首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
This paper reports a new 1° × 1° global thermal model for the continental lithosphere (TC1). Geotherms for continental terranes of different ages (> 3.6 Ga to present) constrained by reliable data on borehole heat flow measurements (Artemieva, I.M., Mooney, W.D. 2001. Thermal structure and evolution of Precambrian lithosphere: a global study. J. Geophys. Res 106, 16387–16414.), are statistically analyzed as a function of age and are used to estimate lithospheric temperatures in continental regions with no or low-quality heat flow data (ca. 60% of the continents). These data are supplemented by cratonic geotherms based on electromagnetic and xenolith data; the latter indicate the existence of Archean cratons with two characteristic thicknesses, ca. 200 and > 250 km. A map of tectono-thermal ages of lithospheric terranes complied for the continents on a 1° × 1° grid and combined with the statistical age relationship of continental geotherms (z = 0.04  t + 93.6, where z is lithospheric thermal thickness in km and t is age in Ma) formed the basis for a new global thermal model of the continental lithosphere (TC1). The TC1 model is presented by a set of maps, which show significant thermal heterogeneity within continental upper mantle, with the strongest lateral temperature variations (as large as 800 °C) in the shallow mantle. A map of the depth to a 550 °C isotherm (Curie isotherm for magnetite) in continental upper mantle is presented as a proxy to the thickness of the magnetic crust; the same map provides a rough estimate of elastic thickness of old (> 200 Ma) continental lithosphere, in which flexural rigidity is dominated by olivine rheology of the mantle.Statistical analysis of continental geotherms reveals that thick (> 250 km) lithosphere is restricted solely to young Archean terranes (3.0–2.6 Ga), while in old Archean cratons (3.6–3.0 Ga) lithospheric roots do not extend deeper than 200–220 km. It is proposed that the former were formed by tectonic stacking and underplating during paleocollision of continental nuclei; it is likely that such exceptionally thick lithospheric roots have a limited lateral extent and are restricted to paleoterrane boundaries. This conclusion is supported by an analysis of the growth rate of the lithosphere since the Archean, which does not reveal a peak in lithospheric volume at 2.7–2.6 Ga as expected from growth curves for juvenile crust.A pronounced peak in the rate of lithospheric growth (10–18 km3/year) at 2.1–1.7 Ga (as compared to 5–8 km3/year in the Archean) well correlates with a peak in the growth of juvenile crust and with a consequent global extraction of massif-type anorthosites. It is proposed that large-scale variations in lithospheric thickness at cratonic margins and at paleoterrane boundaries controlled anorogenic magmatism. In particular, mid-Proterozoic anorogenic magmatism at the cratonic margins was caused by edge-driven convection triggered by a fast growth of the lithospheric mantle at 2.1–1.7 Ga. Belts of anorogenic magmatism within cratonic interiors can be caused by a deflection of mantle heat by a locally thickened lithosphere at paleosutures and, thus, can be surface manifestations of exceptionally thick lithospheric roots. The present volume of continental lithosphere as estimated from the new global map of lithospheric thermal thickness is 27.8 (± 7.0) × 109 km3 (excluding submerged terranes with continental crust); preserved continental crust comprises ca. 7.7 × 109 km3. About 50% of the present continental lithosphere existed by 1.8 Ga.  相似文献   

2.
Oceanic arcs are commonly cited as primary building blocks of continents, yet modern oceanic arcs are mostly subducted. Also, lithosphere buoyancy considerations show that oceanic arcs (even those with a felsic component) should readily subduct. With the exception of the Arabian–Nubian orogen, terranes in post-Archean accretionary orogens comprise < 10% of accreted oceanic arcs, whereas continental arcs compose 40–80% of these orogens. Nd and Hf isotopic data suggest that accretionary orogens include 40–65% juvenile crustal components, with most of these (> 50%) produced in continental arcs.Felsic igneous rocks in oceanic arcs are depleted in incompatible elements compared to average continental crust and to felsic igneous rocks from continental arcs. They have lower Th/Yb, Nb/Yb, Sr/Y and La/Yb ratios, reflecting shallow mantle sources in which garnet did not exist in the restite during melting. The bottom line of these geochemical differences is that post-Archean continental crust does not begin life in oceanic arcs. On the other hand, the remarkable similarity of incompatible element distributions in granitoids and felsic volcanics from continental arcs is consistent with continental crust being produced in continental arcs.During the Archean, however, oceanic arcs may have been thicker due to higher degrees of melting in the mantle, and oceanic lithosphere would be more buoyant. These arcs may have accreted to each other and to oceanic plateaus, a process that eventually led to the production of Archean continental crust. After the Archean, oceanic crust was thinner due to cooling of the mantle and less melt production at ocean ridges, hence, oceanic lithosphere is more subductable. Widespread propagation of plate tectonics in the late Archean may have led not only to rapid production of continental crust, but to a change in the primary site of production of continental crust, from accreted oceanic arcs and oceanic plateaus in the Archean to primarily continental arcs thereafter.  相似文献   

