首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Fourier analysis on galaxy number counts from redshift data of both the Sloan Digital Sky Survey and the 2dF Galaxy Redshift Survey indicates that galaxies have preferred periodic redshift spacings of Δz= 0.0102, 0.0246, and 0.0448 in the SDSS and strong agreement with the results from the 2dF GRS. The redshift spacings are confirmed by the mass density fluctuations, the power spectrum P(z) and N pairs calculations. Application of the Hubble law results in galaxies preferentially located on co-moving concentric shells with periodic spacings. The combined results from both surveys indicate regular co-moving radial distance spacings of 31.7±1.8 h?1?Mpc, 73.4±5.8 h?1?Mpc and 127±21 h?1? Mpc. The results are consistent with oscillations in the expansion rate of the universe over past epochs.  相似文献   

2.
We calculate the parameters of the two-point correlation function of quasars w(r) = (r c /r) γ on the basis of the SDSS DR3 data. The correlation functions are first determined from projected distances with the use of a special technique for compiling randomized catalogs. Next the parameters of the spatial correlation function are obtained with the assumption of local isotropy. For the quasars with redshifts z = 0.8–2.1, we obtained the estimates γ = 1.76 ± 0.14, r c = 6.60 ± 0.85 h ?1 Mpc in the comoving distance range 2–30 Mpc and γ = 1.90 ± 0.11, r c = 6.95±0.57 h ?1 Mpc in the range 2–50 Mpc. These estimates agree, within the limits of errors, with the estimates obtained for the redshifts 0.4 < z < 2.1. The original catalog shows some deficit of pairs with separations less than 1 Mpc.  相似文献   

3.
A method for detecting voids in the galaxy distribution is presented. Using this method, we have identified 732 voids with a radius of the seed sphere R seed > 4.0h ?1 Mpc in a volume-limited sample of galaxies from the southern part of the 2dFGRS survey. 110 voids with R seed > 9.0h ?1 Mpc have a positive significance. The mean volume of such voids is ~19 × 103 h ?3 Mpc3. Voids with R seed > 9.0h ?1 Mpc occupy 55% of the sample volume. We construct a dependence of the volumes of all the identified voids on their ranks and determine parameters of the galaxy distribution. The dependence of the volume of voids on their rank is consistent with a fractal model (Zipf’s power law) of the galaxy distribution with a fractal dimension D ≈ 2.1 (given the uncertainty in determining the dimension using our method and the results of a correlation analysis) up to scales of ~25h ?1 Mpc with the subsequent transition to homogeneity. The directions of the greatest elongations of voids and their ellipticities (oblateness) are determined from the parameters of equivalent ellipsoids. The directions of the greatest void elongations have an enhanced concentration to the directions perpendicular to the line of sight.  相似文献   

4.
The spatial-temporal distribution of absorption-line systems (ALSs) observed in QSO spectra within the cosmological redshift interval z=0.0–4.3 is investigated on the base of our updated catalog of absorption systems. We consider so-called metallic systems including basically lines of heavy elements. The sample of the data displays regular variations (with amplitudes ∼15–20%) in the z-distribution of ALSs as well as in the η-distribution, where η is a dimensionless line-of-sight comoving distance, relatively to smoother dependences. The η-distribution reveals the periodicity with period Δη=0.036±0.002, which corresponds to a spatial characteristic scale (108±6)h −1 Mpc or (alternatively) a temporal interval (350±20)h −1 Myr for the ΛCDM cosmological model. We discuss the possibility of a spatial interpretation of the results, treating the pattern obtained as a trace of an order imprinted on the galaxy clustering in the early Universe.  相似文献   

5.
The apparatus of correlation gamma function (Γ*(r)) is used to analyze volume-limited samples from the DR4 Main Galaxy Sample of the SDSS survey with the aim of determining the characteristic scales of galaxy clustering. Up to 20h ?1 Mpc (H 0 = 65 km s?1 Mpc?1), the distribution of galaxies is described by a power-law density—distance dependence, Γ*(r) ∝ r , with an index γ ≈ 1.0. A change in the state of clustering (a significant deviation from the power law) was found on a scale of (20–25) h ?1 Mpc. The distribution of SDSS galaxies becomes homogeneous (γ ~ 0) from a scale of ~60h ?1 Mpc. The dependence of γ on the luminosity of galaxies in volume-limited samples was obtained. The power-law index γ increases with decreasing absolute magnitude of sample galaxies M abs. At M abs ~ ?21.4, which corresponds to the characteristic value M r * of the SDSS luminosity function, this dependence exhibits a break followed by a more rapid increase in γ.  相似文献   

