首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2500年来艾比湖的环境演变信息   总被引:22,自引:9,他引:22  
通过对艾比湖缘1,8m浅孔的沉积相和孢粉组合,结合14C测年资料分析。指出近2500年来艾比湖的沉积环境总体是比较稳定的,但由于气候波动引起艾比湖水位曾发生较明显的变化。约在公元前300~400年,是艾比湖面积缩小时期;约公元前300—公元300年,即东周末至西晋,是艾比湖水位较高时期;约公元300—1400年,即东晋至15世纪初,是艾比湖的高水位时期;约15世纪初至17世纪中是艾比湖的水位下降期,但水位比现代仍然高;约17世纪中至19世纪初的小冰期是艾比湖的水位上升期。研究还提供了历史时期湖泊的盐度变化和湖周发生大火的信息。  相似文献   

2.
青海湖水位下降与湖区人为耗水关系的研究   总被引:8,自引:2,他引:8  
彭敏  陈桂琛 《地理科学》1994,14(2):127-135
  相似文献   

3.
青海湖碳酸盐氧同位素环境记录再认识   总被引:1,自引:2,他引:1       下载免费PDF全文
曾承 《盐湖研究》2007,15(1):16-19
青海湖是我国内陆最大的闭流型水体,地处东亚季风和西风的交汇影响区,对区域降水的改变等气候变化反应敏感,其水位变化历史是研究区域季风环境演变极其宝贵和重要的环境档案。青海湖Q14B孔岩芯介壳δ18Oc变化曲线自1991年发表以来,受到国内外同行的广泛关注和继续探讨。依据近年来青海湖气候与环境演变研究的最新研究结果和个人对闭流型湖泊同位素地球化学的认识,对介壳δ18Oc变化曲线进行了重新判读并得出以下结论:14.5~10.5 ka B.P.,青海湖区气候已逐渐从干冷向温湿过渡,季风降水逐渐增加;10.8~10.5 ka B.P.,青海湖处于碳酸盐滩湖环境,湖水深度从几米演变到接近干涸;10.5~9.5 kaB.P.,季风降水增加;9.5~8 ka B.P,湖水位从此前的接近干涸演变到此间的2~8 m,δ18Oc值跌落到一个较低的位置;8~3.5ka B.P,气候条件相对稳定,湖水不断蒸发引起重同位素的富集;3.5~0ka B.P,湖水处于同位素稳定阶段。研究结果还显示,δ18Oc值的短期波动与湖泊水位短期变化关系密切且明显,即水位高低分别对应δ18Oc的低值与高值。δ18Oc值的长期变化与湖泊水位长期变化关系不明显,水位较浅时,二者几乎无关联;水位较深时,水位的长期缓慢下降自然会导致δ18Oc逐渐攀升,而水位的长期缓慢上升也可以伴随δ18Oc逐渐攀升。  相似文献   

4.
青藏高原分布着亚洲大陆最大的湖泊群,其湖泊变化对气候变化响应敏感。基于遥感数据的湖泊面积变化不足以反映外流湖对气候变化的响应,需借助湖泊水量平衡过程分析来进一步研究各补给要素的变化。本文利用2015年4月-11月然乌湖水文气象监测数据,通过建立流量—水位关系,依据连续的水位数据重建了观测期内然乌湖主要径流的水文过程线,并结合SRM模型分析了然乌湖的水量平衡过程及季节变化。结果表明,观测期内然乌湖入湖水量约为18.49×108 m3,其中冰川融水约为10.06×108 m3,冰川融水占然乌湖补给的54%以上,湖面降水、湖面蒸发对湖泊水量平衡过程影响微弱。流域降水对湖泊的补给具有明显的季节特征。春季受西风南支扰动影响,然乌湖地区降水量大,降水是春季然乌湖的主要补给源。夏季和早秋由于气温升高,冰川消融量大,冰川融水是湖泊补给的主控因素。在未来气候变暖的条件下,冰川融水将会在湖泊补给中占据更大比例,并可能使得流域内的冰湖水量增加,产生潜在灾害风险。  相似文献   

