <13 kΩm in the resistivity tomogram. In combination with borehole logging results, the low-velocity and resistivity anomalies could be associated with the drained and water-filled part of the tension fractures, respectively. There were indications from impeller flowmeter measurements and tracer tests that such tension fractures intersected several other water-filled fractures and were responsible for distinct changes of the main groundwater flow paths.  相似文献   

19.
The solution of forward 2-D geoelectric problems is considered for anisotropic and bianisotropic media. The problems are reduced to the solution of integrodifferential equations obtained with the use of integral Fourier and Fourier-Bessel transforms for horizontally heterogeneous layered media and radially heterogeneous layered media. This approach is particularly effective for studying the influence of small-scale geological structures (such as faults, borehole wall mud cakes, and the like) on results of geoelectric studies.  相似文献   

20.
La Soufrière (1467 m) is the active island arc volcano of Guadeloupe Island in the Lesser Antilles arc. Its historical eruptions are more or less violent phreatic outbursts the last of which, in 1976–1977, led to the evacuation of nearly 70 000 persons. The subsurface structure of the volcano consists of calderas, craters, and avalanche amphitheatres nested within the composite pile of eruptive products. Since the last magmatic eruption, dated ca. 1440 AD, the four phreatic eruptions have developed radial fractures on Soufrière dome favouring the development of a huge active hydrothermal system emphasized by a tropical environment. After the eruptions, the thermal state and the stable ground water flow are completely disorganised during several years during which the slow mineralization of rocks is becoming again preponderant. Sealing of fractures and decay of rocks permeability act as a cap for upward thermal transfers. Therefore Soufrière dome operates as a valve, resealing the hydrothermal system underlying the volcano thus providing over pressurization that could lead to the next phreatic eruption. In 1992 new small seismic swarms have appeared. Several of them are recorded every year while the emission of acid gas slowly increases.In order to recognise the superficial electrical resistive and conductive zones (less than 100 m depth) as well as the cavities on Soufrière volcano, we have made Very Low Frequency (VLF) surveys in 2000. Electrical conductive zones are clearly associated with major radial faults starting from the summit in which the hydrothermal activity takes place. In the continuation of these active hydrothermal fractures hot springs are located down slope. Conversely some of the resistive zones are associated with inactive clayed and sealed or opened faults. The distribution of the conductive zones allows detailing the state of the superficial part of the hydrothermal system of La Soufrière. The distribution of vertical clayed zones associated with major faults supposes Soufrière dome constituted of more or less consolidated blocks joined side by side and lying on the hydrothermally floor of crater Amic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号