首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A wide-angle airborne laser ranging system (WA-ALRS) is developed at the Institut Géographique National (IGN), France, with the aim of providing a new geodesy technique devoted to large (100 km2) networks with a high density (1 km−2) of benchmarks. The main objective is to achieve a 1-mm accuracy in relative vertical coordinates from aircraft measurements lasting a few hours. This paper reviews the methodology and analyzes the first experimental data achieved from a specific ground-based experiment. The accuracy in relative coordinate estimates is studied with the help of numerical simulations. It is shown that strong accuracy limitations arise with a small laser beam divergence combined with short range measurements when relatively few simultaneous range data are produced. The accuracy is of a few cm in transverse coordinates and a few mm in radial coordinates. The results from ground-based experimental data are fairly compatible with these predictions. The use of a model for systematic errors in the vehicle trajectory is shown to be necessary to achieve such a high accuracy. This work yields the first complete validation of modelization and methodology of this technique. An accuracy better than 1 mm and a few mm in vertical and horizontal coordinates, respectively, is predicted for aircraft experiments. Received: 19 June 1997 / Accepted: 17 February 1998  相似文献   

2.
The GEOID96 high-resolution geoid height model for the United States   总被引:4,自引:0,他引:4  
The 2 arc-minute × 2 arc-minute geoid model (GEOID96) for the United States supports the conversion between North American Datum 1983 (NAD 83) ellipsoid heights and North American Vertical Datum 1988 (NAVD 88) Helmert heights. GEOID96 includes information from global positioning system (GPS) height measurements at optically leveled benchmarks. A separate geocentric gravimetric geoid, G96SSS, was first calculated, then datum transformations and least-squares collocation were used to convert from G96SSS to GEOID96. Fits of 2951 GPS/level (ITRF94/NAVD 88) benchmarks to G96SSS show a 15.1-cm root mean square (RMS) around a tilted plane (0.06 ppm, 178 azimuth), with a mean value of −31.4 cm (15.6-cm RMS without plane). This mean represents a bias in NAVD 88 from global mean sea level, remaining nearly constant when computed from subsets of benchmarks. Fits of 2951 GPS/level (NAD 83/NAVD 88) benchmarks to GEOID96 show a 5.5-cm RMS (no tilts, zero average), due primarily to GPS error. The correlated error was 2.5 cm, decorrelating at 40 km, and is due to gravity, geoid and GPS errors. Differences between GEOID96 and GEOID93 range from −122 to +374 cm due primarily to the non-geocentricity of NAD 83. Received: 28 July 1997 / Accepted: 2 September 1998  相似文献   

3.
 Global positioning system (GPS) carrier phase measurements are used in all precise static relative positioning applications. The GPS carrier phase measurements are generally processed using the least-squares method, for which both functional and stochastic models need to be carefully defined. Whilst the functional model for precise GPS positioning is well documented in the literature, realistic stochastic modelling for the GPS carrier phase measurements is still both a controversial topic and a difficult task to accomplish in practice. The common practice of assuming that the raw GPS measurements are statistically independent in space and time, and have the same accuracy, is certainly not realistic. Any mis-specification in the stochastic model will inevitably lead to unreliable positioning results. A stochastic assessment procedure has been developed to take into account the heteroscedastic, space- and time-correlated error structure of the GPS measurements. Test results indicate that the reliability of the estimated positioning results is improved by applying the developed stochastic assessment procedure. In addition, the quality of ambiguity resolution can be more realistically evaluated. Received: 13 February 2001 / Accepted: 3 September 2001  相似文献   