5.
We present a unique, versatile piston corer for recovering continuous lake and bog sediment sequences with superior accuracy and quality. The main components of the system and their function are described, with special focus on measures for obtaining long, continuous lake sediment sections up to a current maximum length of 95 m. Examples of lake sediment profiles obtained with this system from different climatic zones are presented.  相似文献   

6.
The multidisciplinary study of sediment cores from Laguna Zoñar (37°29′00′′ N, 4°41′22′′ W, 300 m a.s.l., Andalucía, Spain) provides a detailed record of environmental, climatic and anthropogenic changes in a Mediterranean watershed since Medieval times, and an opportunity to evaluate the lake restoration policies during the last decades. The paleohydrological reconstructions show fluctuating lake levels since the end of the Medieval Warm Period (ca. AD 1300) till the late 19th century and a more acute dry period during the late 19th century – early 20th century, after the end of the Little Ice Age. Human activities have played a significant role in Laguna Zoñar hydrological changes since the late 19th century, when the outlet was drained, and particularly in the mid-20th century (till 1982) when the spring waters feeding the lake were diverted for human use. Two main periods of increased human activities in the watershed are recorded in the sediments. The first started with the Christian conquest and colonization of the Guadalquivir River Valley (13th century) particularly after the fall of the Granada Kingdom (15th century). The second one corresponds to the late 19th century when more land was dedicated to olive cultivation. Intensification of soil erosion occurred in the mid-20th century, after the introduction of farm machinery. The lake was declared a protected area in the early 1980s, when some agricultural practices were restricted, and conservation measures implemented. As a consequence, the lake level increased, and some littoral zones were submerged. Pollen indicators reflect this limnological change during the last few decades. Geochemical indicators show a relative decrease in soil erosion, but not changes in the amount of chemical fertilizers reaching the lake. This study provides an opportunity to evaluate the relative significance of human vs. climatic factors in lake hydrology and watershed changes during historical times. Paleolimnological reconstructions should be taken into account by natural resources agencies to better define lake management policies, and to assess the results of restoration policies.  相似文献   

7.
内蒙古黄旗海湖泊沉积物磁化率特征及其环境意义   总被引:1,自引:0,他引:1  
黄旗海H3剖面是14C测年8.0~2.0 ka BP高湖面时的粉砂质湖相沉积。对H3剖面的全样、77~20 um、20 um三个粒级的磁化率和Ti、Zr元素含量进行了测试,研究结果表明:作为气候环境代用指标,磁化率和Ti、Zr元素含量在20μm粒级样品中具有相同的指示意义。因此,在利用磁化率和地球化学元素作为气候环境代用指标时应当将样品分成不同粒级测试其含量变化,并从中寻找能够反映气候环境变化的真实信息。磁化率参数可以作为反映环境变化的代用指标,两者间有很好的相关关系,湖泊沉积中,高(低)磁化率指示干燥(湿润)的气候,较低(高)的湖面。黄旗海由磁化率反映的事件可以与北大西洋全新世突发气候事件对比,也可以和若尔盖高原泥炭记录的全新世气候事件对比,可能反映了内蒙古高原中南部、青藏高原和北大西洋地区气候变化的内在联系。  相似文献   

8.
郭晓寅  陈发虎  施祺 《地理科学》2000,20(5):422-426
首次利用GIS技术并结合沉积学研究结果,计算全新世两个时段石羊河流域终闾湖泊的面积,建立石羊河流域水热平衡模型,进而恢复全新世两个时期的降水量。  相似文献   

