首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three major rhyolite systems in the northeastern Davis and adjacent Barrilla Mountains include lava units that bracketed a large pantelleritic ignimbrite (Gomez Tuff) in rapid eruptions spanning 300,000 years. Extensive silicic lavas formed the shields of the Star Mountain Formation (37.2 Ma-K/Ar; 36.84 Ma 39Ar/40Ar), and the Adobe Canyon Formation (37.1 Ma-K/Ar; 36.51-39Ar/40Ar). The Gomez Tuff (36.6 Ma-K/Ar; 36.74-39Ar/40Ar) blanketed a large region around the 18×24 km diameter Buckhorn caldera, within which it ponded, forming sections up to 500 m thick. Gomez eruption was preceded by pantelleritic rhyolite domes (36.87, 36.91 Ma-39Ar/40Ar), some of which blocked movement of Star Mountain lava flows. Following collapse, the Buckhorn caldera was filled by trachyte lava. Adobe Canyon rhyolite lavas then covered much of the region. Star Mountain Formation (~220 km3) is composed of multiple flows ranging from quartz trachyte to mildly peralkalic rhyolite; three major types form a total of at least six major flows in the northeastern Davis Mountains. Adobe Canyon Formation (~125 km3) contains fewer flows, some up to 180 m thick, of chemically homogenous, mildly peralkalic comendite, extending up to 40 km. Gomez Tuff (~220 km3) may represent the largest known pantellerite. It is typically less than 100 m thick in extra-caldera sections, where it shows a pyroclastic base and top, although interiors are commonly rheomorphic, containing flow banding and ramp structures. Most sections contain one cooling unit; two sections contain a smaller, upper cooling unit. Chemically, the tuff is fairly homogeneous, but is more evolved than early pantelleritic domes. Overall, although Davis Mountains silicic units were generated through open system processes, the pantellerites appear to have evolved by processes dominated by extensive fractional crystallization from parental trachytes similar to that erupted in pre- and post-caldera lavas. Comparison with the Pantelleria volcano suggests that the most likely parental magma for the Buckhorn series is transitional basalt, similar to that erupted in minor, younger Basin and Range volcanism after about 24 Ma. Roughly contemporaneous mafic lavas associated with the Buckhorn caldera appear to have assimilated or mixed with crustal melts, and, generally, may not be regarded as mafic precursors of the Buckhorn silicic rocks, They thus form a false Daly Gap as opposed to the true basalt/trachyte Daly gap of Pantelleria. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This paper constitutes part of a special issue dedicated to Bill Bonnichsen on the petrogenesis and volcanology of anorogenic rhyolites.  相似文献   

2.
New investigations of the geology of Crater Lake National Park necessitate a reinterpretation of the eruptive history of Mount Mazama and of the formation of Crater Lake caldera. Mount Mazama consisted of a glaciated complex of overlapping shields and stratovolcanoes, each of which was probably active for a comparatively short interval. All the Mazama magmas apparently evolved within thermally and compositionally zoned crustal magma reservoirs, which reached their maximum volume and degree of differentiation in the climactic magma chamber 7000 yr B.P.The history displayed in the caldera walls begins with construction of the andesitic Phantom Cone 400,000 yr B.P. Subsequently, at least 6 major centers erupted combinations of mafic andesite, andesite, or dacite before initiation of the Wisconsin Glaciation 75,000 yr B.P. Eruption of andesitic and dacitic lavas from 5 or more discrete centers, as well as an episode of dacitic pyroclastic activity, occurred until 50,000 yr B.P.; by that time, intermediate lava had been erupted at several short-lived vents. Concurrently, and probably during much of the Pleistocene, basaltic to mafic andesitic monogenetic vents built cinder cones and erupted local lava flows low on the flanks of Mount Mazama. Basaltic magma from one of these vents, Forgotten Crater, intercepted the margin of the zoned intermediate to silicic magmatic system and caused eruption of commingled andesitic and dacitic lava along a radial trend sometime between 22,000 and 30,000 yr B.P. Dacitic deposits between 22,000 and 50,000 yr old appear to record emplacement of domes high on the south slope. A line of silicic domes that may be between 22,000 and 30,000 yr old, northeast of and radial to the caldera, and a single dome on the north wall were probably fed by the same developing magma chamber as the dacitic lavas of the Forgotten Crater complex. The dacitic Palisade flow on the northeast wall is 25,000 yr old. These relatively silicic lavas commonly contain traces of hornblende and record early stages in the development of the climatic magma chamber.Some 15,000 to 40,000 yr were apparently needed for development of the climactic magma chamber, which had begun to leak rhyodacitic magma by 7015 ± 45 yr B.P. Four rhyodacitic lava flows and associated tephras were emplaced from an arcuate array of vents north of the summit of Mount Mazama, during a period of 200 yr before the climactic eruption. The climactic eruption began 6845 ± 50 yr B.P. with voluminous airfall deposition from a high column, perhaps because ejection of 4−12 km3 of magma to form the lava flows and tephras depressurized the top of the system to the point where vesiculation at depth could sustain a Plinian column. Ejecta of this phase issued from a single vent north of the main Mazama edifice but within the area in which the caldera later formed. The Wineglass Welded Tuff of Williams (1942) is the proximal featheredge of thicker ash-flow deposits downslope to the north, northeast, and east of Mount Mazama and was deposited during the single-vent phase, after collapse of the high column, by ash flows that followed topographic depressions. Approximately 30 km3 of rhyodacitic magma were expelled before collapse of the roof of the magma chamber and inception of caldera formation ended the single-vent phase. Ash flows of the ensuing ring-vent phase erupted from multiple vents as the caldera collapsed. These ash flows surmounted virtually all topographic barriers, caused significant erosion, and produced voluminous deposits zoned from rhyodacite to mafic andesite. The entire climactic eruption and caldera formation were over before the youngest rhyodacitic lava flow had cooled completely, because all the climactic deposits are cut by fumaroles that originated within the underlying lava, and part of the flow oozed down the caldera wall.A total of 51−59 km3 of magma was ejected in the precursory and climactic eruptions, and 40−52 km3 of Mount Mazama was lost by caldera formation. The spectacular compositional zonation shown by the climactic ejecta — rhyodacite followed by subordinate andesite and mafic andesite — reflects partial emptying of a zoned system, halted when the crystal-rich magma became too viscous for explosive fragmentation. This zonation was probably brought about by convective separation of low-density, evolved magma from underlying mafic magma. Confinement of postclimactic eruptive activity to the caldera attests to continuing existence of the Mazama magmatic system.  相似文献   