4.
The Burhi Dining river flows in a meandering course for about 220 km through alluvial plains of Assam including a short rocky and hilly tract in between. Sequential changes in the position of banklines of the river due to consistent bank erosion have been studied from Survey of India topographic maps of 1934 and 1972, and digital satellite data of 2001 and 2004 using GIS. Two broad kinds of changes have been observed, e.g. alteration of direction of flow due to neck cut-off and progressive gradual change of the meander bends that accounts for translational, lateral, rotational, extensional and other types of movement of the meander bends. Study of bankline shift due to the bank erosion has been carried out for the periods 1934–1972, 1972–2001, 2001–2004 and 1934–2004 at 13 segments spaced at 5′ longitude interval (average 15 km) as the river course trends nearly east to west. The amounts of the bank area lost due to erosion and gained due to sediment deposition are estimated separately. The total area eroded in both banks during 1934–1972 was more (26.796 km2) as compared to sediment deposition (19.273 km2), whereas total sediment deposition was more (34.61 km2) during 1972-2001 as compared to erosion (23.152 km2). Erosion was again more in 2001–2004 (7.568 km2) as compared to sediment deposition (2.493 km2). During the entire period (1934–2004) of study the overall erosion on the both banks was 31.169 km2 and overall sediment deposition was 30.101 km2. The highest annual rates of bank erosion as well as bank building of the river are 21055.47 m2/km in 2001–2004 and 9665.81 m2/km in 1972-2001, respectively. Similarly the highest average annual rates of erosion as well as sediment deposition in both banks are observed during 2001–2004 and 1972–2001, respectively. The hard rocks of the hilly tract situated in between result in development of entrenched meandering and this tract has suffered minimum bank erosion.  相似文献   

5.
The short wavelength geoid undulations, caused by topography, amount to several decimeters in mountainous areas. Up to now these effects are computed by means of digital terrain models in a grid of 100–500m. However, for many countries these data are not yet available or their collection is too expensive. This problem can be overcome by considering the special behaviour of the gravity potential along mountain slopes. It is shown that 90 per cent of the topographic effects are represented by a simple summation formula, based on the average height differences and distances between valleys and ridges along the geoid profiles, δN=[30.H.D.+16.(H−H′).D] in mm/km, (error<10%), whereH, H′, D are estimated in a map to the nearest 0.2km. The formula is valid for asymmetric sides of valleys (H, H′) and can easily be corrected for special shapes. It can be used for topographic refinement of low resolution geoids and for astrogeodetic projects. The “slope method” was tested in two alpine areas (heights up to 3800m, astrogeodetic deflection points every 170km 2) and resulted in a geoid accuracy of ±3cm. In first order triangulation networks (astro points every 1000km 2) or for gravimetric deflections the accuracy is about 10cm per 30km. Since a map scale of 1∶500.000 is sufficient, the method is suitable for developing countries, too.  相似文献   

6.
《测量评论》2013,45(78):338-348
Abstract

Radar can be applied to surveying for precise measuren1ent of long lines, and as a navigational aid and position-fixing device for an aircraft performing a photographic survey. Trials of the radar method have recently been carried out in Australia using a modified “Shoran” equipment. The results of a large number of radar measurements of six distances, varying from 160 to 310 miles in length, indicate that an accuracy of 7 parts in 105 can be achieved. Equipment errors constitute the immediate limit to accuracy, but reasonable modifications would yield a figure of 2 parts in 105. Radar measurements can be completed in a fraction of the time required by normal ground survey methods, since a measurement of upwards of a hundred miles is made in a single step.

As an aid to photographic surveying a straight-line track indicator actuated by data from the “Shoran” equipment has been designed and flight tested. Its performance enabled a pilot taking aerial photographs to keep the aircraft to within an average departure of less than 0.02 mile from any desired straight-line flight path.  相似文献   

7.
The performance accuracy of Thiessen-polygon and kriging interpolation methods available in the standard GIS packages was evaluated based on magnitude of errors in predicting potential UV exposure across the continental U.S., and the results were compared with those of the ANUSPLIN routine that runs outside typical GIS through a series of C++ and FORTRAN commands. Input data consisted of global radiation measures recorded at 215 stations, latitude, longitude, and elevation from a 30 arc-second Digital Elevation Model. The objective was to identify the most accurate prediction method for facilitating measurement of potential UV exposure at local (e.g.1km2 grid cell) and county levels. The ANUSPLIN method produced the smallest prediction errors in estimating values of potential UV exposure at 1 km2 resolution; these measurements were aggregated to the county level. We examined how much variation was lost through aggregation, as well as the potential bias associated with the possibility that some counties have predominantly north or south facing slopes. The impact of using inferior procedures on the estimates and geographic patterns of potential UV exposure was also examined. ANUSPLIN generated results that are reproducible and for which uncertainty is known. These measurements will be used in subsequent analysis of the role of UV exposure in melanoma etiology.  相似文献   