9.
Diatoms, crustaceans, and pollen from sediment cores, in conjunction with dated shoreline tufas provide evidence for lake level and environmental fluctuations of Walker Lake in the late Quaternary. Large and rapid changes of lake chemistry and level apparently resulted from variations in the course and discharge of the Walker River. Paleolimnological evidence suggests that the basin contained a relatively deep and slightly saline to freshwater lake before ca. 30 000 years B.P. During the subsequent drawdown, the Walker River apparently shifted its course and flowed northward into the Carson Sink. As a result, Walker Lake shallowed and became saline. During the full glacial, cooler climates with more effective moisture supported a shallow brine lake in the basin even without the Walker River. As glacial climates waned after 15 000 years ago, Walker Lake became a playa. The Walker River returned to its basin 4700 years ago, filling it with fresh water in a few decades. Thereafter, salinity and depth increased as evaporation concentrated inflowing water, until by 3000 years ago Walker Lake was nearly 90 m deep, according to dated shoreline tufas. Lake levels fluctuated throughout this interval in response to variations in Sierra Nevada precipitation and local evaporation. A drought in the Sierras between 2400 and 2000 years ago reduced Walker Lake to a shallow, brine lake. Climate-controlled refilling of the lake beginning 2000 years ago required about one millennium to bring Walker lake near its historic level.Through time, lake basins in the complex Lake Lahontan system, fill and desiccate in response to climatic, tectonic and geomorphic events. Detailed, multidisciplinary paleolimnologic records from related subbasins are required to separate these processes before lake level history can be reliably used to interpret paleoclimatology.This is the fifth of a series of papers to be published by this journal that was presented in the paleolimnology sessions organized by R. B. Davis and H. Löffler for the XIIth Congress of the International Union for Quaternary Research (INQUA), which took place in Ottawa, Canada in August 1987. Drs. Davis and Löffler are serving as guest editors of this series.  相似文献   

10.
Geomorphic, lithologhic, and stratigraphic field studies as well as pollen data and mineralogical study have been used to propose Pliocene and Pleistocene paleogeographic reconstructions of the El’gygytgyn meteorite crater area. The moment of impact is recorded above the early Pliocene hill denudation plain as a “chaotic horizon” consisting of fragments of impactite rocks. This chaotic horizon lies between layers of late Pliocene alluvial sediments. During the second half of the late Pliocene, the region was tectonically active, when the Anadyr lowland was uplifted causing alluvial sediments to accumulate in the basins to the south of the crater. Regional climatic cooling, which supported the spread of tundra and the formation of permafrost is characteristically to late Pliocene. The 35–40 m high terrace that roughly follows the 530 m contour interval along the Enmyvaam River formed during the middle Pleistocene. This terrace represents the maximum lake level. Erosion and incision of the upper Enmyvaam River increased due to another wave of uplift. Additionally, El’gygytgyn Lake discharge increased causing lake level to begin to drop in the Middle Pleistocene. Cooling continued, which led to the development of herb-dominated arctic tundra. middle and late Pleistocene glaciations did not reach the El’gygytgyn lake region. The 9–11 m high lacustrine terrace was formed around the lake during the late Pleistocene and the 2–3 m high lacustrine terrace formed later during the Holocene. During the last 5000 years, the lake level has continued to drop as the modern coastline developed. This is the third in a series of eleven papers published in this special issue dedicated to initial studies of El’gygytgyn Crater Lake and its catchment in NE Russia. Julie Brigham-Grette, Martin Melles, Pavel Minyuk were guest editors of this special issue.  相似文献   

11.
A small lake on top of Rundfjeld, central Ellesmere Island, at an elevation of approximately 830 m, is frozen to the bottom, and the thickness of lake ice present is at least 5.45 m. Under present climatic conditions the lake does not thaw to the bottom, even during the warmest summers; i.e., 3 to 4 m of ice still floored the deepest part of the lake in mid-August 1987. A radiocarbon age determination via accelerator mass spectrometry (AMS) on a sample of the filamentous green alga Mougeotia sp., recovered from the lake ice at a depth below 4 m, gave 5730±70 BP (TO-530). The date indicates that the lake was probably completely open for an unspecified period of time during the warmest part of the Hypsithermal Interval. This situation is in agreement with data derived from a variety of other sources in Ellesmere Island and adjacent Greenland.  相似文献   

