首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
This paper presents a generalized problem of the restricted three body studied in Abdul Raheem and Singh with the inclusion that the third body is an oblate spheroidal test particle of infinitesimally mass. The positions and stability of the equilibrium point of this problem is studied for a model in which the primaries is the binary system Struve 2398 (Gliese 725) in the constellation Draco; which consist of a pair of radiating oblate stars. It is seen that additional equilibrium points exist on the line collinear with the primaries, for some combined parameters of the problem. Hence, there can be up to five collinear equilibrium points. Two triangular points exist and depends on the oblateness of the participating bodies, radiation pressure of the primaries and a small perturbation in the centrifugal force. The stability analysis ensures that, the collinear equilibrium points are unstable in the linear sense while the triangular points are stable under certain conditions. Illustrative numerical exploration is given to indicate significant improvement of the problem in Abdul Raheem and Singh.  相似文献   

2.
The location and the stability in the linear sense of the libration points in the restricted problem have been studied when there are perturbations in the potentials between the bodies. It is seen that if the perturbing functions satisfy certain conditions, there are five libration points, two triangular and three collinear. It is further observed that the collinear points are unstable and for the triangular points, the range of stability increases or decreases depending upon whetherP> or <0 wherep depends upon the perturbing functions. The theory is verified in the following four cases:
  1. There are no perturbations in the potentials (classical problem).
  2. Only the bigger primary is an oblate spheroid whose axis of symmetry is perpendicular to the plane of relative motion (circular) of the primaries.
  3. Both the primaries are oblate spheroids whose axes of symmetry are perpendicular to the plane of relative motion (circular) of the primaries.
  4. The primaries are spherical in shape and the bigger is a source of radiation.
  相似文献   

3.
Binary systems hosting astrophysical compact objects such as white dwarfs and/or neutron stars provide excellent test beds for studying the impact of the oblateness of the main bodies in the restricted three-body problem (R3BP). The case is investigated when the primary bodies are non-luminous, non-spherical (oblate) bodies and the third body of infinitesimal mass is also an oblate spheroid. The existence of extra solar planets orbiting these systems constitutes a three-body problem which makes them excellent models for this axisymmetric ER3BP. The positions of the equilibrium points are affected by the oblateness parameters of the three-bodies; this is shown for double neutron star binaries. The triangular points are stable for 0<μ<μ c ; where μ is the mass ratio (μ≤1/2) and μ c is the critical mass value influenced by the eccentricity, semi major axis and oblateness factors. The size of the region of stability increases with decreasing values of the oblateness. The oblateness of the system’s bodies does not affect the nature of the stability of the collinear points since they remain unstable. Due to the almost equal masses of the primaries, our study shows that even the triangular points of these systems are unstable.  相似文献   

4.
This paper investigates the motion of an infinitesimal body in the generalized restricted three-body problem. It is generalized in the sense that both primaries are radiating, oblate bodies, together with the effect of gravitational potential from a belt. It derives equations of the motion, locates positions of the equilibrium points and examines their linear stability. It has been found that, in addition to the usual five equilibrium points, there appear two new collinear points L n1, L n2 due to the potential from the belt, and in the presence of all these perturbations, the equilibrium points L 1, L 3 come nearer to the primaries; while L 2, L 4, L 5, L n1 move towards the less massive primary and L n2 moves away from it. The collinear equilibrium points remain unstable, while the triangular points are stable for 0<μ<μ c and unstable for $\mu_{c} \le\mu\le\frac{1}{2}$ , where μ c is the critical mass ratio influenced by the oblateness and radiation of the primaries and potential from the belt, all of which have destabilizing tendency. A practical application of this model could be the study of the motion of a dust particle near the oblate, radiating binary stars systems surrounded by a belt.  相似文献   

5.
This paper investigates the stability of equilibrium points in the restricted three-body problem, in which the masses of the luminous primaries vary isotropically in accordance with the unified Meshcherskii law, and their motion takes place within the framework of the Gylden–Meshcherskii problem. For the autonomized system, it is found that collinear and coplanar points are unstable, while the triangular points are conditionally stable. It is also observed that, in the triangular case, the presence of a constant κ, of a particular integral of the Gylden–Meshcherskii problem, makes the destabilizing tendency of the radiation pressures strong. The stability of equilibrium points varying with time is tested using the Lyapunov Characteristic Numbers (LCN). It is seen that the range of stability or instability depends on the parameter κ. The motion around the equilibrium points L i (i=1,2,…,7) for the restricted three-body problem with variable masses is in general unstable.  相似文献   

6.
This paper studies the existence and stability of equilibrium points under the influence of small perturbations in the Coriolis and the centrifugal forces, together with the non-sphericity of the primaries. The problem is generalized in the sense that the bigger and smaller primaries are respectively triaxial and oblate spheroidal bodies. It is found that the locations of equilibrium points are affected by the non-sphericity of the bodies and the change in the centrifugal force. It is also seen that the triangular points are stable for 0<μ<μ c and unstable for mc £ m < \frac12\mu_{c}\le\mu <\frac{1}{2}, where μ c is the critical mass parameter depending on the above perturbations, triaxiality and oblateness. It is further observed that collinear points remain unstable.  相似文献   