3.
Miguel Muoz 《Tectonophysics》2005,395(1-2):41-65
The Wadati–Benioff Zone (WBZ) is an approximate plane defined by earthquakes hypocentres observed in convergent plate boundaries and that usually dips at angles greater than 30°. In some areas of the Andes, where there are gaps in volcanic activity, and where heat flow is abnormally low, this plane in most studies has nearly horizontal dip at a depth of about 75–100 km, and it has been associated to flat subduction of the oceanic lithosphere. This situation has been taken as the present-day analogue of the Laramide orogeny of western North America for which a ‘flat-slab’ episode has been proposed in the past years. In this work, the observed low heat flow in areas of the Andes is assumed to be due to low radiogenic heat generation in geologically old and allochthonous terranes constituting large regions of western South America. On the basis of geotherms obtained for areas of Ecuador, Peru, Chile and Argentina, and of rheological results describing the partition between brittle and ductile regimes, the seismic activity observed both in the lower crust and at depths of about 75–100 km is thoroughly explained. At these depths, earthquakes occur within the subcontinental upper mantle, and then there is no flat WBZ associated to subduction of the oceanic lithosphere. There is evidence from recent seismological observations that the real WBZ lies not horizontally and deeper in the tectonosphere.  相似文献   

4.
Three linear zones of active andesite volcanism are present in the Andes — a northern zone (5°N–2°S) in Colombia and Ecuador, a central zone (16°S–28°S) largely in south Peru and north Chile and a southern zone (33°S–52°S) largely in south Chile. The northern zone is characterized by basaltic andesites, the central zone by andesite—dacite lavas and ignimbrites and the southern zone by high-alumina basalts, basaltic andesites and andesites. Shoshonites and volcanic rocks of the alkali basalt—trachyte association occur at scattered localities east of the active volcanic chain,The northern and central volcanic zones are 140 km above an eastward-dipping Benioff zone, while the southern zone lies only 90 km above a Benioff zone. Continental crust is ca. 70 km in thickness below the central zone, but is 30–45 km thick below northern and southern volcanic zones. The correlation between volcanic products and their structural setting is supported by trace element and isotope data. The central zone andesite lavas have higher Si, K, Rb, Sr and Ba, and higher initial Sr isotope ratios than the northern or southern zone lavas. The southern zone high-alumina basalts have lower Ce/Yb ratios than volcanics from the other zones. In addition, the central zone andesite lavas show a well-defined eastward increase in K, Rb and Ba and a decrease in Sr.Andean andesite magmas are a result of a complex interplay of partial melting, fractional crystallization and “contamination” processes at mantle depths, and contamination and fractional crystallization in the crust. Variations in andesite composition across the central Andean chain reflect a diminishing degree of partial melting or an increase in fractional crystallization or an increase in “contamination” passing eastwards. Variations along the Andean chain indicate a significant crustal contribution for andesites in the central zone, and indicate that the high-alumina basalts and basaltic andesites of the southern zone are from a shallower mantle source region than other volcanic rocks. The dacite-rhyolite ignimbrites of the central zone share a common source with the andesites and might result from fractional crystallization of andesite magma during uprise through thick continental crust. The occurrence of shoshonites and alkali basalts eat of the active volcanic chain is attributed to partial melting of mantle peridotite distant from the subduction zone.  相似文献   

5.
The Rhine Rift System (RRS) forms part of the European Cenozoic Rift System (ECRIS) and transects the Variscan Orogen, Permo-Carboniferous troughs and Late Permian to Mesozoic thermal sag basins. Crustal and lithospheric thicknesses range in the RRS area between 24–36 km and 50–120 km, respectively. We discuss processes controlling the transformation of the orogenically destabilised Variscan lithosphere into an end-Mesozoic stabilised cratonic lithosphere, as well as its renewed destabilisation during the Cenozoic development of ECRIS. By end-Westphalian times, the major sutures of the Variscan Orogen were associated with 45–60 km deep crustal roots. During the Stephanian-Early Permian, regional exhumation of the Variscides was controlled by their wrench deformation, detachment of subducted lithospheric slabs, asthenospheric upwelling and thermal thinning of the mantle-lithosphere. By late Early Permian times, when asthenospheric temperatures returned to ambient levels, lithospheric thicknesses ranged between 40 km and 80 km, whilst the thickness of the crust was reduced to 28–35 km in response to its regional erosional and local tectonic unroofing and the interaction of mantle-derived melts with its basal parts. Re-equilibration of the lithosphere-asthenosphere system governed the subsidence of Late Permian-Mesozoic thermal sag basins that covered much of the RRS area. By end-Cretaceous times, lithospheric thicknesses had increased to 100–120 km. Paleocene mantle plumes caused renewed thermal weakening of the lithosphere. Starting in the late Eocene, ECRIS evolved in the Pyrenean and Alpine foreland by passive rifting under a collision-related north-directed compressional stress field. Following end-Oligocene consolidation of the Pyrenees, west- and northwest-directed stresses originating in the Alps controlled further development of ECRIS. The RRS remained active until the Present, whilst the southern branch of ECRIS aborted in the early Miocene. Extensional strain across ECRIS amounts to some 7 km. Plume-related thermal thinning of the lithosphere underlies uplift of the Rhenish Massif and Massif Central. Lithospheric folding controlled uplift of the Vosges-Black Forest Arch.  相似文献   