12.
Past water-balance changes in Tibetan lakes are generally attributed to changes in the strength of the summer monsoon. However, the water balance of a lake reflects many different water fluxes, which are controlled by many climatic and hydrologic processes. In this research, weather data and evaporation models are used to determine the climatic cause of a recent water-balance change in Ahung Co, a lake in central Tibet. Between 1995 and 2001, lake level rose at least 20 cm and the lake began to overflow. Results indicate that an increase in summer monsoon precipitation over the lake and drainage basin is responsible for the rise in lake level. Stronger monsoon conditions between 1995 and 2001 also led to decreased lake evaporation and basin evapotranspiration due to increased clouds and humidity. This contributed to the rise in lake level, but to a much smaller extent than the increase in monsoon precipitation. Lake evaporation during the spring and fall was also reduced between 1995 and 2001 due to longer lasting ice cover. Variations in ice cover play a small role in the overall water balance of Ahung Co, however, because the lake area is small compared to the drainage basin area. If these results hold true for the past, water-balance fluctuations inferred from the geochemistry of sediments from Ahung Co provide a record of variations in monsoon precipitation during the Holocene.  相似文献   

13.
Whitefish Lake is a large (11-km-long), shallow, basin in Northwestern Ontario, Canada. The presence of extensive stands of wild rice (Zizania sp.) in combination with high archaeological site density suggests that this lake was ecologically important to regional precontact populations. Collection and analysis of sediment from Whitefish Lake was initiated in 2008 in order to reconstruct changes in lake depth, climate, and vegetation throughout the Holocene. In general, the upper 4.5 m of basinal sediment is composed of ~1.5+ m of varves, which is overlain by a 1.5-m-thick unit with ped-like structures, and ~1.5 m of lacustrine sediment. This sequence documents an early proglacial lake phase, followed by a dry interval before 4,300 (4,900 cal) BP when the lake was significantly shallower, and the establishment of the modern lake during the late Holocene. Plant microfossil (phytolith) evidence indicates that wild rice had colonized the basin ~5,300 (6,100 cal) BP as the lake level rose in response to climate change. Beginning ~4,000 (4,500 cal) BP, changes in elemental data suggest a sharp increase in lake productivity and a switch to anaerobic depositional conditions as the rate of organic sedimentation increased. Recent archaeological research confirms that wild rice was locally processed and consumed during the Middle and Late Woodland periods (~300 BC–AD 1700) although it was evidently growing in the lake well before this time.  相似文献   

14.
湖泊是陆地水资源的重要组成部分,也是局地气候和全球环境变化的敏感指示器之一。湖泊面积增加和水位的变化直接反映了流域内水量平衡变化过程,对区域和全球的气候变化的反映较为敏感。利用线性趋势法对青海湖流域长时间序列气象、水文资料以及流域水热条件和植被生长状况进行分析研究,利用皮尔逊相关系数法计算了各因素与湖水位的相关关系,旨在定量评估区域气象、水文、植被等要素的变化对和湖泊水位变化过程的贡献,开展细致的青海湖水位变化特征的影响因子探讨与分析。结果表明:该流域气候呈现显著的暖湿化趋势,其中流域年降水量总体上呈现弱的增加态势,气候倾向率为10.8 mm·(10 a)-1;流域年平均气温呈显著的升高趋势(P <0.01)。流域年可能蒸散率和年实际蒸散波动较大,年实际蒸散虽有波动但增加趋势非常明显(P <0.01)。流域净第一性生产力(P)平均值为2.86 t DM·hm-2·a-1,呈现显著的增加趋势(P <0.01)。从1961年开始湖水位呈现逐年波动下降的趋势,到2004年水位最低(P<0.01);2004—2015年的近10 a连续上升,上升速率达14.4 m·(10 a)-1P <0.01)。流域气温升高、降水量增加,流域气候呈显著的暖湿化特征,入湖河流径流量也呈现出弱的增加态势;气候暖湿化特征导致流域生物温度增加,植被生长状况得到改善,[WTBX]NPP[WTBZ]显著增加。年降水量增多,河流径流量增大,湖水位抬升;前一年的降水量、≥0 ℃积温、温度、径流量、NPP和蒸发量对湖水位的影响更大;NDVINPP的增加反映流域植被生长状况得到好转,从而增加了流域植被水土保持和水源涵养能力,对湖水位产生间接的影响。降水量、≥0 ℃积温、温度、径流量和NPP对青海湖水位起到正反馈效应,而蒸发量对湖水位主要起负反馈效应,年降水量和年径流量是湖水位变化的最直接的影响因子。  相似文献   