6.
The apparatus of a correlation gamma function is used to analyze a sample of 2dFGRS galaxies. We suggest a modified gamma-function algorithm with nonintersecting working spheres, which ensures that the counts are independent at each step. The method of nonintersecting spheres has revealed a change in the regime of clustering (a break of the gamma function) on a scale of 10–16h?1 Mpc (H0 = 65 km s?1 Mpc?1). The standard method yields a scale of 30h?1 Mpc. An artificial distribution is used as an example to show that, in some cases, the modified algorithm is more responsive to a mixture of distributions with various properties than the standard method.  相似文献   

7.
The distributionsf(z) of the redshifts for active galaxies (Seyfert galaxies, radio galaxies, and quasars) have been studied. Some statistically-significant maxima and minima are observed in the distributionsf(z) for these objects. The significance of peaks and gaps increases for the brighter objects, for which the samples are more complete. The clustering of the Seyfert galaxies is significantly different from that of the nearby normal galaxies. The distributionf(z) for the radio galaxies is similar to the analogous distribution for the galaxy clusters. Three of the five peaks in the distributionf(z) for the radio quasars may be caused by the selection effects. Two peaks within the intervalsz (0.5, 0.7) and (1.0, 1.1) are probably real. The corresponding scales of the QSO clustering along the line-of-sight are about 100h –1 Mpc (h is the Hubble constant in the units of 75 km s–1 Mpc–1). The possibility of some global quasi-periodical cycles for the processes of activity is discussed. The period of a cycle for the Seyfert and radio galaxies is about 1×108 years that corresponds to the distances of about 30h –1 Mpc between the shells.  相似文献   

8.
We investigate the distribution and velocity field of galaxies situated in a band of 100 by 20 degrees centered on M87 and oriented along the Local supercluster plane. Our sample amounts 2158 galaxies with radial velocities less than 2000 km s?1. Of them, 1119 galaxies (52%) have distance and peculiar velocity estimates. About 3/4 of early-type galaxies are concentrated within the Virgo cluster core, most of the late-type galaxies in the band locate outside the virial radius. Distribution of gas-rich dwarfs with MHI >M* looks to be insensitive to the Virgo cluster presence. Among 50 galaxy groups in the equatorial supercluster band 6 groups have peculiar velocities about 500–1000 km s?1 comparable with virial motions in rich clusters. The most cryptic case is a flock of nearly 30 galaxies around NGC4278 (Coma I cloud), moving to us with the mean peculiar velocity of ?840 km s?1. This cloud (or filament?) resides at a distance of 16.1 Mpc from us and approximately 5 Mpc away from the Virgo center. Galaxies around Virgo cluster exhibit Virgocentric infall with an amplitude of about 500 km s?1. Assuming the spherically symmetric radial infall, we estimate the radius of the zero-velocity surface to be R0 = (7.0±0.3) Mpc that yields the total mass of Virgo cluster to be (7.4 ± 0.9)× 1014M in tight agreement with its virial mass estimates. We conclude that the Virgo outskirts does not contain significant amounts of dark mater beyond its virial core.  相似文献   

9.
The Devasthal Fast Optical Telescope (DFOT) is a 1.3 meter aperture optical telescope, recently installed at Devasthal, Nainital. We present here the first results using an Hα filter with this telescope on a Wolf–Rayet dwarf galaxy Mrk 996. The instrumental response and the Hα sensitivity obtained with the telescope are (3.3 ± 0.3) × 10???15 erg s?1 cm?2/counts s?1 and 7.5 × 10???17 erg s?1 cm?2 arcsec?2 respectively. The Hα flux and the equivalent width for Mrk 996 are estimated as (132 ± 37) × 10?14 erg s?1 cm?2 and ~96 Å respectively. The star formation rate is estimated as 0.4 ± 0.1M yr?1. Mrk 996 deviates from the radio-FIR correlation known for normal star forming galaxies with a deficiency in its radio continuum. The ionized gas as traced by Hα emission is found in a disk shape which is misaligned with respect to the old stellar disk. This misalignment is indicative of a recent tidal interaction in the galaxy. We believe that galaxy–galaxy tidal interaction is the main cause of the WR phase in Mrk 996.  相似文献   