3.
Apoyo caldera, near Granada, Nicaragua, was formed by two phases of collapse following explosive eruptions of dacite pumice about 23,000 yr B.P. The caldera sits atop an older volcanic center consisting of lava flows, domes, and ignimbrite (ash-flow tuff). The earliest lavas erupted were compositionally homogeneous basalt flows, which were later intruded by small andesite and dacite flows along a well defined set of N—S-trending regional faults. Collapse of the roof of the magma chamber occurred along near-vertical ring faults during two widely separated eruptions. Field evidence suggests that the climactic eruption sequence opened with a powerful plinian blast, followed by eruption column collapse, which generated a complex sequence of pyroclastic surge and ignimbrite deposits and initiated caldera collapse. A period of quiescence was marked by the eruption of scoria-bearing tuff from the nearby Masaya caldera and the development of a soil horizon. Violent plinian eruptions then resumed from a vent located within the caldera. A second phase of caldera collapse followed, accompanied by the effusion of late-stage andesitic lavas, indicating the presence of an underlying zoned magma chamber. Detailed isopach and isopleth maps of the plinian deposits indicate moderate to great column heights and muzzle velocities compared to other eruptions of similar volume. Mapping of the Apoyo airfall and ignimbrite deposits gives a volume of 17.2 km3 within the 1-mm isopach. Crystal concentration studies show that the true erupted volume was 30.5 km3 (10.7 km3 Dense Rock Equivalent), approximately the volume necessary to fill the caldera. A vent area located in the northeast quadrant of the present caldera lake is deduced for all the silicic pyroclastic eruptions. This vent area is controlled by N—S-trending precaldera faults related to left-lateral motion along the adjacent volcanic segment break. Fractional crystallization of calc-alkaline basaltic magma was the primary differentiation process which led to the intermediate to silicic products erupted at Apoyo. Prior to caldera collapse, highly atypical tholeiitic magmas resembling low-K, high-Ca oceanic ridge basalts were erupted along tension faults peripheral to the magma chamber. The injection of tholeiitic magmas may have contributed to the paroxysmal caldera-forming eruptions.  相似文献   