15.
Geochemical data obtained from X-ray fluorescence, physical properties, total organic and inorganic carbon content (TOC/TIC), and diatom analysis from a 6.61-m-long sedimentary sequence near the modern northern shore of Lake Zirahuen (101° 44′ W, 19° 26′ N, 2000 m asl) provide a reconstruction of lacustrine sedimentation during the last approximately 17 cal kyr BP. A time scale is based on ten AMS 14C dates and by tephra layers from Jorullo (AD 1759-1764) and Paricutin (AD 1943-1952) volcanoes. The multiproxy analyses presented in this study reveal abrupt changes in environmental and climatic conditions. The results are compared to the paleo-record from nearby Lake Patzcuaro. Dry conditions and low lake level are inferred in the late Pleistocene until ca. 15 cal kyr BP, followed by a slight but sustained increase in lake level, as well as a higher productivity, peaking at ca. 12.1 cal kyr BP. This interpretation is consistent with several regional climatic reconstructions in central Mexico, but it is in opposition to record from Lake Patzcuaro. A sediment hiatus bracketed between 12.1 and 7.2 cal kyr BP suggests a drop in lake level in response to a dry early Holocene. A deeper, more eutrophic and turbid lake is recorded after 7.2 cal kyr BP. Lake level at the coring site during the mid Holocene is considered the highest for the past 17 cal kyr BP. The emplacement of the La Magueyera lava flows (LMLF), dated by thermoluminiscence at 6560 ± 950 year, may have reduced basin volume and contributed to the relative deepening of the lake after 7.2 cal kyr BP. The late Holocene (after 3.9 cal kyr BP) climate is characterized by high instability. Extensive erosion, lower lake levels, dry conditions and pulses of high sediment influx due to high rainfall are inferred for this time. Further decrease in lake level and increased erosion are recorded after ca. AD 1050, at the peak of Purepechas occupation (AD 1300–1521), and until the eighteenth century. Few lacustrine records extend back to the late Pleistocene—early Holocene in central Mexico; this paper contributes to the understanding of late Pleistocene-Holocene paleoclimates in this region.  相似文献   

16.
17.
The Berriasian Huérteles Alloformation is the fourth alloformation in which the Tithonian-Berriasian Depositional Sequence is divided in Eastern Cameros Basin. This depositional sequence can be recognized in several basins East of The Iberian Plate. Huérteles Afm. was deposited in a trough with a NW-SE orientation and strong subsidence. In this trough the sedimentary record exceeds 1000 m in thickness for this alloformation. The Basin shows a marked asymmetry, with the highly subsident trough displaced to the NE.The sedimentary system consists of a playa complex, in which several subenvironments can be distinguished. The proximal or bajada environments were located to the west. The terrigenous materials, that constitute the sediments of these areas, come from the erosion of materials previously deposited in the Basin. To the East the environments were mainly saline lakes, that received siliciclastic materials from the Northeast, where the main border fault system was situated.The vertical sequence in the central part of the Basin (where a perennial saline lake was located) shows a marked cyclicity, with primary sequences about 10 m thick. These consist of laminated limestones in their lower part, and carbonate breccias at the top. These primary sequences represent the filling of a lake, with relatively dilute waters at first, passing gradually into a saline lake. This reflects a transition from humid to arid climatic periods.Additionally there is another cyclicity of a higher rank indicated by sequences about 300 m thick These major sequences are formed by primary sequences. The minor primary sequences are mainly composed of laminated limestones in the lower part of the major sequences, and the carbonate breccias dominate in the upper part of the major sequences. These major sequences may indicate longer periods of climatic variation, that varied from a relatively humid to an arid climate. This sequential arrangement was accentuated by the strong tectonic activity during sedimentation, that produced large slump structures where evaporites were more abundant.This is the sixth paper in a series of papers published in this issue on Climatic and Tectonic Rhythms in Lake Deposits.  相似文献   