6.
Robert Kerrich  Ali Polat   《Tectonophysics》2006,415(1-4):141-165
Mantle convection and plate tectonics are one system, because oceanic plates are cold upper thermal boundary layers of the convection cells. As a corollary, Phanerozoic-style of plate tectonics or more likely a different version of it (i.e. a larger number of slowly moving plates, or similar number of faster plates) is expected to have operated in the hotter, vigorously convecting early Earth. Despite the recent advances in understanding the origin of Archean greenstone–granitoid terranes, the question regarding the operation of plate tectonics in the early Earth remains still controversial. Numerical model outputs for the Archean Earth range from predominantly shallow to flat subduction between 4.0 and 2.5 Ga and well-established steep subduction since 2.5 Ga [Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937–940], to no plate tectonics but rather foundering of 1000 km sectors of basaltic crust, then “resurfaced” by upper asthenospheric mantle basaltic melts that generate the observed duality of basalts and tonalities [van Thienen, P., van den Berg, A.P., Vlaar, N.J., 2004a. Production and recycling of oceanic crust in the early earth. Tectonophysics 386, 41–65; van Thienen, P., Van den Berg, A.P., Vlaar, N.J., 2004b. On the formation of continental silicic melts in thermochemical mantle convection models: implications for early Earth. Tectonophysics 394, 111–124]. These model outputs can be tested against the geological record. Greenstone belt volcanics are composites of komatiite–basalt plateau sequences erupted from deep mantle plumes and bimodal basalt–dacite sequences having the geochemical signatures of convergent margins; i.e. horizontally imbricated plateau and island arc crust. Greenstone belts from 3.8 to 2.5 Ga include volcanic types reported from Cenozoic convergent margins including: boninites; arc picrites; and the association of adakites–Mg andesites- and Nb-enriched basalts.Archean cratons were intruded by voluminous norites from the Neoarchean through Proterozoic; norites are accounted for by melting of subduction metasomatized Archean continental lithospheric mantle (CLM). Deep CLM defines Archean cratons; it extends to  350 km, includes the diamond facies, and xenoliths signify a composition of the buoyant, refractory, residue of plume melting, a natural consequence of imbricated plateau-arc crust. Voluminous tonalites of Archean greenstone–granitoid terranes show a secular trend of increasing Mg#, Cr, Ni consistent with slab melts hybridizing with thicker mantle wedge as subduction angle steepens. Strike-slip faults of 1000 km scale; diachronous accretion of distinct tectonostratigraphic terranes; and broad Cordilleran-type orogens featuring multiple sutures, and oceanward migration of arcs, in the Archean Superior and Yilgarn cratons, are in common with the Altaid and Phanerozoic Cordilleran orogens. There is increasing geological evidence of the supercontinent cycle operating back to  2.7 Ga: Kenorland or Ur  2.7–2.4 Ga; Columbia  1.6–1.4 Ga; Rodinia  1100–750 Ma; and Pangea  230 Ma. High-resolution seismic reflection profiling of Archean terranes reveals a prevalence of low angle structures, and evidence for paleo-subduction zones. Collectively, the geological–geochemical–seismic records endorse the operation of plate tectonics since the early Archean.  相似文献   

7.
Kent C. Condie   《Lithos》2005,79(3-4):491-504
In terms of high field strength element ratios Nb/Th, Zr/Nb, Nb/Y and Zr/Y, most basalts from non-arc type Archean greenstones are similar to oceanic plateau basalts, suggestive of mantle plume sources. A large number of these basalts have ratios similar to primitive mantle composition. Perhaps the Archean mantle was less fractionated than at present and “primitive mantle” comprised much of the deep mantle and made a significant contribution to mantle plumes. The near absence of Archean greenstone basalts similar to NMORB in composition is also consistent with a relatively unfractionated mantle in which a shallow depleted source (DM) was volumetrically insignificant. The element ratios in basalts also indicate the existence of recycled components (HIMU, EM1, EM2) in the mantle by the Late Archean. This suggests that oceanic lithosphere was recycled into the deep mantle and became incorporated in some mantle plumes by the Late Archean. High field strength element ratios also indicate an important contribution of continental crust or/and subcontinental lithosphere to some non-arc Archean greenstone basalts. This implies that at least thin continental lithosphere was relatively widespread in the Archean.  相似文献   