10.
For z = 0.8–2.2 redshift interval, quasar pair correlation function parameters and β redshift space distortion parameter (connected to large-scale potential flows) values are estimated. We base them on the Main QSO Sample from SDSS Data Release 5. Standard correlation function form ξ(r) = (r 0/r)γ is used for comoving distances r = 2–50 Mpc between quasars. We fix the parameters of the cosmological model: ΩΛ = 1 − Ω M = 0.726 and H 0 = 70.5 km/(s Mpc). We come to the best-fit parameter values of γ = 1.77 ± 0.20, r 0 = 5.52 ± 0.95 Mpc/h for r in the range 2–30 Mpc, γ = 1.91 ± 0.11, r 0 = 5.82 ± 0.61 Mpc for r in the range 2–50 Mpc. The mean β value is β = 0.43 ± 0.22.  相似文献   

11.
The parameters of the cosmological model with cold dark matter and cosmological constant (ΛCDM model) were determined using three-year Wilkinson Microwave Anisotropy Probe observations of cosmic microwave background together with some data on the large-scale structure of the universe. The data cover scales from 1 to 10 000 Mpc. The best-fit ΛCDM model parameters were derived by minimizing the x 2 statistic with the use of the Levenberg-Markquardt approach (ΩΛ = 0.736 ± 0.065, Ωm = 0.238 ± 0.080, Ωb = 0.05 ± 0.011, h = 0.68 ± 0.09, σ8 = 0.73 ± 0.08, and n s = 0.96 ± 0.015). The ΛCDM model with these parameters is shown to agree well with the angular power spectrum of cosmic microwave background temperature fluctuations and with the density perturbation power spectra estimated from spatial distributions of galaxies and rich clusters of galaxies as well as from the statistics of the Ly α absorption lines in the spectra of distant quasars. The accord between the model large-scale structure characteristics and the observed ones is analyzed, and conceivable factors causing appreciable discrepancies between some characteristics are discussed.  相似文献   

12.
VLF whistler mode signals have previously been used to infer radial plasma drifts in the equatorial plane of the plasmasphere and the field-aligned ionosphere-protonosphere coupling fluxes. Physical models of the plasmasphere consisting of O+ and H+ ions along dipole magnetic field lines, and including radial Ez × B drifts, are applied to a mid-latitude flux tube appropriate to whistler mode signals received at Wellington, New Zealand, from the fixed frequency VLF transmitter NLK (18.6 kHz) in Seattle, U.S.A. These models are first shown to provide a good representation of the recorded Doppler shift and group delay data. They are then used to simulate the process of deducing the drifts and fluxes from the recorded data. Provided the initial whistler mode duct latitude and the ionospheric contributions are known, the drifts at the equatorial plane can be estimated to about ± 20 ms?1 (~10–15%), and the two hemisphere ionosphere-protonosphere coupling fluxes to about ± 1012 m?2 s?1 (~40%).  相似文献   

13.
The propagation and modulation of electrons in the heliosphere play an important part in improving our understanding and assessment of the modulation processes. A full three-dimensional numerical model is used to study the modulation of galactic electrons, from Earth into the inner heliosheath, over an energy range from 10 MeV to 30 GeV. The modeling is compared with observations of 6–14 MeV electrons from Voyager 1 and observations at Earth from the PAMELA mission. Computed spectra are shown at different spatial positions. Based on comparison with Voyager 1 observations, a new local interstellar electron spectrum is calculated. We find that it consists of two power-laws: In terms of kinetic energy E, the results give E ?1.5 below ~500 MeV and E ?3.15 at higher energies. Radial intensity profiles are computed also for 12 MeV electrons, including a Jovian source, and compared to the 6–14 MeV observations from Voyager 1. Since the Jovian and galactic electrons can be separated in the model, we calculate the intensity of galactic electrons below 100 MeV at Earth. The highest possible differential flux of galactic electrons at Earth with E=12 MeV is found to have a value of 2.5×10?1 electrons m?2?s?1?sr?1?MeV?1 which is significantly lower (a factor of 3) than the Jovian electron flux at Earth. The model can also reproduce the extraordinary increase of electrons by a factor of 60 at 12 MeV in the inner heliosheath. A lower limit for the local interstellar spectrum at 12 MeV is estimated to have a value of (90±10) electrons m?2?s?1?sr?1?MeV?1.  相似文献   