4.
Geology of the peralkaline volcano at Pantelleria,Strait of Sicily   总被引:1,自引:1,他引:1  
Situated in a submerged continental rift, Pantelleria is a volcanic island with a subaerial eruptive history longer than 300 Ka. Its eruptive behavior, edifice morphologies, and complex, multiunit geologic history are representative of strongly peralkaline centers. It is dominated by the 6-km-wide Cinque Denti caldera, which formed ca. 45 Ka ago during eruption of the Green Tuff, a strongly rheomorphic unit zoned from pantellerite to trachyte and consisting of falls, surges, and pyroclastic flows. Soon after collapse, trachyte lava flows from an intracaldera central vent built a broad cone that compensated isostatically for the volume of the caldera and nearly filled it. Progressive chemical evolution of the chamber between 45 and 18 Ka ago is recorded in the increasing peralkalinity of the youngest lava of the intracaldera trachyte cone and the few lavas erupted northwest of the caldera. Beginning about 18 Ka ago, inflation of the chamber opened old ring fractures and new radial fractures, along which recently differentiated pantellerite constructed more than 25 pumice cones and shields. Continued uplift raised the northwest half of the intracaldera trachyte cone 275 m, creating the island's present summit, Montagna Grande, by trapdoor uplift. Pantellerite erupted along the trapdoor faults and their hingeline, forming numerous pumice cones and agglutinate sheets as well as five lava domes. Degassing and drawdown of the upper pantelleritic part of a compositionally and thermally stratified magma chamber during this 18-3-Ka episode led to entrainment of subjacent, crystal-rich, pantelleritic trachyte magma as crenulate inclusions. Progressive mixing between host and inclusions resulted in a secular decrease in the degree of evolution of the 0.82 km3 of magma erupted during the episode.The 45-Ka-old caldera is nested within the La Vecchia caldera, which is thought to have formed around 114 Ka ago. This older caldera was filled by three widespread welded units erupted 106, 94, and 79 Ka ago. Reactivation of the ring fracture ca. 67 Ka ago is indicated by venting of a large pantellerite centero and a chain of small shields along the ring fault. For each of the two nested calderas, the onset of postcaldera ring-fracture volcanism coincides with a low stand of sea level.Rates of chemical regeneration within the chamber are rapid, the 3% crystallization/Ka of the post-Green Tuff period being typical. Highly evolved pantellerites are rare, however, because intervals between major eruptions (averaging 13–6 Ka during the last 190 Ka) are short. Benmoreites and mugearites are entirely lacking. Fe-Ti-rich alkalic basalts have erupted peripherally along NW-trending lineaments parallel to the enclosing rift but not within the nested calderas, suggesting that felsic magma persists beneath them. The most recent basaltic eruption (in 1891) took place 4 km northwest of Pantelleria, manifesting the long-term northwestward migration of the volcanic focus. These strongly differentiated basalts reflect low-pressure fractional crystallization of partial melts of garnet peridotite that coalesce in small magma reservoirs replenished only infrequently in this continental rift environment.  相似文献   

5.
The 3-month long eruption of Asama volcano in 1783 produced andesitic pumice falls, pyroclastic flows, lava flows, and constructed a cone. It is divided into six episodes on the basis of waxing and waning inferred from records made during the eruption. Episodes 1 to 4 were intermittent Vulcanian or Plinian eruptions, which generated several pumice fall deposits. The frequency and intensity of the eruption increased dramatically in episode 5, which started on 2 August, and culminated in a final phase that began on the night of 4 August, lasting for 15 h. This climactic phase is further divided into two subphases. The first subphase is characterized by generation of a pumice fall, whereas the second one is characterized by abundant pyroclastic flows. Stratigraphic relationships suggest that rapid growth of a cone and the generation of lava flows occurred simultaneously with the generation of both pumice falls and pyroclastic flows. The volumes of the ejecta during the first and second subphases are 0.21 km3 (DRE) and 0.27 km3 (DRE), respectively. The proportions of the different eruptive products are lava: cone: pumice fall=84:11:5 in the first subphase and lava: cone: pyroclastic flow=42:2:56 in the second subphase. The lava flows in this eruption consist of three flow units (L1, L2, and L3) and they characteristically possess abundant broken phenocrysts, and show extensive "welding" texture. These features, as well as ghost pyroclastic textures on the surface, indicate that the lava was a fountain-fed clastogenic lava. A high discharge rate for the lava flow (up to 106 kg/s) may also suggest that the lava was initially explosively ejected from the conduit. The petrology of the juvenile materials indicates binary mixing of an andesitic magma and a crystal-rich dacitic magma. The mixing ratio changed with time; the dacitic component is dominant in the pyroclasts of the first subphase of the climactic phase, while the proportion of the andesitic component increases in the pyroclasts of the second subphase. The compositions of the lava flows vary from one flow unit to another; L1 and L3 have almost identical compositions to those of pyroclasts of the first and second subphases, respectively, while L2 has an intermediate composition, suggesting that the pyroclasts of the first and second subphases were the source of the lava flows, and were partly homogenized during flow. The complex features of this eruption can be explained by rapid deposition of coarse pyroclasts near the vent and the subsequent flowage of clastogenic lavas which were accompanied by a high eruption plume generating pumice falls and/or pyroclastic flows.Editorial responsibility: T. Druitt  相似文献   

6.
The largest Plinian eruption of our era and the latest caldera-forming eruption in the Kuril-Kamchatka region occurred about cal. A.D. 240 from the Ksudach volcano. This catastrophic explosive eruption was similar in type and characteristics to the 1883 Krakatau event. The volume of material ejected was 18–19 km3 (8 km3 DRE), including 15 km3 of tephra fall and 3–4 km3 of pyroclastic flows. The estimated height of eruptive column is 22–30 km. A collapse caldera resulting from this eruption was 4 × 6.5 km in size with a cavity volume of 6.5–7 km3. Tephra fall was deposited to the north of the volcano and reached more than 1000 km. Pyroclastic flows accompanied by ash-cloud pyroclastic surges extended out to 20 km. The eruption was initially phreatomagmatic and then became rhythmic, with each pulse evolving from pumice falls to pyroclastic flows. Erupted products were dominantly rhyodacite throughout the eruption. During the post-caldera stage, when the Shtyubel cone started to form within the caldera, basaltic-andesite and andesite magma began to effuse. The trigger for the eruption may have been an intrusion of mafic magma into the rhyodacite reservoir. The eruption had substantial environmental impact and may have produced a large acidity peak in the Greenland ice sheet.  相似文献   