7.
This paper studies the existence and stability of equilibrium points under the influence of small perturbations in the Coriolis and the centrifugal forces, together with the non-sphericity of the primaries. The problem is generalized in the sense that the bigger and smaller primaries are respectively triaxial and oblate spheroidal bodies. It is found that the locations of equilibrium points are affected by the non-sphericity of the bodies and the change in the centrifugal force. It is also seen that the triangular points are stable for 0<μ<μ c and unstable for \(\mu_{c}\le\mu <\frac{1}{2}\), where μ c is the critical mass parameter depending on the above perturbations, triaxiality and oblateness. It is further observed that collinear points remain unstable.  相似文献   

8.
We have investigated an improved version of the classic restricted three-body problem where both primaries are considered oblate and are enclosed by a homogeneous circular planar cluster of material points centered at the mass center of the system. In this dynamical model we have examined the effect on the number and on the linear stability of the equilibrium locations of the small particle due to both, the primaries’ oblateness and the potential created by the circular cluster. We have drawn the zero-velocity surfaces and we have found that in addition to the usual five Lagrangian equilibrium points of the classic restricted three-body problem, there exist two new collinear points L n1,L n2 due to the potential from the circular cluster of material points. Numerical investigations reveal that with the increase in the mass of the circular cluster of material points, L n2 comes nearer to the more massive primary, while L n1 moves away from it. Owing to oblateness of the bodies, L n1 comes nearer to the more massive primary, while L n2 moves towards the less massive primary. The collinear equilibrium points remain unstable, while the triangular points are stable for 0<μ<μ c and unstable for $\mu_{c} \le \mu \le \frac{1}{2}$ , where μ c is the critical mass ratio influenced by oblateness of the primaries and the potential from the circular cluster of material points. The oblateness and the circular cluster of material points have destabilizing tendency.  相似文献   

9.
This paper investigates the stability of triangular equilibrium points (L 4,5) in the elliptic restricted three-body problem (ER3BP), when both oblate primaries emit light energy simultaneously. The positions of the triangular points are seen to shift away from the line joining the primaries than in the classical case on account of the introduction of the eccentricity, semi-major axis, radiation and oblateness factors of both primaries. This is shown for the binary systems Achird, Luyten 726-8, Kruger 60, Alpha Centauri AB and Xi Bootis. We found that motion around these points is conditionally stable with respect to the parameters involved in the system dynamics. The region of stability increases and decreases with variability in eccentricity, oblateness and radiation pressures.  相似文献   

10.
We have studied a modified version of the classical restricted three-body problem (CR3BP) where both primaries are considered as oblate spheroids and are surrounded by a homogeneous circular planar cluster of material points centered at the mass center of the system. In this dynamical model we have examined the effects of oblateness of both primaries up to zonal harmonic J 4; together with gravitational potential from the circular cluster of material points on the existence and linear stability of the triangular equilibrium points. It is found that, the triangular points are stable for 0<μ<μ c and unstable for $\mu_{c} \le \mu \le \frac{1}{2}$ , where μ c is the critical mass ratio affected by the oblateness up to J 4 of the primaries and potential from the circular cluster of material points. The coefficient J 4 has stabilizing tendency, while J 2 and the potential from the circular cluster of material points have destabilizing tendency. A practical application of this model could be the study of the motion of a dust particle near oblate bodies surrounded by a circular cluster of material points.  相似文献   

11.
This study explores the effects of small perturbations in the Coriolis and centrifugal forces, radiation pressures and triaxiality of the two stars (primaries) on the position and stability of an infinitesimal mass (third body) in the framework of the planar circular restricted three-body problem (R3BP). it is observed that the positions of the usual five (three collinear and two triangular) equilibrium points are affected by the radiation, triaxiality and a small perturbation in the centrifugal force, but are unaffected by that of the Coriolis force. The collinear points are found to remain unstable, while the triangular points are seen to be stable for 0<μ<μ c and unstable for $\mu_{c} \le\mu\le\frac{1}{2}$ , where μ c is the critical mass ratio influenced by the small perturbations in the Coriolis and centrifugal forces, radiation and triaxiality. It is also noticed that the former one and all the latter three posses stabilizing and destabilizing behavior respectively. Therefore, the overall effect is that the size of the region of stability decreases with increase in the values of the parameters involved.  相似文献   

12.
In this paper we consider the circular planar restricted problem of three rigid bodiesS i(i=1, 2, 3), two of them are axisymmetric ellipsoids and a third bodyS 3 is a spherical satellite with decreasing mass, under the gravitational forces. The effect of small perturbations in the Coriolis force and the centrifugal forces on the location of equilibrium points has been studied. It is found only in the case when the primaries have equal differences between their respective principal moments of inertial the pointsL 4 andL 5 form nearly equilateral tringles with the primaries. The equilibrium pointsL 1,L 2,L 3 remain collinear an ies on the line joining the primaries.  相似文献   

