首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The Late Miocene lacustrine Acıgöl Basin, SW Turkey, formed as an orogen-top, extensional half-graben, with the subaqueous accommodation controlled by the lake level and the bulk accommodation provided by active subsidence along a WSW-trending normal fault at the basin's southern margin. The basin-fill sedimentary succession consists of terminal alluvial-fan facies overlain by ephemeral lake-margin facies and perennial lake facies, with widespread fluvial facies at the top. The distal alluvial-fan facies include massive to stratified sandstones and massive mudstones with intervening nodular dolostones and incipient pedogenic horizons. The lake-margin facies are micritic magnesites passing laterally into peloidal, irregularly laminated magnesites towards the palaeolake margin and overlain by marlstones and dolostones, all with abundant evidence of episodic subaerial exposure (desiccation cracks, pedogenic features, and tepee structures). The perennial lake facies are micritic magnesites passing upwards into clayey dolostones and dolomitic or clayey marlstones. The fluvial facies capping the succession include planar cross-stratified conglomerates (channel-fill deposits), planar parallel-stratified, planar cross-stratified and rippled cross-laminated sandstones (crevasse-fill and crevasse splay deposits), and assemblages of mudstones intercalated with thin sandstone beds (overbank floodplain deposits).The sedimentological, mineralogical and geochemical data reveal large variations in the basin's hydrological regime, including short-term oscillations and bulk rise of the lake level, periodical changes in the Mg/Ca ratio and terrigenous mud supply, and a negative covariance of δ18O and δ13C fluctuations. The composition of terrigenous sediment and the chemistry of water supplied to the lake were controlled by the weathering, chemical leaching and erosion of the ultramafic–dolomitic bedrock in the catchment area. The bedrock yielded Mg-rich carbonate solutions that caused the deposition of Mg-carbonates in the lake.Despite short-term lake-level fluctuations, the lake's net water budget remained positive. It is suggested that the region's present-day climate and Mg-rich alkaline lakes can serve as an analogue for the climatic and hydrological conditions in the Late Miocene Acıgöl Basin.  相似文献   

2.
High-resolution 230Th/234U ages and δ18O and δ13C compositions of speleothems in Ma’ale Efrayim Cave located to the east of the central mountain ridge of Israel enable us to examine the nature of the rain shadow aridity during glacial and interglacial intervals. Speleothem growth occurred during marine glacial isotopic periods, with no growth during the two last marine isotope interglacial intervals and during the peak of the Last Glacial Maximum. This contrasts with speleothem growth in caves located on the western flank of the central mountain ridge, in the Eastern Mediterranean semiarid climatic zone, which continued throughout the last 240,000 yr. Thus, during glacial periods water reached both sides of the central mountain ridge. A comparison of the present-day rain and cave water isotopic compositions and amounts at the Ma’ale Efrayim Cave site with those on the western flank shows that evaporation and higher temperatures on the eastern flank are major influences on isotopic composition and the lack of rainfall. The δ18O and δ13C profiles of the speleothems deposited between 67,000 and 25,000 yr B.P. match the general trends of the isotopic profiles of Soreq Cave speleothems, suggesting a similar source (eastern Mediterranean Sea) and similar climatic conditions. Thus, during glacial periods the desert boundary effectively migrated further south or east from its present-day location on the eastern flank, whereas interglacial periods appear to have been similar to the present, with the desert boundary at the same position. The decrease in overall temperature and a consequent reduction in the evaporation to precipitation ratios on the eastern flank are viewed as the major factors controlling the decay of the rain shadow effect during glacial periods.  相似文献   

3.
A long terrestrial record, Colônia CO-3, from the Atlantic rainforest region in Brazil (23°52′S, 46°42′20 W, 900 m a.s.l.) registrates variations in the forest expansion during the last 100,000 yr. The 780-cm depth core was analyzed at 2-cm intervals and arboreal pollen frequencies were compared to nearby speleothem stable isotope records and neighboring marine records from the tropical Atlantic. To evaluate regional versus global climate forcing, our record was compared with Greenland and Antarctic ice-core records. These comparisons suggest that changes in temperature seen in polar latitudes relate to moisture changes: e.g., to changes in the length of the dry season, in tropical and subtropical latitudes during glacial as well as interglacial times. These climatic changes result from changes in the frequency of polar air incursions to these latitudes inducing a permanent cloud cover and precipitation. This is an important result that should help define paleoclimatic features in the Southern Hemisphere for the last glaciation.  相似文献   