7.
The 18th historic eruption of Hekla started on 26 February, 2000. It was a short-lived but intense event, emitting basaltic andesitic (55.5 wt% SiO2) pyroclastic fragments and lava. During the course of the eruption, monitoring was done by both instruments and direct observations, together providing unique insight into the current activity of Hekla. During the 12-day eruption, a total of 0.189 km3 DRE of magma was emitted. The eruptive fissure split into five segments. The segments at the highest altitude were active during the first hours, while the segments at lower altitude continued throughout the eruption. The eruption started in a highly explosive manner giving rise to a Subplinian eruptive column and consequent basaltic pyroclastic flows fed by column collapses. After the explosive phase reached its maximum, the eruption went through three more phases, namely fire-fountaining, Strombolian bursts and lava effusion. In this paper, we describe the course of events of the eruption of Hekla and the origin of its magma, and then show that the discharge rate can be linked to different style of eruptive activity, which are controlled by fissure geometry. We also show that the eruption phases observed at Hekla can be linked with inferred magma chamber overpressure prior to the eruption.  相似文献   

8.
A new stratigraphy for bimodal Oligocene flood volcanism that forms the volcanic plateau of northern Yemen is presented based on detailed field observations, petrography and geochemical correlations. The >1 km thick volcanic pile is divided into three phases of volcanism: a main basaltic stage (31 to 29.7 Ma), a main silicic stage (29.7 to 29.5 Ma), and a stage of upper bimodal volcanism (29.5 to 27.7 Ma). Eight large-volume silicic pyroclastic eruptive units are traceable throughout northern Yemen, and some units can be correlated with silicic eruptive units in the Ethiopian Traps and to tephra layers in the Indian Ocean. The silicic units comprise pyroclastic density current and fall deposits and a caldera-collapse breccia, and they display textures that unequivocally identify them as primary pyroclastic deposits: basal vitrophyres, eutaxitic fabrics, glass shards, vitroclastic ash matrices and accretionary lapilli. Individual pyroclastic eruptions have preserved on-land volumes of up to ∼850 km3. The largest units have associated co-ignimbrite plume ash fall deposits with dispersal areas >1×107 km2 and estimated maximum total volumes of up to 5,000 km3, which provide accurate and precisely dated marker horizons that can be used to link litho-, bio- and magnetostratigraphy studies. There is a marked change in eruption style of silicic units with time, from initial large-volume explosive pyroclastic eruptions producing ignimbrites and near-globally distributed tuffs, to smaller volume (<50 km3) mixed effusive-explosive eruptions emplacing silicic lavas intercalated with tuffs and ignimbrites. Although eruption volumes decrease by an order of magnitude from the first stage to the last, eruption intervals within each phase remain broadly similar. These changes may reflect the initiation of continental rifting and the transition from pre-break-up thick, stable crust supporting large-volume magma chambers, to syn-rift actively thinning crust hosting small-volume magma chambers.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

9.
the Neapolitan Yellow Tuff (NYT) (12 ka BP) is considered to be the product of a single eruption. Two different members (A and B) have been identified and can be correlated around the whole of Campi Flegrei. Member A is made up of at least 6 fall units including both ash and lapilli horizons. The basal stratified ash unit (A1) is interpreted to be a phreatoplinian fall deposit, since it shows a widespread dispersal (>1000 km2) and a constant thickness over considerable topography. The absence of many lapilli fall units in proximal and medial areas testifies to the erosive power of the intervening pyroclastic surges. The overlying member B was formed by many pyroclastic flows, radially distributed around Campi Flegrei, that varied widely in their eruptive and emplacement mechanisms. In some of the most proximal exposures coarse scoria and lithic-rich deposits, sometimes welded, have been identified at the base of member B. Isopach and isopleth maps of fall-units, combined with the distribution of the coarse proximal facies, indicate that the eruptive vent was located in the NE area of Campi Flegrei. It is considered that the NYT eruption produced collapse of a caldera approximately 10 km diameter within Campi Flegrei. The caldera rim, located by geological and borehole evidence, is now largely buried by the products of more recent eruptions. Initiation of caldera collapse may have been contemporaneous with the start of the second phase (member B). It is suggested that there was a single vent throughout the eruption rather than the development of multiple or ring vents. Chemical data indicate that different levels of a zoned trachyte-phonolite magma chamber were tapped during the eruption. The minimum volume of the NYT is calculated to be about 50 km3 (DRE), of which 35 km3 (70%) occurs within the caldera.  相似文献   