8.
Differential tracking of theGPS satellites in high-earth orbit provides a powerful relative positioning capability, even when a relatively small continental U.S. fiducial tracking network is used with less than one-third of the fullGPS constellation. To demonstrate this capability, we have determined baselines of up to2000 km in North America by estimating high-accuracyGPS orbits and ground receiver positions simultaneously. The2000 km baselines agree with very long baseline interferometry(VLBI) solutions at the level of1.5 parts in10 8 and showrms daily repeatability of0.3–2 parts in10 8. The orbits determined for the most thoroughly trackedGPS satellites are accurate to better than1 m. GPS orbit accuracy was assessed from orbit predictions, comparisons with independent data sets, and the accuracy of the continental baselines determined along with the orbits. The bestGPS orbit strategies included data arcs of at least one week, process noise models for tropospheric fluctuations, estimation ofGPS solar pressure coefficients, and combined processing ofGPS carrier phase and pseudorange data. For data arcs of two weeks, constrained process noise models forGPS dynamic parameters significantly improved the solutions.  相似文献   

9.
Current cooperative positioning with global navigation satellite system (GNSS) for connected vehicle application mainly uses pseudorange measurements. However, the positioning accuracy offered cannot meet the requirements for lane-level positioning, collision avoidance and future automatic driving, which needs real-time positioning accuracy of better than 0.5 m. Furthermore, there is an apparent lack of research into the integrity issue for these new applications under emerging driverless vehicle applications. In order to overcome those problems, a new extended Kalman filter (EKF) and a multi-failure diagnosis algorithm are developed to process both GNSS pseudorange and carrier phase measurements. We first introduce a new closed-loop EKF with partial ambiguity resolution as feedback to address the low accuracy issue. Then a multi-failure diagnosis algorithm is proposed to improve integrity and reliability. The core of this new algorithm includes using Carrier phase-based Receiver Autonomous Integrity Monitoring method for failure detection, and the double extended w test detectors to identify failure. A cooperative positioning experiment was carried out to validate the proposed method. The results show that the proposed closed-loop EKF can provide highly accurate positioning, and the multi-failure diagnosis method is effective in detecting and identifying failures for both code and carrier phase measurements.  相似文献   

10.
Remote sensing indices of burn area and fire severity have been developed and tested for forest ecosystems, but not sparsely vegetated, desert shrub-steppe in which large wildfires are a common occurrence and a major issue for land management. We compared the performance of remote sensing indices for detecting burn area and fire severity with extensive ground-based cover assessments made before and after the prescribed burning of a 3 km2 shrub-steppe area. The remote sensing indices were based on either Landsat 7 ETM+ or SPOT 5 data, using either single or multiple dates of imagery. The indices delineating burned versus unburned areas had better overall, User, and Producer's accuracies than indices delineating levels of fire severity. The Soil Adjusted Vegetation Index (SAVI) calculated from SPOT had the greatest overall accuracy (100%) in delineating burned versus unburned areas. The relative differenced Normalized Burn Ratio (RdNBR) using Landsat ETM+ provided the highest accuracies (73% overall accuracy) for delineating fire severity. Though SPOT's spatial resolution likely conferred advantages for determining burn boundaries, the higher spectral resolution (particularly band 7, 2.21 μm) of Landsat ETM+ may be necessary for detecting differences in fire severity in sparsely vegetated shrub-steppe.  相似文献   