4.
High-resolution siliciclastic grain size and bulk mineralogy combined with clay mineralogy, rubidium, strontium, and neodymium isotopes of Core MD01-2393 collected off the Mekong River estuary in the southwestern South China Sea reveals a monsoon-controlled chemical weathering and physical erosion history during the last 190,000 yr in the eastern Tibetan Plateau and the Mekong Basin. The ranges of isotopic composition are limited throughout sedimentary records: 87Sr/86Sr = 0.7206–0.7240 and εNd(0) = −11.1 to −12.1. These values match well to those of Mekong River sediments and they are considered to reflect this source region. Smectites/(illite + chlorite) and smectites/kaolinite ratios are used as indices of chemical weathering rates, whereas the bulk kaolinite/quartz ratio is used as an index of physical erosion rates in the eastern Tibetan Plateau and the Mekong Basin. Furthermore, the 2.5–6.5 μm/15–55 μm siliciclastic grain size population ratio represents the intensity of sediment discharge of the Mekong River and, in turn, the East Asian summer monsoon intensity. Strengthened chemical weathering corresponds to increased sediment discharge and weakened physical erosion during interglacial periods. In contrast, weakened chemical weathering associated with reduced sediment discharge and intensified physical erosion during glacial periods. Such strong glacial–interglacial correlations between chemical weathering/erosion and sediment discharge imply the monsoon-controlled weathering and erosion.  相似文献   

5.
The timing and magnitude of sea-surface temperature (SST) changes in the tropical southern South China Sea (SCS) during the last 16,500 years have been reconstructed on a high-resolution, 14C-dated sediment core using three different foraminiferal transfer functions (SIMMAX28, RAM, FP-12E) and geochemical (Uk′37) SST estimates. In agreement with CLIMAP reconstructions, both the FP-12E and the Uk′37 SST estimates show an average late glacial–interglacial SST difference of 2.0°C, whereas the RAM and SIMMAX28 foraminiferal transfer functions show only a minor (0.6°C) or no consistent late glacial–interglacial SST change, respectively. Both the Uk′37 and the FP-12E SST estimates, as well as the planktonic foraminiferal δ18O values, indicate an abrupt warming (ca. 1°C in <200 yr) at the end of the last glaciation, synchronous (within dating uncertainties) with the Bølling transition as recorded in the Greenland Ice Sheet Project 2 (GISP2) ice core, whereas the RAM-derived deglacial SST increase appears to lag during this event by ca. 500 yr. The similarity in abruptness and timing of the warming associated with the Bølling transition in Greenland and the southern SCS suggest a true synchrony of the Northern Hemisphere warming at the end of the last glaciation. In contrast to the foraminiferal transfer function estimates that do not indicate any consistent cooling associated with the Younger Dryas (YD) climate event in the tropical SCS, the Uk′37 SST estimates show a cooling of ca. 0.2–0.6°C compared to the Bølling–Allerød period. These Uk′37 SST estimates from the southern SCS argue in favor of a Northern Hemisphere-wide, synchronous cooling during the YD period.  相似文献   

6.
The 18O/16O profile of a 554-m long ice core through Taylor Dome, Antarctica, shows the climate variability of the last glacial–interglacial cycle in detail and extends at least another full cycle. Taylor Dome shares the main features of the Vostok record, including the early climatic optimum with later cool phase of the last interglacial period in Antarctica. Taylor Dome δ18O fluctuations are more abrupt and larger than those at Vostok and Byrd Station, although still less pronounced than those of the Greenland GISP2 and GRIP records. The influence of the Atlantic thermohaline circulation on regional ocean heat transport explains the partly “North Atlantic” character of this Antarctic record. Under full glacial climate (marine isotope stage 4, late stage 3, and stage 2), this marine influence diminished and Taylor Dome became more like Vostok. Varying degrees of marine influence produce climate heterogeneity within Antarctica, which may account for conflicting evidence regarding the relative phasing of Northern and Southern Hemisphere climate change.  相似文献   