8.
D. Arcay  M.-P. Doin  E. Tric  R. Bousquet   《Tectonophysics》2007,441(1-4):27-45
At continental subduction initiation, the continental crust buoyancy may induce, first, a convergence slowdown, and second, a compressive stress increase that could lead to the forearc lithosphere rupture. Both processes could influence the slab surface PT conditions, favoring on one side crust partial melting or on the opposite the formation of ultra-high pressure/low temperature (UHP-LT) mineral. We quantify these two effects by performing numerical simulations of subduction. Water transfers are computed as a function of slab dehydration/overlying mantle hydration reactions, and a strength decrease is imposed for hydrated mantle rocks. The model starts with an old oceanic plate ( 100 Ma) subducting for 145.5 Myr with a 5 cm/yr convergence rate. The arc lithosphere is thermally thinned between 100 km and 310 km away from the trench, due to small-scale convection occuring in the water-saturated mantle wedge. We test the influence of convergence slowdown by carrying on subduction with a decreased convergence rate (≤ 2 cm/yr). Surprisingly, the subduction slowdown yields not only a strong slab warming at great depth (> 80 km), but also a significant cooling of the forearc lithosphere at shallower depth. The convergence slowdown increases the subducted crust temperature at 90 km depth to 705 ± 62 °C, depending on the convergence rate reduction, and might thus favor the oceanic crust partial melting in presence of water. For subduction velocities ≤ 1 cm/yr, slab breakoff is triggered 20–32 Myr after slowdown onset, due to a drastic slab thermal weakening in the vicinity of the interplate plane base. At last, the rupture of the weakened forearc is simulated by imposing in the thinnest part of the overlying lithosphere a dipping weakness plane. For convergence with rates ≥ 1 cm/yr, the thinned forearc first shortens, then starts subducting along the slab surface. The forearc lithosphere subduction stops the slab surface warming by hot asthenosphere corner flow, and decreases in a first stage the slab surface temperature to 630 ± 20 °C at 80 km depth, in agreement with PT range inferred from natural records of UHP-LT metamorphism. The subducted crust temperature is further reduced to 405 ± 10 °C for the crust directly buried below the subducting forearc. Such a cold thermal state at great depth has never been sampled in collision zones, suggesting that forearc subduction might not be always required to explain UHP-LT metamorphsim.  相似文献   

9.
Julian A. Pearce   《Lithos》2008,100(1-4):14-48
Two geochemical proxies are particularly important for the identification and classification of oceanic basalts: the Th–Nb proxy for crustal input and hence for demonstrating an oceanic, non-subduction setting; and the Ti–Yb proxy for melting depth and hence for indicating mantle temperature and thickness of the conductive lithosphere. For the Th–Nb proxy, a Th/Yb–Nb/Yb projection demonstrates that almost all oceanic basalts lie within a diagonal MORB–OIB array with a principal axis of dispersion along the array. However, basalts erupted at continental margins and in subduction zones are commonly displaced above the MORB–OIB array and/or belong to suites with principal dispersion axes which are oblique to the array. Modelling of magma–crust interaction quantifies the sensitivity of the Th–Nb proxy to process and to magma and crustal compositions. For the Ti–Yb proxy, the equivalent Ti/Yb–Nb/Yb projection features a discriminant boundary between low Ti/Yb MORB and high Ti/Yb OIB that runs almost parallel to the Nb/Yb axis, reflecting the fact that OIB originate by melting beneath thicker lithosphere and hence by less melting and with residual garnet. In the case of volcanic-rifted margins and oceanic plume–ridge interactions (PRI), where hot mantle flows toward progressively thinner lithosphere (often becoming more depleted in the process), basalts follow diagonal trends from the OIB to the MORB field. Modelling of mantle melting quantifies the sensitivity of the Ti–Nb proxy to mantle potential temperature and lithospheric thickness and hence defines the petrogenetic basis by which magmas plot in the OIB or MORB fields. Oceanic plateau basalts lie mostly in the centre of the MORB part of that field, reflecting a high degree of melting of fertile mantle. Application of the proxies to some examples of MORB ophiolites helps them to be further classified as C (contaminated)-MORB, N (normal)-MORB, E (enriched)-MORB and P (plume)-MORB ophiolites, which may add a useful dimension to ophiolite classification. In the Archean, the hotter magmas, higher crustal geotherms and higher Th contents of contaminants all result in widespread crustal input that is easy to detect geochemically with the Th–Nb proxy. Application of this proxy to Archean greenstones demonstrates that almost all exhibit a crustal component even when reputedly oceanic. This indicates, either that some interpretations need to be re-examined or that intra-oceanic crustal input is important in the Archean making the proxy less effective in distinguishing oceanic from continental settings. The Ti–Yb proxy is not effective for fingerprinting Archean settings because higher mantle potential temperatures mean that lithospheric thickness is no longer the critical variable in determining the presence or absence of residual garnet.  相似文献   