10.
Young pumice deposits on Nisyros,Greece   总被引:1,自引:1,他引:1  
The island of Nisyros (Aegean Sea) consists of a silicic volcanic sequence upon a base of mafic-andesitic hyaloclastites, lava flows, and breccias. We distinguish two young silicic eruptive cycles each consisting of an explosive phase followed by effusions, and an older silicic complex with major pyroclastic deposits. The caldera that formed after the last plinian eruption is partially filled with dacitic domes. Each of the two youngest plinian pumice falls has an approximate DRE volume of 2–3 km3 and calculated eruption column heights of about 15–20 km. The youngest pumice unit is a fall-surge-flow-surge sequence. Laterally transitional fall and surge facies, as well as distinct polymodal grainsize distributions in the basal fall layer, indicate coeval deposition from a maintained plume and surges. Planar-bedded pumice units on top of the fall layer were deposited from high-energy, dry-steam propelled surges and grade laterally into cross-bedded, finegrained surge deposits. The change from a fall-to a surge/flow-dominated depositional regime coincided with a trend from low-temperature argillitic lithics to high-temperature, epidote-and diopside-bearing lithic clasts, indicating the break-up of a high-temperature geothermal reservoir after the plinian phase. The transition from a maintained plume to a surge/ash flow depositional regime occurred most likely during break-up of the high-temperature geothermal reservoir during chaotic caldera collapse. The upper surge units were possibly erupted through the newly formed ringfracture.  相似文献   

11.
We report on the unusual occurrence of the products of lava fountaining in a Pliocene calc-alkaline rhyolitic monogenetic center from northern Chile. Corral de Coquena is a discontinuous ring of lava located in the moat of La Pacana caldera (23°27' S, 67°23.5' W), part of the Altiplano-Puna Volcanic Complex of the Central Andes. The volcanic structure is composed of a maar-like crater, with an associated pyroclastic (possibly phreatomagmatic) unit, that is overlain by rhyolitic glassy lava ramparts, in which evidence of spatter, agglutinate and clastogenic material is found. Typical explanations for the unusual textures in a rhyolitic lava, such as peralkaline composition, high volatile content, or superheated magma are untenable in this case. We propose that the most likely explanation for this extreme style of rhyolitic volcanism is a combination of moderately high eruption rate and efficient degassing prior to eruption. In the light of reports of several other bodies of fountain-fed silicic magma from the UK, US, and Japan, we propose that Corral de Coquena is a rhyolitic spatter ring superimposed upon a maar-like crater. We further propose that pyroclastic fountaining should be considered an end-member of the spectrum of eruptive styles of calc-alkaline silicic magmas, and that Corral de Coquena is a rare example, preserved because of the hyper-arid climate in the Altiplano-Puna Volcanic Complex.  相似文献   

12.
At Cotopaxi volcano, Ecuador, rhyolitic and andesitic bimodal magmatism has occurred periodically during the past 0.5 Ma. The sequential eruption of rhyolitic (70–75% SiO2) and andesitic (56–62% SiO2) magmas from the same volcanic vent over short time spans and without significant intermingling is characteristic of Cotopaxi’s Holocene behavior. This study documents the eruptive history of Cotopaxi volcano, presenting its stratigraphy and geologic field relations, along with the relevant mineralogical and chemical nature of the eruptive products, in order to determine the temporal and spatial relations of this bimodal alternation. Cotopaxi’s history begins with the Barrancas rhyolite series, dominated by pumiceous ash flows and regional ash falls between 0.4 and 0.5 Ma, which was followed by occasional andesitic activity, the most important being the ample andesitic lava flows (∼4.1 km3) that descended the N and NW sides of the edifice. Following a ∼400 ka long repose without silicic activity, Cotopaxi began a new eruptive phase about 13 ka ago that consisted of seven rhyolitic episodes belonging to the Holocene F and Colorado Canyon series; the onset of each episode occurred at intervals of 300–3,600 years and each produced ash flows and regional tephra falls with DRE volumes of 0.2–3.6 km3. Andesitic tephras and lavas are interbedded in the rhyolite sequence. The Colorado Canyon episode (4,500 years BP) also witnessed dome and sector collapses on Cotopaxi’s NE flank which, with associated ash flows, generated one of the largest cohesive debris flows on record, the Chillos Valley lahar. A thin pumice lapilli fall represents the final rhyolitic outburst which occurred at 2,100 years BP. The pumices of these Holocene rhyolitic eruptions are chemically similar to those of older rhyolites of the Barrancas series, with the exception of the initial eruptive products of the Colorado Canyon series whose chemistry is similar to that of the 211 ka ignimbrite of neighboring Chalupas volcano. Since the Colorado Canyon episode, andesitic magmatism has dominated Cotopaxi’s last 4,400 years, characterized by scoria bomb and lithic-rich pyroclastic flows, infrequent lava flows that reached the base of the cone, andesitic lapilli and ash falls that were carried chiefly to the W, and large debris flows. Andesitic magma emission rates are estimated at 1.65 km3 (DRE)/ka for the period from 4,200 to 2,100 years BP and 1.85 km3 (DRE)/ka for the past 2,100 years, resulting in the present large stratocone.  相似文献   