14.
Based on the catalog of Junkkarinen et al. (1991), we analyze the space-time distribution of absorption systems in quasar spectra at cosmological redshifts z=0–3.7. The z distribution of absorbing matter is shown to have a pattern of alternating maxima (peaks) and minima (dips). Within statistical uncertainty, the positions of such peaks and dips do not depend on the direction of observation. We have found a periodicity in the distribution of absorption systems in the functions ln(1+z) and (1+z)?1/2. We show that the derived sequence of maxima and minima in the space-time distribution of absorbing matter is not a manifestation of the spatial large-scale structure alone, but it is more likely temporal in nature. The most probable source of the putative structure could be an alternation (in the course of cosmological evolution) of pronounced and depressed epochs with a characteristic time interval of 520±160 Myr, depending on the cosmological model chosen.  相似文献   

15.
Abstract— CR chondrites contain metal lumps (>300 μm) either attached to chondrule silicates or apparently isolated in the matrix. Here, laser ablation microanalysis of six metal lumps from a polished thin section of the Acfer 097 CR2 chondrite at 15 μm spatial resolution revealed zoning profiles for the volatile elements Cu and Ga. The mutual diffusivities of Cu and Ga were used to infer T ~ 1473 ± 100 K from the correlation of Cu versus Ga. The cooling rates of the metal lumps were calculated to be 0.5–50 K h?1 for Tp ~ 1473 ± 100 K, with a maximum possible range of 0.1–400 K h?1 for Tp ~ 1200–1800 K, overlapping the range of cooling rates inferred from petrological studies of type I chondrules (10–1000 K h?1). Chondrule textures were established near the peak heating temperatures of chondrules (approximately 1900–2000 K), while the Cu and Ga diffusive profiles were established after solidification (T ~ 1500 K), consistent with nonlinear cooling. Furthermore, one chondrule (N2) has a more complex zoning profile that is modeled as a three‐stage cooling history involving initial cooling at approximately 1 K h?1, followed by mild re‐heating (T ~ 1700 K) that re‐evaporated Cu and Ga from the outer approximately 100 μm of the metal lump and then cooled again at approximately 5 K h?1. The thermal effects of parent body and other preaccretionary heating events on the Cu and Ga zoning profiles are examined. Although CR parent bodies have experienced aqueous alteration, the thermal effects of this process can neither produce nor erase the Cu and Ga diffusive profiles. Thus, metal lumps in CR chondrites record the solid‐state thermal history of chondrules as they travelled away from the chondrule‐forming region.  相似文献   

16.
We have obtained new estimates of the Sun’s distance from the symmetry plane Z and the vertical disk scale height h using currently available data on stellar OB associations, Wolf–Rayet stars, HII regions, and Cepheids. Based on individual determinations, we have calculated the mean Z = ?16 ± 2 pc. Based on the model of a self-gravitating isothermal disk for the density distribution, we have found the following vertical disk scale heights: h = 40.2 ± 2.1 pc from OB associations, h = 47.8 ± 3.9 pc from Wolf–Rayet stars, h = 48.4 ± 2.5 pc from HII regions, and h = 66.2 ± 1.6 pc from Cepheids. We have estimated the surface, Σ = 6 kpc?2, and volume, D(Z ) = 50.6 kpc?3, densities from a sample of OB associations. We have found that there could be ~5000 OB associations in the Galaxy.  相似文献   