10.
Backstripping analysis and forward modeling of 162 stratigraphic columns and wells of the Eastern Cordillera (EC), Llanos, and Magdalena Valley shows the Mesozoic Colombian Basin is marked by five lithosphere stretching pulses. Three stretching events are suggested during the Triassic–Jurassic, but additional biostratigraphical data are needed to identify them precisely. The spatial distribution of lithosphere stretching values suggests that small, narrow (<150 km), asymmetric graben basins were located on opposite sides of the paleo-Magdalena–La Salina fault system, which probably was active as a master transtensional or strike-slip fault system. Paleomagnetic data suggesting a significant (at least 10°) northward translation of terranes west of the Bucaramanga fault during the Early Jurassic, and the similarity between the early Mesozoic stratigraphy and tectonic setting of the Payandé terrane with the Late Permian transtensional rift of the Eastern Cordillera of Peru and Bolivia indicate that the areas were adjacent in early Mesozoic times. New geochronological, petrological, stratigraphic, and structural research is necessary to test this hypothesis, including additional paleomagnetic investigations to determine the paleolatitudinal position of the Central Cordillera and adjacent tectonic terranes during the Triassic–Jurassic. Two stretching events are suggested for the Cretaceous: Berriasian–Hauterivian (144–127 Ma) and Aptian–Albian (121–102 Ma). During the Early Cretaceous, marine facies accumulated on an extensional basin system. Shallow-marine sedimentation ended at the end of the Cretaceous due to the accretion of oceanic terranes of the Western Cordillera. In Berriasian–Hauterivian subsidence curves, isopach maps and paleomagnetic data imply a (>180 km) wide, asymmetrical, transtensional half-rift basin existed, divided by the Santander Floresta horst or high. The location of small mafic intrusions coincides with areas of thin crust (crustal stretching factors >1.4) and maximum stretching of the subcrustal lithosphere. During the Aptian–early Albian, the basin extended toward the south in the Upper Magdalena Valley. Differences between crustal and subcrustal stretching values suggest some lowermost crustal decoupling between the crust and subcrustal lithosphere or that increased thermal thinning affected the mantle lithosphere. Late Cretaceous subsidence was mainly driven by lithospheric cooling, water loading, and horizontal compressional stresses generated by collision of oceanic terranes in western Colombia. Triassic transtensional basins were narrow and increased in width during the Triassic and Jurassic. Cretaceous transtensional basins were wider than Triassic–Jurassic basins. During the Mesozoic, the strike-slip component gradually decreased at the expense of the increase of the extensional component, as suggested by paleomagnetic data and lithosphere stretching values. During the Berriasian–Hauterivian, the eastern side of the extensional basin may have developed by reactivation of an older Paleozoic rift system associated with the Guaicáramo fault system. The western side probably developed through reactivation of an earlier normal fault system developed during Triassic–Jurassic transtension. Alternatively, the eastern and western margins of the graben may have developed along older strike-slip faults, which were the boundaries of the accretion of terranes west of the Guaicáramo fault during the Late Triassic and Jurassic. The increasing width of the graben system likely was the result of progressive tensional reactivation of preexisting upper crustal weakness zones. Lateral changes in Mesozoic sediment thickness suggest the reverse or thrust faults that now define the eastern and western borders of the EC were originally normal faults with a strike-slip component that inverted during the Cenozoic Andean orogeny. Thus, the Guaicáramo, La Salina, Bitúima, Magdalena, and Boyacá originally were transtensional faults. Their oblique orientation relative to the Mesozoic magmatic arc of the Central Cordillera may be the result of oblique slip extension during the Cretaceous or inherited from the pre-Mesozoic structural grains. However, not all Mesozoic transtensional faults were inverted.  相似文献   