11.
为了解决室内定位问题,已提出多种室内定位系统,但各类定位系统的精度评价只利用了静态方法或动态方法中的一种,而两种方法均存在一定的优势和局限。本文根据室内定位系统精度评价的目的和需求,结合静态和动态评价方法的优劣进行优势互补,提出了一种顾及动静态的精度评价方法,该方法的关键是真值参考系统的建立。在对一种基于手机WiFi/PDR融合定位的室内定位系统验证试验中发现,该方法可以有效获得精度评价的指标,可满足室内定位系统的评估需求。  相似文献   

12.
Global positioning systems (GPS) have in recent years been increasingly used to monitor the deformations of large structures, particularly the deflections of long suspension bridges. When appropriately employed, and with the presence of a strong satellite geometry, GPS can supply timely and accurate structural deformation information. However, the three-dimensional (3-D) positioning accuracies in a local coordinate system are uneven. For instance, the vertical component of 3-D coordinates is less accurate than the horizontal component. In addition, GPS satellite availability tends to be a function of the latitude of the observation site and its surrounding obstructions. As a consequence, the accuracy of the north–south component is typically worse than that of the east–west component in mid-latitude areas (>45), and in some of the worst situations the horizontal positioning accuracy could even degrade to the same level as that of the vertical component. With such measurements it might not be possible to correctly interpret the real structural deformations. Furthermore, an insufficient number of satellites, caused by signal obstruction, could make it impossible to use GPS alone for kinematic positioning, even when integrated with other sensors such as triaxial accelerometers. With the aim of improving 3-D positioning accuracies for the monitoring of structural deflections, especially in vertical and northern directions, the optimal location selection of an array of ground-based pseudolites to augment GPS satellite geometry using an analytical simulation technique proposed by the authors is considered. Achievable 3-D positioning accuracies are estimated by simulating a real bridge deformation scenario using augmented transmitter geometry and compared with actual positioning accuracies calculated from the measurements gathered from a bridge trial. The results show that with an augmented satellite geometry and multipath mitigation it is possible to achieve uniform 3-D positioning accuracies of a few millimetres.  相似文献   

13.
Temporal correlation in network real-time kinematic (RTK) data exists due to unmodeled multipath and atmospheric errors, in combination with slowly changing satellite constellation. If this correlation is neglected, the estimated uncertainty of the coordinates might be too optimistic. In this study, we compute temporal correlation lengths for network RTK positioning, i.e., the appropriate time separation between the measurements. This leads to more realistic coordinate uncertainty estimates, and an appropriate surveying strategy to control the measurements can be designed. Two methods to estimate temporal correlation lengths are suggested. Several monitor stations that utilize correction data from two SWEPOSTM Network RTK services, a standard service and a project-adapted service with the mean distance between the reference stations of approximately 70 and 10–20 km, are evaluated. The correlation lengths for the standard service are estimated as 17 min for the horizontal component and 36–37 min for the vertical component. The corresponding estimates for the project-adapted service are 13–17 and 13–16 min, respectively. According to the F test, the proposed composite first-order Gauss–Markov autocovariance function shows a significantly better least-squared fit to data compared to the commonly used one-component first-order Gauss–Markov model. A second suggested method is proposed that has the potential of providing robust correlation lengths without the need to fit a model to the computed autocovariance function.  相似文献   