17.
We have searched for nearby dwarf galaxies in 27 northern groups with characteristic distances 8–15 Mpc based on the Second Palomar Sky Survey prints. In a total area of about 2000 square degrees, we have found 90 low-surface-brightness objects, more than 60% of which are absent from known catalogs and lists. We have classified most of these objects (~80%) as irregular dwarf systems. The first 21-cm line observations of the new objects with the 100-m Effelsberg radio telescope showed that the typical linear diameters (1–2 kpc), internal motions (~30 km s?1), and hydrogen masses (~2 × 107 M ) of the new galaxies correspond to those expected for the dwarf population of nearby groups.  相似文献   

18.
We review different surveys, in the optical and infrared, conducted in the very young (age 1–8 Myr), nearby (d ~ 350 pc) σ Orionis cluster aimed to characterize the substellar population. We describe spectral characteristics of very low mass stars, brown dwarfs and planetary mass objects in the cluster with spectral types from K7 to T6. We study the spatial distribution of the substellar population detected in a IZJ survey covering an area of 1.12 deg.2 We find that the radial distribution of substellar objects can be well fitted by an exponential law (ρ = ρo e ?r/ro ), with a central density (ρ o ) of 0.26 ± 0.03 objects/arcmin2 and a characteristic radius (r o) of 8.8 arcmin ± 0.6 (equivalent to 0.90 ± 0.06 pc at the distance of the cluster). We discuss the presence of possible inhomogeneities in this distribution due to the existence of subclustering. We also compare the spatial distribution of the substellar population with previously known stars in the cluster. We report the initial mass spectrum in the substellar domain.  相似文献   

19.
We analyze the statistical properties of normal galaxies to be detected in the all-sky survey by the eROSITA X-ray telescope of the Spectrum-X-Gamma observatory. With the current configuration and parameters of the eROSITA telescope, the sensitivity of a 4-year-long all-sky survey will be ≈10?14 erg s?1 in the 0.5–2 keV band. This will allow ~(1.5–2) × 104 normal galaxies with approximately the same contribution of star-forming and elliptical galaxies to be detected. All galaxies of the X-ray survey are expected to enter into the existing far-infrared (IRAS) or near-infrared (2MASS) catalogs; the sample of star-forming galaxies will be approximately equivalent in sensitivity to the sample of star-forming galaxies in the IRAS catalog of infrared sources. Thus, a large homogeneous sample of normal galaxies with measured X-ray, near-infrared, and far-infrared fluxes will be formed. About 90% of the galaxies in the survey are located within ~200–400 Mpc. A typical (most probable) galaxy will have a luminosity log L X ~ 40.5–41.0, will be located at a distance of ~70–90 Mpc, and will be either a star-forming galaxy with a star formation rate of ~20M yr?1 whose X-ray emission is produced by ultraluminous X-ray sources (ULXs) or an elliptical galaxy with amass log M * ~ 11.3 emitting through to a hot interstellar gas. The galaxies within 35 Mpc will collectively contain ~102 ULXs with luminosities log L X > 40, ~80% of whichwill be the only luminous source in the galaxy. Thus, although the angular resolution of the eROSITA telescope is too low for the luminosity function of compact sources in galaxies to be studied in detail, the survey data will allow one to investigate its bright end and, possibly, to impose constraints on the maximum luminosity of ULXs.  相似文献   

20.
Geophysical techniques based on radioactivity measurements are not generally used for exploration of asteroid impact craters. Our studies on the field and laboratory measurements of radioactivity on samples from the Lonar crater, India, show that this technique could be an important method for mapping the distribution of ejecta around the deeply excavated impact craters particularly when these structures are formed on relatively old target rocks/palaeosol. The Lonar ejecta shows ~1.3 times higher γ-ray count rates in the field on average compared to the underlying palaeosol and ~1.9 times higher values over the target basalt while measured by a portable Geiger–Müller pulse counter. The absorbed γ-dose rate (D) of the Lonar samples, computed from 232Th, 238U, and 40K abundances in these samples, also show that the ejecta has distinct bulk dose rates (average ~8.42 nGy h?1) as compared to those of the palaeosol (~18.34 nGy h?1), target basalt (~11.97 nGy h?1), and the impact-melts and spherules (~14 nGy h?1). Therefore, radioactivity mapping of the terrestrial and planetary impact craters by direct methods has importance in mapping ejecta distributions around these structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号