11.
Mafic high-pressure granulite, eclogite and pyroxenite xenoliths have been collected from a Mesozoic volcaniclastic diatreme in Xinyang, near south margin of the Sino-Korean Craton (SKC). The high-pressure granulite xenoliths are mainly composed of fine-grained granoblasts of Grt+Cpx+Pl+Hbl±Kfs±Q±Ilm with relict porphyritic mineral assemblage of Grt+Cpx±Pl±Rt. PT estimation indicates that the granoblastic assemblage crystallized at 765–890 °C and 1.25–1.59 GPa, corresponding to crustal depths of ca. 41–52 km with a geotherm of 75–80 mW/m2. Calculated seismic velocities (Vp) of high-pressure granulites range from 7.04 to 7.56 km/s and densities (D) from 3.05 to 3.30 g/cm3. These high-pressure granulite xenoliths have different petrographic and geochemical features from the Archean mafic granulites. Elevated geotherm and petrographic evidence imply that the lithosphere of this craton was thermally disturbed in the Mesozoic prior to eruption of the host diatreme. These samples have sub-alkaline basaltic compositions, equivalent to olivine– and quartz–tholeiite. REE patterns are flat to variably LREE-enriched (LaN/YbN=0.98–9.47) without Eu anomaly (Eu/Eu*=0.95–1.11). They possess 48–127 ppm Ni and 2–20 ppm Nb with Nb/U and La/Nb ratios of 13–54 and 0.93–4.75, respectively, suggesting that these high-pressure granulites may be products of mantle-derived magma underplated and contaminated at the base of the lower crust. This study also implies that up to 10 km Mesozoic lowermost crust was delaminated prior to eruption of the Cenozoic basalts on the craton.  相似文献   

12.
ABSTRACT

The South China Sea (SCS) is an excellent site for studying the process of conjugate margin rifting, and the origin and evolution of oceanic basins. Compared with the well-defined northern margin of the SCS, the western and southern segments of the SCS margin have not been researched in significant detail. To investigate the regional structure of the southwestern SCS, a gravity model is constructed, along with the lithospheric thermal structure along a wide-angle seismic profile. The profile extends across the conjugate margins of the Southwest Sub-Basin (SWSB) of the SCS and is based on the latest multiple geophysical measurements (including heat flow and thermo-physical parameters). The results show that the average thicknesses of the crust and thermal lithosphere along the profile are about 15 km and 57 km, respectively. The overall amount of extension of continental crust and lithosphere is more than 200 km. Thermal structure of the lithosphere shows that the continental margins are in a warm thermal state. The southwest SCS is characterized by ultra-wide, thinned continental crust and lithosphere, high Moho heat flow, early syn-rift faulted basins, undeformed late syn-rifting, and high seismic velocities in the lower crust. These various pieces of evidence suggest that the break-up of the mantle lithosphere occurred before that of the continental crust favouring a depth-dependent extension of the southwestern SCS margin.  相似文献   

13.
The Archean Mkhondo suite in southern Swaziland is a multiply deformed succession of metasediments intruded with amphibolite dykes and sills and granitoid gneisses. Mineral and textural relationships indicate an early period of granulite facies metamorphism, followed later by amphibolite facies metamorphism. Geothermobarometry indicates maximum temperatures of 700–900°C and burial depths of 25–3 km. Paragneisses and biotite quartzites have LREE enriched patterns with small negative Eu anomalies, whereas white quartzites show variable REE patterns and low REE concentrations. BIF has slight LREE enrichment and Eu anomalies. Amphibolites have moderate LREE enrichment and depletions in Ta---Nb and P. Unlike many Archean granitoids, the Mkhondo granitoid gneisses are high in K and other LILE, have large negative Eu anomalies and are not depleted in HREE.SHRIMP isotopic analyses of detrital zircons from a biotite quartzite define a source age of 3600–3460 Ma. A deformed granitoid in tectonic contact with the Mkhondo suite yields a zircon evaporation mean age of 3192±5 Ma, which is interpreted as the age of emplacement. A zircon evaporation age of a granitic melt patch in paragneiss, as well as whole-rock and garnet Sm---Nd isotopic ages, suggest that the peak of high-grade metamorphism in the Mkhondo suite occurred at about 2750 Ma. This is the first evidence for Late Archean high-grade metamorphism in the southeastern Kaapvaal craton. The age data of this study restrict deposition of the Mkhondo suite to between 3.2 and 2.75 Ga.Mkhondo paragneisses are interpreted as shales with biotite quartzites as iron- and quartz-rich detrital sediments. Geochemical mixing calculations indicate that the sediment sources were composed of basalt (±komatiite), TTG and Eu-depleted granitoids. The Mkhondo assemblage may have been deposited along a passive continental margin or in a continental interior basin. The presence of minor BIF with positive Eu anomalies suggests minor hydrothermal input into the sedimentary basin. Intense chemical weathering was probably most important in production of the relatively pure quartz sands.  相似文献   

14.
Modeling of receiver functions computed using data from the IRIS broadband station PALK in Sri Lanka reveals a simple crust with a thickness of 34 km. The crust appears to be more felsic with dominance of quartzite, as evidenced by a low Poisson's ratio of 0.25 compared to the global average for Precambrian shields. An overview of crustal composition of the high-grade terrains of Gondwana land reveals that Poisson's ratios mostly lie in the range of 0.24–0.26. These lower than global average values from both Archean and Proterozoic shields, including the metamorphic regions appear to be characteristic of Precambrian shields consistent with the average continental crust composition estimates showing 59% silica content. The two principal mantle discontinuities beneath PALK are found at 418 and 678 km, respectively, which are both deeper than the global averages, suggesting a hotter upper mantle.  相似文献   