13.
We have examined the effects of oblateness up to J 4 of the less massive primary and gravitational potential from a circum-binary belt on the linear stability of triangular equilibrium points in the circular restricted three-body problem, when the more massive primary emits electromagnetic radiation impinging on the other bodies of the system. Using analytical and numerical methods, we have found the triangular equilibrium points and examined their linear stability. The triangular equilibrium points move towards the line joining the primaries in the presence of any of these perturbations, except in the presence of oblateness up to J 4 where the points move away from the line joining the primaries. It is observed that the triangular points are stable for 0 < μ < μ c and unstable for \(\mu_{\mathrm{c}} \le \mu \le \frac {1}{2},\) where μ c is the critical mass ratio affected by the oblateness up to J 4 of the less massive primary, electromagnetic radiation of the more massive primary and potential from the belt, all of which have destabilizing tendencies, except the coefficient J4 and the potential from the belt. A practical application of this model could be the study of motion of a dust particle near a radiating star and an oblate body surrounded by a belt.  相似文献   

14.
The existence and linear stability of the planar equilibrium points for photogravitational elliptical restricted three body problem is investigated in this paper. Assuming that the primaries, one of which is radiating are rotating in an elliptical orbit around their common center of mass. The effect of the radiation pressure, forces due to stellar wind and Poynting–Robertson drag on the dust particles are considered. The location of the five equilibrium points are found using analytical methods. It is observed that the collinear equilibrium points L1, L2 and L3 do not lie on the line joining the primaries but are shifted along the y-coordinate. The instability of the libration points due to the presence of the drag forces is demonstrated by Lyapunov’s first method of stability.  相似文献   

15.
The restricted three-body problem in Schwarzschild's gravitational field is analyzed. The existen- ce of the equilibrium points in the orbital plane is discussed and the corresponding positions are established. There are three collinear libration points, and, if they exist, two triangular libration points (situated in the orbital plane of the primaries). If triangular points exist, they may not form equilateral triangles; the triangles are isosceles for equal masses of the primaries, and scalene else.  相似文献   

16.
The existence of equilibrium points and the effect of radiation pressure have been discussed numerically. The problem is generalized by considering bigger primary as a source of radiation and small primary as an oblate spheroid. We have also discussed the Poynting-Robertson (P-R) effect which is caused due to radiation pressure. It is found that the collinear points L 1,L 2,L 3 deviate from the axis joining the two primaries, while the triangular points L 4,L 5 are not symmetrical due to radiation pressure. We have seen that L 1,L 2,L 3 are linearly unstable while L 4,L 5 are conditionally stable in the sense of Lyapunov when P-R effect is not considered. We have found that the effect of radiation pressure reduces the linear stability zones while P-R effect induces an instability in the sense of Lyapunov.  相似文献   

17.
The effect of small perturbations in the coriolis and the centrifugal forces on the location of equilibrium points in the restricted problems of three bodies with variable mass has been studied. It is found that the points L4 and L5 form nearly equilateral triangles with the primaries and the points L1, L2, L3 remain collinear and lie on the line joining the primaries.  相似文献   

18.
The equilibrium points and their linear stability has been discussed in the generalized photogravitational Chermnykh’s problem. The bigger primary is being considered as a source of radiation and small primary as an oblate spheroid. The effect of radiation pressure has been discussed numerically. The collinear points are linearly unstable and triangular points are stable in the sense of Lyapunov stability provided μ<μ Routh =0.0385201. The effect of gravitational potential from the belt is also examined. The mathematical properties of this system are different from the classical restricted three body problem.  相似文献   

19.
This paper deals with the existence of triangular points and their linear stability when the primaries are oblate spheroid and sources of radiation considering the effect of oblateness up to 10?6 of main terms in the restricted three-body problem; we see that the locations of the triangular points are affected by the oblateness of the primaries and solar radiation pressure. It is further seen that these points are stable for 0 ≤ μ ≤μ c ; and unstable for μ c  ≤ μ ≤1/2; where μ c is the critical mass value depending on terms which involve parameters that characterize the oblateness and radiation repulsive forces such that $ \mu_{c} \in (0,1/2) $ ; in addition to this an algorithm has been constructed to calculate the critical mass value.  相似文献   

20.
In this paper we have studied the locations and stability of the Lagrangian equilibrium points in the restricted three-body problem under the assumption that both the primaries are finite straight segments. We have found that the triangular equilibrium points are conditional stable for 0<μ<μ c , and unstable in the range μ c <μ≤1/2, where μ is the mass ratio. The critical mass ratio μ c depends on the lengths of the segments and it is observed that the range of μ c increases when compared with the classical case. The collinear equilibrium points are unstable for all values of μ. We have also studied the regions of motion of the infinitesimal mass. It has been observed that the Jacobian constant decreases when compared with the classical restricted three-body problem for a fixed value of μ and lengths l 1 and l 2 of the segments. Beside this we have found the numerical values for the position of the collinear and triangular equilibrium points in the case of some asteroids systems: (i) 216 Kleopatra-951 Gaspara, (ii) 9 Metis-433 Eros, (iii) 22 Kalliope-243 Ida and checked the linear stability of stationary solutions of these asteroids systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号