13.
Large continental silicic magma systems commonly produce voluminous ignimbrites and associated caldera collapse events. Less conspicuous and relatively poorly documented are cases in which silicic magma chambers of similar size to those associated with caldera-forming events produce dominantly effusive eruptions of small-volume rhyolite domes and flows. The Bearhead Rhyolite and associated Peralta Tuff Member in the Jemez volcanic field, New Mexico, represent small-volume eruptions from a large silicic magma system in which no caldera-forming event occurred, and thus may have implications for the genesis and eruption of large volumes of silicic magma and the long-term evolution of continental silicic magma systems.40Ar/39Ar dating reveals that most units mapped as Bearhead Rhyolite and Peralta Tuff (the Main Group) were erupted during an ∼540 ka interval between 7.06 and 6.52 Ma. These rocks define a chemically coherent group of high-silica rhyolites that can be related by simple fractional crystallization models. Preceding the Main Group, minor amounts of unrelated trachydacite and low silica rhyolite were erupted at ∼11–9 and ∼8 Ma, respectively, whereas subsequent to the Main Group minor amounts of unrelated rhyolites were erupted at ∼6.1 and ∼1.5 Ma.The chemical coherency, apparent fractional crystallization-derived geochemical trends, large areal distribution of rhyolite domes (∼200 km2), and presence of a major hydrothermal system support the hypothesis that Main Group magmas were derived from a single, large, shallow magma chamber. The ∼540 ka eruptive interval demands input of heat into the system by replenishment with silicic melts, or basaltic underplating to maintain the Bearhead Rhyolite magma chamber.Although the volatile content of Main Group magmas was within the range of rhyolites from major caldera-forming eruptions such as the Bandelier and Bishop Tuffs, eruptions were smaller volume and dominantly effusive. Bearhead Rhyolite domes occur at the intersection of faults, and are cut by faults, suggesting that the magma chamber was structurally vented preventing volatiles from accumulating to levels high enough to trigger a caldera-forming eruption.  相似文献   

14.
Unusual monotonous intermediate ignimbrites consist of phenocryst-rich dacite that occurs as very large volume (>1000 km3) deposits that lack systematic compositional zonation, comagmatic rhyolite precursors, and underlying plinian beds. They are distinct from countless, usually smaller volume, zoned rhyolite–dacite–andesite deposits that are conventionally believed to have erupted from magma chambers in which thermal and compositional gradients were established because of sidewall crystallization and associated convective fractionation. Despite their great volume, or because of it, monotonous intermediates have received little attention. Documentation of the stratigraphy, composition, and geologic setting of the Lund Tuff – one of four monotonous intermediate tuffs in the middle-Tertiary Great Basin ignimbrite province – provides insight into its unusual origin and, by implication, the origin of other similar monotonous intermediates.The Lund Tuff is a single cooling unit with normal magnetic polarity whose volume likely exceeded 3000 km3. It was emplaced 29.02±0.04 Ma in and around the coeval White Rock caldera which has an unextended north–south diameter of about 50 km. The tuff is monotonous in that its phenocryst assemblage is virtually uniform throughout the deposit: plagioclase>quartz≈hornblende>biotite>Fe–Ti oxides≈sanidine>titanite, zircon, and apatite. However, ratios of phenocrysts vary by as much as an order of magnitude in a manner consistent with progressive crystallization in the pre-eruption chamber. A significant range in whole-rock chemical composition (e.g., 63–71 wt% SiO2) is poorly correlated with phenocryst abundance.These compositional attributes cannot have been caused wholly by winnowing of glass from phenocrysts during eruption, as has been suggested for the monotonous intermediate Fish Canyon Tuff. Pumice fragments are also crystal-rich, and chemically and mineralogically indistinguishable from bulk tuff. We postulate that convective mixing in a sill-like magma chamber precluded development of a zoned chamber with a rhyolitic top or of a zoned pyroclastic deposit. Chemical variations in the Lund Tuff are consistent with equilibrium crystallization of a parental dacitic magma followed by eruptive mixing of compositionally diverse crystals and high-silica rhyolite vitroclasts during evacuation and emplacement. This model contrasts with the more systematic withdrawal from a bottle-shaped chamber in which sidewall crystallization creates a marked vertical compositional gradient and a substantial volume of capping-evolved rhyolite magma. Eruption at exceptionally high discharge rates precluded development of an underlying plinian deposit.The generation of the monotonous intermediate Lund magma and others like it in the middle Tertiary of the western USA reflects an unusually high flux of mantle-derived mafic magma into unusually thick and warm crust above a subducting slab of oceanic lithosphere.  相似文献   