14.
Well-exposed eolian units of the Jurassic system on the Colorado Plateau including the Wingate Sandstone, show prominent color variations throughout southeastern Utah due to diagenetic changes that include precipitation and/or removal of iron oxide, clay, and carbonate cement. Spatially variable characteristic diagenetic changes suggest fluid-rock interactions through the sandstone. Distinctive spectral signatures of diagenetic minerals can be used to map diagenetic mineral variability and possibly fluid-flow pathways. The main objective of this work was to identify characteristic diagenetic minerals, and map their spatial variability from regional to outcrop scale in Wingate Sandstone exposures of Lisbon Valley, Utah. Laboratory reflectance spectroscopy analysis of the samples facilitated identification of diagnostic spectral characteristics of the common diagenetic minerals and their relative abundances between altered and unaltered Wingate Sandstone. Comparison of reflectance spectroscopy with satellite, airborne, and ground-based imaging spectroscopy data provided a method for mapping and evaluating spatial variations of diagenetic minerals. The Feature-oriented Principal Component Selection method was used on Advanced Spaceborne Thermal Emission and Reflection Radiometer data so as to map common mineral groups throughout the broader Wingate Sandstone exposure in the area. The Minimum Noise Fraction and Spectral Angle Mapper methods were applied on airborne HyMap and ground-based hyperspectral imaging data to identify and map mineralogical changes. The satellite and airborne data showed that out of 25.55 km2 total exposure of Wingate Sandstone in Lisbon Valley, unaltered sandstone cover 12.55 km2, and altered sandstone cover 8.90 km2 in the northwest flank and 5.09 km2 in the southern flank of the anticline. The ground-based hyperspectral data demonstrated the ability to identify and map mineral assemblages with two-dimensional lateral continuity on near-vertical rock faces. The results showed that 39.71% of the scanned outcrop is bleached and 20.60% is unbleached while 6.33% remain unclassified, and 33.36% is masked-out as vegetation. The bleached and unbleached areas are alternating throughout the vertical face of the outcrop. The relative hematite abundance observed in the unbleached areas are somewhat symmetrical. This indicates fairly similar reaction intensities along the upper and lower reaction fronts observed in the vertical section. The distribution geometry and relative abundances of diagenetic minerals not only suggest multiple paths of fluid-flow in Wingate Sandstone but also provides some insight about relative direction of past fluid-flow.  相似文献   

15.
文中主要结合南宁市北斗地基增强系统示范区项目实际,对该系统在南宁地区的时间可用性、RTK定位精度(包括加密站间之后效果)、空间可用性等进行了测试。测试结果表明,南宁市北斗地基增强系统满足全天候95%覆盖南宁市厘米级RTK定位精度要求,GPS+BDS组合较单GPS、单BDS在隐蔽环境下的RTK定位时间可用性得到明显提高,参考站点的加密也有助于提高系统的时间可用性。   相似文献   

16.
The development of lasers, new electro-optic light modulation methods, and improved electronic techniques have made possible significant improvements in the range and accuracy of optical distance measurements, thus providing not only improved geodetic tools but also useful techniques for the study of other geophysical, meteorological, and astronomical problems. One of the main limitations, at present, to the accuracy of geodetic measurements is the uncertainty in the average propagation velocity of the radiation due to inhomogeneity of the atmosphere. Accuracies of a few parts in ten million or even better now appear feasible, however, through the use of the dispersion method, in which simultaneous measurements of optical path length at two widely separated wavelengths are used to determine the average refractive index over the path and hence the true geodetic distance. The design of a new instrument based on this method, which utilizes wavelengths of6328 ? and3681 ? and3 GHz polarization modulation of the light, is summarized. Preliminary measurements over a5.3 km path with this instrument have demonstrated a sensitivity of3×10 −9 in detecting changes in optical path length for either wavelength using1-second averaging, and a standard deviation of3×10 −7 in corrected length. The principal remaining sources of error are summarized, as is progress in other laboratories using the dispersion method or other approaches to the problem of refractivity correction.  相似文献   

17.
Assessment of groundwater potential zones using GIS technique   总被引:1,自引:0,他引:1  
A case study was conducted to find out the groundwater potential zones in Kattakulathur block, Tamil Nadu, India with an aerial extent of 360.60 km2. The thematic maps such as geology, geomorphology, soil hydrological group, land use / land cover and drainage map were prepared for the study area. The Digital Elevation Model (DEM) has been generated from the 10 m interval contour lines (which is derived from SOI, Toposheet 1:25000 scale) and obtained the slope (%) of the study area. The groundwater potential zones were obtained by overlaying all the thematic maps in terms of weighted overlay methods using the spatial analysis tool in ArcGIS 9.2. During weighted overlay analysis, the ranking has been given for each individual parameter of each thematic map and weights were assigned according to the influence such as soil −25%, geomorphology − 25%, land use/land cover −25%, slope − 15%, lineament − 5% and drainage / streams − 5% and find out the potential zones in terms of good, moderate and poor zones with the area of 49.70 km2, 261.61 km2 and 46.04 km2 respectively. The potential zone wise study area was overlaid with village boundary map and the village wise groundwater potential zones with three categories such as good, moderate and poor zones were obtained. This GIS based output result was validated by conducting field survey by randomly selecting wells in different villages using GPS instruments. The coordinates of each well location were obtained by GPS and plotted in the GIS platform and it was clearly shown that the well coordinates were exactly seated with the classified zones.  相似文献   