15.
华北克拉通中生代破坏前的岩石圈地幔与下地壳   总被引:23,自引:11,他引:12  
翟明国 《岩石学报》2008,24(10):2185-2204
华北克拉通是世界上最古老的克拉通之一,有 38亿年的古老陆壳存在,它经历了复杂的地质变迁,在太古宙末(约2500Ma)基本完成克拉通化,在古元古代(约1900~1850Ma)整体受到了高级变质作用,最终完成了克拉通化。它的东部在中生代发生了重大的构造机制的转变,克拉通基底发生了破坏、置换和再造。在太行山重力梯度带以西的华北克拉通受中生代构造转折的改造程度较低,它们的下地壳和岩石圈地幔结构,大致保持了华北克拉通破坏前的状态。前寒武纪麻粒岩地体代表了掀翻抬升到地表的古元古代下地壳,出露地表的时间大致在1850~1800Ma。中、新生代火山岩中的地幔和麻粒岩捕虏体代表了现代的岩石圈地幔和下地壳的岩石。岩石学、地球化学和地球物理的研究,推测华北克拉通西部的岩石圈厚约200km,地壳厚度约45km~50km,是在古元古代(约1.9Ga)时期终极克拉通化作用形成的,其厚度和结构与全球典型的元古宙克拉通岩石圈相同。而太行山重力梯度带以东的克拉通岩石圈地幔受到程度不等的交代、改造、置换和减薄,下地壳大规模重熔,地壳厚度也发生减薄,指示了强烈的壳幔解耦、物质交换和重新耦合的过程。  相似文献   

16.
The In Ouzzal terrane (Western Hoggar) is an example of Archaean crust remobilized during a very-high-temperature metamorphism related to the Paleoproterozoic orogeny (2 Ga). Pan-African events (≈0.6 Ga) are localized and generally of low intensity. The In Ouzzal terrane is composed of two Archaean units, a lower crustal unit made up essentially of enderbites and charnockites, and a supracrustal unit of quartzites, banded iron formations, marbles, Al–Mg and Al–Fe granulites commonly associated with mafic (metanorites and garnet pyroxenites) and ultramafic (pyroxenites, lherzolites and harzburgites) lenses. Cordierite-bearing monzogranitic gneisses and anorthosites occur also in this unit. The continental crust represented by the granulitic unit of In Ouzzal was formed during various orogenic reworking events spread between 3200 and 2000 Ma. The formation of a continental crust made up of tonalites and trondhjemites took place between 3200 and 2700 Ma. Towards 2650 Ma, extension-related alkali-granites were emplaced. The deposition of the metasedimentary protoliths between 2700 and 2650 Ma, was coeval with rifting. The metasedimentary rocks such as quartzites and Al–Mg pelites anomalously rich in Cr and Ni, are interpreted as a mixture between an immature component resulting from the erosion and hydrothermal alteration of mafic to ultramafic materials, and a granitic mature component. The youngest Archaean igneous event at 2500 Ma includes calc-alkaline granites resulting from partial melting of a predominantly tonalitic continental crust. These granites were subsequently converted into charnockitic orthogneisses. This indicates crustal thickening or heating, and probably late Archaean high-grade metamorphism coeval with the development of domes and basins. The Paleoproterozoic deformation consists essentially of a re-activation of the pre-existing Archaean structures. The structural features observed at the base of the crust argue in favour of deformation under granulite-facies. These features are compatible with homogeneous horizontal shortening of overall NW–SE trend that accentuated the vertical stretching and flattening of old structures in the form of basins and domes. This shortening was accommodated by horizontal displacements along transpressive shear corridors. Reactional textures and the development of parageneses during the Paleoproterozoic suggest a clockwise P–T path characterized by prograde evolution at high pressures (800–1050 °C at 10–11 kbar), leading to the appearance of exceptional parageneses with corundum–quartz, sapphirine–quartz and sapphirine–spinel–quartz. This was followed by an isothermal decompression (9–5 kbar). Despite the high temperatures attained, the dehydrated continental crust did not undergo any significant partial melting. The P–T path followed by the granulites is compatible with a continental collision, followed by delamination of the lithosphere and uprise of the asthenosphere. During exhumation of this chain, the shear zones controlled the emplacement of carbonatites associated with fenites.  相似文献   