15.
Contemporary accounts of the violent eruption of Vesuvius in 1631 are reviewed, and recorded events are correlated with resulting volcanic deposits. Field study of the deposits in the proximal area revealed the presence of tephra falls, pyroclastic flows and lava, with subordinate surge deposits. A total volume of 1.1 km3 (0.55 km3 DRE) of phono-tephritic to phonolitic magma was ejected during 24 hours.The different magma compositions correspond with a transition from a lower, white, aphyric, highly vesiculated pumice (layer 1) to an upper, gray, crystal-rich, poorly vesiculated pumice (layer 3), showing reverse grading. Isopach and isopleth maps of the tephra-falls have been constructed to determine changes in the eruptive style and temporal evolution of the eruption column which reached a maximum height of 16 to 28 km.The recorded column height variations show a change in the mass discharge rate (8.9 × 106 kg/s to 8.2 × 107 kg/s) and the occurrence of pyroclastic flows during the deposition of the weakly vesiculated, dense pumice of the upper part of layer 3. Pyroclastic flows are crystal-rich and show St. Vincent-type features. The explosive phase demolished the upper part of the pre-existing cone, and debris flows invaded the southern side of the volcano. In the afternoon of December 17, 1631 an outbreak of lava flow from a southern lateral fracture system occurred, and effusion of lava continued up to midnight of December 18. Intermittent steam blasts continued to the end of December, when the eruption ended and Mount Vesuvius entered a solfataric phase. The earthquakes that had marked both the pre-eruptive and eruptive phases, continued, however, well into March 1632.  相似文献   

16.
Peak eruption column heights for the B1, B2, B3 and B4 units of the May 18, 1980 fall deposit from Mount St. Helens have been determined from pumice and lithic clast sizes and models of tephra dispersal. Column heights determined from the fall deposit agree well with those determined by radar measurements. B1 and B2 units were derived from plinian activity between 0900 and about 1215 hrs. B3 was formed by fallout of tephra from plumes that rose off pyroclastic flows from about 1215 to 1630 hrs. A brief return to plinian activity between 1630 and 1715 hrs was marked by a maximum in column height (19 km) during deposition of B4.Variations in magma discharge during the eruption have been reconstructed from modelling of column height during plinian discharge and mass-balance calculations based on the volume of pyroclastic flows and coignimbrite ash. Peak magma discharge occurred during the period 1215–1630 hrs, when pyroclastic flows were generated by collapse of low fountains through the crater breach. Pyroclastic flow deposits and the widely dispersed co-ignimbrite ash account for 77% of the total erupted mass, with only 23% derived from plinian discharge.A shift in eruptive style at noon on May 18 may have been associated with increase in magma discharge and the eruption of silicic andesite mingled with the dominant mafic dacite. Increasing abundance of the silicic andesite during the period of highest magma discharge is consistent with the draw-up and tapping of deeper levels in the magma reservoir, as predicted by theoretical models of magma withdrawal. Return to plinian activity late in the afternoon, when magma discharge decreased, is consistent with theoretical predictions of eruption column behavior. The dominant generation of pyroclastic flows during the May 18 eruption can be attributed to the low bulk volatile content of the magma and the increasing magma discharge that resulted in the transition from a stable, convective eruption column to a collapsing one.  相似文献   

17.
The 161 ka explosive eruption of the Kos Plateau Tuff (KPT) ejected a minimum of 60 km3 of rhyolitic magma, a minor amount of andesitic magma and incorporated more than 3 km3 of vent- and conduit-derived lithic debris. The source formed a caldera south of Kos, in the Aegean Sea, Greece. Textural and lithofacies characteristics of the KPT units are used to infer eruption dynamics and magma chamber processes, including the timing for the onset of catastrophic caldera collapse.The KPT consists of six units: (A) phreatoplinian fallout at the base; (B, C) stratified pyroclastic-density-current deposits; (D, E) volumetrically dominant, massive, non-welded ignimbrites; and (F) stratified pyroclastic-density-current deposits and ash fallout at the top. The ignimbrite units show increases in mass, grain size, abundance of vent- and conduit-derived lithic clasts, and runout of the pyroclastic density currents from source. Ignimbrite formation also corresponds to a change from phreatomagmatic to dry explosive activity. Textural and lithofacies characteristics of the KPT imply that the mass flux (i.e. eruption intensity) increased to the climax when major caldera collapse was initiated and the most voluminous, widespread, lithic-rich and coarsest ignimbrite was produced, followed by a waning period. During the eruption climax, deep basement lithic clasts were ejected, along with andesitic pumice and variably melted and vesiculated co-magmatic granitoid clasts from the magma chamber. Stratigraphic variations in pumice vesicularity and crystal content, provide evidence for variations in the distribution of crystal components and a subsidiary andesitic magma within the KPT magma chamber. The eruption climax culminated in tapping more coarsely crystal-rich magma. Increases in mass flux during the waxing phase is consistent with theoretical models for moderate-volume explosive eruptions that lead to caldera collapse.  相似文献   