7.
Repetitive patterns in the records of total organic carbon (TOC), total nitrogen (TN) and δ13Corg observed in the Lake Hovsgol sediment section from HDP-04 drill core reflect past changes in productivity of Lake Hovsgol and in the isotopic composition of the lake's carbon pool. Lake Hovsgol productivity proxy signals are interpreted to represent the response of the Hovsgol lacustrine system to glacial–interglacial cycles of the Pleistocene. This interpretation is supported by the apparent orbitally-forced pattern in the TOC, TN and δ13Corg records of the past 250 ka in the BDP-96-2 drill core from neighboring Lake Baikal.The intervals with independent age control, such as the radiocarbon-dated last glacial–interglacial transition and the paleomagnetic reversals, make it evident that productivity proxy signals are reliable indicators of past cold-to-warm and warm-to-cold climate transitions, as seen from the agreement with the pattern of global climate change in marine δ18O records. The Brunhes/Matuyama reversal during the MIS 19 interglacial coincides with a distinct peak of TOC and TN in the Hovsgol record, similar to the signal during the Holocene interglacial. By contrast, the upper Jaramillo reversal in the Lake Hovsgol record occurs in a diatom-free calcareous interval characterized by minima in TOC, TN and by a ‘glacial’-type range of δ13Corg values. In both Lake Baikal and Lake Hovsgol records, peaks in TOC and TN contents help distinguishing past interglacials and interstadials, and isotopically-heaviest δ13Corg values help identify past glacial intervals.An age model for the HDP-04 drill core section is proposed based on recognizing the repetitive patterns in Lake Hovsgol productivity and lithologic records as regional paleoclimate cycles of middle to late Pleistocene. Absolute dates and diatom biostratigraphic correlation ties to the Lake Baikal record are used as key controls. In the proposed age model, the interval 81–24 m in the HDP-04 sediment section below the major unconformity is correlated to MIS 27 through late MIS 13, whereas the upper 24 m of the HDP-04 section is suggested to have recovered the sedimentary record of late MIS 7 to MIS 1.  相似文献   

8.
Wetlands are a key archive for paleoclimatic and archeological work, particularly in arid regions, as they provide a focus for human occupation and preserve environmental information. The sedimentary record from 'Ayn Qasiyya, a spring site on the edge of the Azraq Qa, provides a well-dated sequence through the last glacial–interglacial transition (LGIT) allowing environmental changes in the present-day Jordanian desert to be investigated robustly through this time period for the first time. Results show that the wettest period at the site preceded the last glacial maximum, which itself was characterised by marsh formation and a significant Early Epipaleolithic occupation. A sedimentary hiatus between 16 and 10.5 ka suggests a period of drought in the region although seasonal rains and surface waters still allowed seasonal occupation of the Azraq region. Archeological evidence suggests that conditions had improved by the Late Epipaleolithic, about the time of the North Atlantic Younger Dryas. The changes between wet and dry conditions at the site show similarities to patterns in the eastern Mediterranean and in Arabia suggesting the Jordan interior was influenced by changes in both these regions through the LGIT climatic transition.  相似文献   

9.
A continent-oceanic island arc collision model was proposed as a new geodynamic scenario for the evolution of the Cretaceous Central Anatolian granitoids in the Central Anatolian crystalline complex (CACC) by Boztug et al. (2007b) [Boztug, D., Tichomirowa, M., Bombach, K., 2007b. 207Pb–206Pb single-zircon evaporation ages of some granitoid rocks reveal continent-oceanic island arc collision during the Cretaceous geodynamic evolution of the central Anatolian crust, Turkey. Journal of Asian Earth Sciences 31, 71–86]. The key aspects of this model include an intra-oceanic subduction in the Neotethyan Izmir-Ankara Ocean, formation of an island arc and its subsequent collision with the northern margin of the Tauride–Anatolide Platform. The identical scenario was initially proposed by Göncüoglu et al. (1992) [Göncüoglu, M.C., Erler, A., Toprak, V., Yalınız, K., Olgun, E., Rojay, B., 1992. Geology of the western Central Anatolian Massif, Part II: Central Areas. TPAO Report No: 3155, 76 p] . Moreover, the weighted mean values of the reported 207Pb–206Pb single-zircon evaporation ages by Boztug et al. (2007b) [Boztug, D., Tichomirowa, M., Bombach, K., 2007b. 207Pb–206Pb single-zircon evaporation ages of some granitoid rocks reveal continent-oceanic island arc collision during the Cretaceous geodynamic evolution of the central Anatolian crust: Turkey. Journal of Asian Earth Sciences 31, 71–86] from A-type granitoids in the CACC seem to be miscalculated and contrast with the field data.  相似文献   