18.
藏南沉错沉积物的粒度特征及其古环境意义   总被引:35,自引:2,他引:35  
通过对藏南沉错粒度参数的分析 ,并结合与其它环境代用指标的比较 ,可以将本地区约 1 40 0年来环境变化分为四个阶段 :约 5 93A.D.~ 82 1 A.D.是湖泊水位相对较高而且变化频繁的时期 ,反映了波动较大且比较湿润的气候状况 ;约 82 1 A.D.~ 1 343A.D.是一个较长的气候相对稳定时期 ,粒度指示该阶段湖泊扩张 ,湖面升高 ,反映了湿润的气候状况 ;约 1 343A.D.~ 1 892 A.D.是一个气候波动十分剧烈且频繁的时期 ,其中约 1 60 2 A.D.前后可能出现了一次短时间的流水突然增加 ,而在这前后各有一个浅水阶段 ( 1 343A.D.~ 1 5 1 2 A.D.和 1 670 A.D.~ 1 892 A.D.) ,反映了湖泊补给程度的减弱 ;1 892 A.D.~1 998A.D.是一个相对稳定的时期 ,湖面变化不太明显 ,而 1 892 A.D.前后具有一个明显的补给水动力减弱的变化。粒度参数所反映的湖面波动与环境变化得到了其他环境代用指标较好的支持。  相似文献   

19.
A study on two closed salt lake basins, Tal Chapar and Parihara in the eastern margin of the Thar Desert, Rajasthan, was carried out to unravel late Quaternary geomorphic evolution of these saline lakes. Both lakes are elliptical in shape bordered by stabilised dunes, and are oriented in a NE-SW direction, i.e., in the direction of the prevailing summer monsoon wind. Both lakes have been formed in the wind-shadow zones of isolated hills of Precambrian quartzite. Our study indicates that the late Quaternary sediments in the lakes began with the cyclic deposition of laminated fine silt layers (0.5 m thick), rich in organic matter, alternating with ripple cross-bedded sand layers (each ∼1.5–2 m thick). Sand layers that are moderately sorted are separated by laminated silt-clay layers with gypsum/calcite and this unit occurs in the upper most 4 m sequence in deeper sections. The presence of gypsum crystals within the laminated sediments suggests a high concentration of Ca in the inflowing water. At Parihara Lake the organic carbon-rich sediments at 95 cm depth was dated to 7,375 + 155/−150 year BP. At Tal Chapar radiocarbon dates of 7,190 + 155/−150 and 9,903 + 360/−350 was obtained from the sediments rich in organic carbon occurring at a depth of 1.35 m and 1.80 m, respectively. The study reveals strong hydrologic oscillations during the past ∼14,000 year BP (13,090 + 310/−300 year BP). Quaternary geomorphic processes, especially the strong aeolian processes during dry climatic phases, played a major role in the formation of the lake basins, as well as the fringing linear dunes. Geochemical and mineralogical analyses of the lacustrine sediments, supported by radiocarbon dates indicate the existence of an ephemeral lake earlier than ∼13,000 year BP as sediments began to be deposited in a lacustrine environment implying sustained runoff in the catchments. A freshwater lake formed between 9,000 year and 7,000 year BP. The lake dried periodically and this strong fluctuating regime continued until about ∼7,000 year BP. Mid-Holocene was wet and this was possibly due to higher winter rains A saline lake existed between 6,000 year and 1,300 year BP and finally present day semi arid conditions set in since 1,200 year BP. Remnants of a habitation site (hearth and charred bones) on stabilised dune at Devani near Tal Chapar were dated to 240 ± 120 year, while that at Gopalpura was dated to 335 ± 90 year. These historical sites on stabilised dunes were, according to the local accounts, settlements of people who used the lake brine for manufacturing salt.  相似文献   

20.
Variations in pollen assemblages and in physical and chemical composition of a dated sediment record from the small Lake Haubi in north central Tanzania, reveal lake level fluctuations since the late 19th century. Lake Haubi changed from a seasonally inundated swamp to a lake in the beginning of the 20th century. With the exception of 1942-44, when it dried out completely, it remained water filled until 1994 when it again turned into a swamp. The lake level fluctuations in Lake Haubi are largely in phase with fluctuations of the larger East African lakes levels during the 20th century, and are therefore interpreted as being mainly controlled by regional climatic fluctuations. However, the initial formation of Lake Haubi at the turn of the century was likely due to local catchment specific causes, e.g. changes in land use, as the rapid increase in the water level at this time does not correspond to other lake level records from the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号