18.
During the past 1.2 m.y., a magma chamber of batholithic proportions has developed under the 100 by 30 km Toba Caldera Complex. Four separate eruptions have occurred from vents within the present collapse structure, which formed from eruption of the 2800 km3 Youngest Toba Tuff (YTT) at 74 ka. Eruption of the three older Toba Tuffs alternated from calderas situated in northern and southern portions of the present caldera. The northern caldera apparently developed upon a large andesitic stratovolcano. The calderas associated with the three older tuffs are obscured by caldera collapse and resurgence resulting from eruption of the YTT. Samosir Island and the Uluan Block are two sides of a single resurgent dome that has resurged since eruption of the YTT. Samosir Island is composed of thick YTT caldera fill, whereas the Uluan Block consists mainly of the Oldest Toba Tuff (OTT). In the past 74000 years lava domes have been extruded on Samosir Island and along the caldera's western ring fracture. This part of the ring fracture is the site of the only current activity at Toba: updoming and fumarolic activity. The Toba eruptions document the growth of the laterally continuous magma body which eventually erupted the YTT. Repose periods between the four Toba Tuffs range between 0.34 and 0.43 m.y. and give insights into pluton emplacement and magmatic evolution at Toba.  相似文献   

19.
The intensity of plinian eruptions   总被引:1,自引:2,他引:1  
Peak intensities (magma discharge rate) of 45 Pleistocene and Holocene plinian eruptions have been inferred from lithic dispersal patterns by using a theoretical model of pyroclast fallout from eruption columns. Values range over three orders of magnitude from 1.6 × 106 to 1.1 × 109 kg/s. Magnitudes (total erupted mass) also vary over about three orders of magnitude from 2.0 × 1011 to 6.8 × 1014 kg and include several large ignimbrite-forming events with associated caldera formation. Intensity is found to be positively correlated with the magnitude when total erupted mass (tephra fall, surges and pyroclastic flows) is considered. Initial plinian fall phases with intensities in excess of 2.0 × 108 kg/s typically herald the onset of major pyroclastic flow generation and subsequent caldera collapse. During eruptions of large magnitude, the transition to pyroclastic flows is likely to be the result of high intensity, whereas the generation of pyroclastic flows in small magnitude eruptions may occur more often by reduction of magmatic volatile content or some transient change in magma properties. The correlation between plinian fall intensity and total magnitude suggests that the rate of magma discharge is related to the size of the chamber being tapped. A simple model is presented to account for the variation in intensity by progressive enlargement of conduits and vents and excess pressure at the chamber roof caused by buoyant forces acting on the chamber as it resides in the crust. Both processes are fundamentally linked to the absolute size of the pre-eruption reservoir. The data suggest that sustained eruption column heights (i.e. magma discharge rates) are indicators of eventual eruption magnitude, and perhaps eruptive style, and thus are key parameters to monitor in order to assess the temporal evolution of plinian eruptions.  相似文献   

20.
The Onano explosive eruption of the Latera Volcanic Complex (Vulsini Volcanoes, Quaternary potassic Roman Comagmatic Region, Italy) provides an interesting example of multiple changes of eruptive style that were concomitant with a late phase of collapse of the polygenetic Latera Caldera. This paper reports a reconstruction of the event based on field analysis, laboratory studies of grain size and density of juvenile clasts, and re-interpretation of available subsurface geology data. The Onano eruption took place in a structurally weak area, corresponding to a carbonate substrate high bordered by the pre-existing Latera caldera and Bolsena volcano-tectonic depression, which controlled the ascent and eruption of a shoshonitic-phonotephritic magma through intersecting rim fault systems. Temporal changes of magma vesiculation, fragmentation and discharge rate, and consequent eruptive dynamics, were strongly controlled by pressure evolution in the magma chamber and changing vent geometry. Initially, pumice-rich pyroclastic flows were emplaced, followed by spatter- and lithic-rich flows and fallout from energetic fire-fountaining. The decline of magma pressure due to the partial evacuation of the magma chamber induced trapdoor collapse of the chamber roof, which involved part of the pre-existing caldera and external volcano slopes and eventually led to the present-day caldera. The widening of the vent system and the emplacement of the main pyroclastic flow and associated co-ignimbrite lag breccia marked the eruption climax. A sudden drop of the confining pressure, which is attributed to a pseudo-rigid behaviour of the magma chamber wall rocks during a phase of rapid magma drainage, led to extensive magma vesiculation and fragmentation. The disruption of the magma chamber roof and waning magma pressure in the late eruption stage favoured the explosive interaction of residual magma with groundwater from the confined carbonate aquifer. Pulsating hydrostatic and magma pressures produced alternating hydromagmatic pyroclastic surges, strombolian fallout and spatter flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号