18.
Using high-resolution Google EarthTM images in conjunction with Landsat images, the glaciers and lakes in the Baspa basin are classified to explore the recent changes. A total number of 109 glaciers (187 ± 3.7 km2) are mapped and subsequently classified as compound valley glaciers, simple valley glaciers, cirques, niches, glacieretes and ice aprons. The compound and simple valley glaciers contribute 67.1 ± 1.3% and 19.8 ± 0.3% to the total glacier cover of the basin. Similarly, a total number of 129 glacial lakes (0.360 ± 0.007 km2) are identified. From 1976 to 2011, the compound valley glaciers have lost a small area of 10.3 ± 0.03% at a rate of 0.41 ± 0.002 km2 a-1, whereas the niche glaciers have lost higher area of 40.1 ± 0.001% at a rate of 0.04 ± 0.0001 km2 a-1. Change detection of two benchmark glacial lakes revealed a progressive expansion during recent decades. The Baspa Bamak proglacial lake has expanded from 0.020 ± 0.0004 km2 (2000) to 0.069 ± 0.001 km2 (2011). Due to the complete loss of source ice, another glacial lake has expanded from 0.09 ± 0.001 km2 (1994) to 0.10 ± 0.002 km2 (2011). During the study period, the mean annual temperature that is Tavg, Tmin and Tmax have increased significantly at the 95% confidence level by 1.5 oC (0.070 °C a-1), 1.8 oC (0.076 °C a-1) and 1.6 oC (0.0071 °C a-1) from 1985 to 2008. However, the precipitation has decreased significantly from 1976 and 1985 to 2008.  相似文献   

19.
ABSTRACT

Geospatial information acquired with Unmanned Aerial Vehicles (UAV) provides valuable decision-making support in many different domains, and technological advances coincide with a demand for ever more sophisticated data products. One consequence is a research and development focus on more accurately referenced images and derivatives, which has long been a weakness especially of low to medium cost UAV systems equipped with relatively inexpensive inertial measurement unit (IMU) and Global Navigation Satellite System (GNSS) receivers. This research evaluates the positional accuracy of the real-time kinematics (RTK) GNSS on the DJI Matrice 600 Pro, one of the first available and widely used UAVs with potentially surveying-grade performance. Although a very high positional accuracy of the drone itself of 2 to 3 cm is claimed by DJI, the actual accuracy of the drone RTK for positioning the images and for using it for mapping purposes without additional ground control is not known. To begin with, the actual GNSS RTK position of reference center (the physical point on the antenna) on the drone is not indicated, and uncertainty regarding this also exists among the professional user community. In this study the reference center was determined through a set of experiments using the dual frequency static Leica GNSS with RTK capability. The RTK positioning data from the drone were then used for direct georeferencing, and its results were evaluated. Test flights were carried out over a 70 x 70 m area with an altitude of 40 m above the ground, with a ground sampling distance of 1.3 cm. Evaluated against ground control points, the planimetric accuracy of direct georeferencing for the photogrammetric product ranged between 30 and 60 cm. Analysis of direct georeferencing results showed a time delay of up to 0.28 seconds between the drone GNSS RTK and camera image acquisition affecting direct georeferencing results.  相似文献   

20.
The Global Positioning System,GPS, is widely used for time comparisons between distant laboratories. Over distances of the order of 1000km or less, the system has the capability of 1 to 2ns accuracy. However this requires a relative positioning with errors lower than 30cm. We show that this positioning can be derived from theGPS time comparisons themselves. An example for European laboratories is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号