17.
Deep seismic reflection profiles collected across Proterozoic–Archean margins are now sufficiently numerous to formulate a consistent hypothesis of how continental nuclei grow laterally to form cratonic shields. This picture is made possible both because the length of these regional profiles spans all the tectonic elements of an orogen on a particular cratonic margin and because of their great depth range. Key transects studied include the LITHOPROBE SNORCLE 1 transect and the BABEL survey, crossing the Slave and Baltic craton margins, respectively. In most cases, the older (Archean) block appears to form a wedge of uppermost mantle rock embedded into the more juvenile (Proterozoic) block by as much as 100–200 km at uppermost mantle depths and Archean lithosphere is therefore more laterally extensive at depth than at the surface. Particularly bright reflections along the Moho are cited as evidence of shear strain within a weak, low-viscosity lower crustal channel that lies along the irregular top of the indenting wedge. The bottom of the wedge is an underthrust/subduction zone, and associated late reversal in subduction polarity beneath the craton margin emerges as a common characteristic of these margins although related arc magmatism may be minor.  相似文献   

18.
大陆的起源     
太阳系固体星球都有类似的核-幔-壳结构,但唯独人类居住的地球具有长英质组成的大陆壳.太古宙大陆克拉通主要由英云闪长岩(Tonalite)-奥长花岗岩(Trondhjemite)-花岗闪长岩(Granodiorite)为主的TTG深成侵入体变质而成的正片麻岩和由基性-超基性酸性火山岩及少量沉积岩变质的表壳岩(绿岩)组成....  相似文献   

19.
The Archean lithospheric mantle beneath the Kaapvaal–Zimbabwe craton of Southern Africa shows ±1% variations in seismic P-wave velocity at depths within the diamond stability field (150–250 km) that correlate regionally with differences in the composition of diamonds and their syngenetic inclusions. Seismically slower mantle trends from the mantle below Swaziland to that below southeastern Botswana, roughly following the surface outcrop pattern of the Bushveld-Molopo Farms Complex. Seismically slower mantle also is evident under the southwestern side of the Zimbabwe craton below crust metamorphosed around 2 Ga. Individual eclogitic sulfide inclusions in diamonds from the Kimberley area kimberlites, Koffiefontein, Orapa, and Jwaneng have Re–Os isotopic ages that range from circa 2.9 Ga to the Proterozoic and show little correspondence with these lithospheric variations. However, silicate inclusions in diamonds and their host diamond compositions for the above kimberlites, Finsch, Jagersfontein, Roberts Victor, Premier, Venetia, and Letlhakane do show some regional relationship to the seismic velocity of the lithosphere. Mantle lithosphere with slower P-wave velocity correlates with a greater proportion of eclogitic versus peridotitic silicate inclusions in diamond, a greater incidence of younger Sm–Nd ages of silicate inclusions, a greater proportion of diamonds with lighter C isotopic composition, and a lower percentage of low-N diamonds whereas the converse is true for diamonds from higher velocity mantle. The oldest formation ages of diamonds indicate that the mantle keels which became continental nuclei were created by middle Archean (3.2–3.3 Ga) mantle depletion events with high degrees of melting and early harzburgite formation. The predominance of sulfide inclusions that are eclogitic in the 2.9 Ga age population links late Archean (2.9 Ga) subduction-accretion events involving an oceanic lithosphere component to craton stabilization. These events resulted in a widely distributed younger Archean generation of eclogitic diamonds in the lithospheric mantle. Subsequent Proterozoic tectonic and magmatic events altered the composition of the continental lithosphere and added new lherzolitic and eclogitic diamonds to the already extensive Archean diamond suite.  相似文献   

20.
Suites of mantle-derived xenoliths in volcanic rocks provide estimates of the geothermal gradient and composition of the subcontinental lithospheric mantle (SCLM) at the time of the volcanic eruption. The development of single-grain thermometry and barometry, applied to xenocryst minerals in volcanic rocks, has greatly expanded the number of localities for which such data can be obtained and made it feasible to map the geology of the SCLM on a broader scale, both vertically and laterally. From garnet xenocrysts, it is possible to derive profiles showing mean values of olivine composition, bulk-rock composition, density and seismic velocities, as well as geotherm parameters and constraints on the thickness of the SCLM. Geochemical profiles, coupled with Re–Os dating of peridotites and their enclosed sulfide minerals, show that Archean or Proterozoic SCLM is preserved at shallow levels beneath many areas of younger tectonothermal age; this implies rapid vertical variations in Vs and Vp with depth, which may affect seismic interpretations. Data from several hundred localities worldwide define a secular evolution in the composition of the SCLM, related to the tectonothermal age of the overlying crust. Archean SCLM is typically strongly depleted in basaltic components, highly magnesian and thick (160–250 km), and has low geotherms; Phanerozoic SCLM is typically fertile (rich in basaltic components), Fe-rich, thin (50–100 km) and has a range of high geotherms; Proterozoic SCLM (much of which may be reworked Archean mantle) tends to be intermediate in all respects. The correlated variations in SCLM fertility, lithospheric thickness and geotherm reinforce the effects of each on seismic velocity, and produce more rapid lateral variations in seismic response than would result from thermal effects alone. These correlations are the key to using seismic tomography images to map the lateral extent of different types of SCLM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号