10.
We report new mapping, soils, survey, and geochronologic (luminescence, U-series, and cosmogenic-nuclide) data from Pleistocene deposits in the arid setting of eastern Grand Canyon. The result is a stratigraphic framework of inset fill gravels and associated terraces that provide a record of the responses of hillslopes, tributary streams, and the Colorado River to the last 400 kyr of glacial–interglacial climate change. The best-preserved last 80 kyr of this record indicates a stratigraphic–chronologic disconnect between both deposition and incision along the Colorado River versus along the trunks of local tributaries. For example, the Colorado River finished aggrading and had already begun incising before the main pulse of aggradation in the trunks of local catchments during Marine Isotope Stage 3, and then tributary incision followed during the millennial-scale fluctuations of the last glacial epoch, potentially concurrent with mainstem aggradation. The mainstem record appears to broadly correlate with regional paleoclimate and upstream geomorphic records and thus may be responding to climatic–hydrologic changes in its mountain headwaters, with aggradation beginning during full-glacial times and continuing into subsequent interglacials. The contrasting lag time in responses of the dryland catchments within Grand Canyon may be largely a function of the weathering-limited nature of hillslope sediment supply.  相似文献   

11.
This paper for the first time reveals high-resolution core records of Zabuye Salt Lake in the interior of the Qinghai-Tibet Plateau. According to 1346 samples taken continuously, relatively accurate 14^C, U-series disequilibrium and ESR ages have been obtained, thus revealing that the lake core ages from 0 to 83.63 m of hole SZK02 are -800 to over 128 ka. In the paper, the lake core sedimentary characteristics (including the lithologies and mineral assemblages) are analyzed in detail and correlated with ostracod assemblages I to XX and sporopollen zones A to I, and on the basis of an integrated analysis of the δ^18O values of authigenic calcium-magnesium carbonate and environmental proxies of minerals, sporopollen and microfossils in the lake core, a correlation has been made of oxygen isotope change between this lake core and the Greenland GISP2 and GRIP and Guliya ice cores, and the climate of Zabuye Salt Lake since 128 ka BP is divided into the last interglacial stage (including substages e, d, c, b and a) of oxygen isotope stage (OIS) 5, early glacial stadial of the last glacial stage of OIS 4, interglacial stadial of the last glacial stage of OIS 3, late glacial stadial of the last glacial stage or Last Glacial Maximum of OIS 2 and postglacial state of OIS 1; in addition, 6 Heinrich (H6-H1) events, Younger Dryas event and 8.2 ka BP cold event have been recognized.  相似文献   

12.
Oxygen and carbon stable isotope ratios in carbonates from the HDP-04 drill core from Lake Hovsgol, NW Mongolia, show an overall covariant relationship suggesting that for the most of the past 1 Ma Hovsgol remained a closed-basin lake. Carbonate δ18O ratio is responsive to regional climate change: a ca. +1.5‰ basinwide δ18O shift has occurred with the onset of Bølling–Allerød warming (sensu lato), followed by a ca. 0.8‰ depletion during the Younger Dryas. The post-glacial δ18O shift of the same magnitude is recorded in bulk carbonates, shells of two ostracod species and in wet-sieved fine fraction <63 μm. Associated with the lake-level rise and correlative with the post-glacial warming in the northern hemisphere, the observed δ18O shift is nevertheless positive. This argues against changes in local temperature and hydrology as key driving mechanisms. Most likely, Lake Hovsgol δ18O reflects a climate-driven shift in the composition of regional precipitation. Tied into a distinct lithologic succession, the radiocarbon-dated late glacial δ18O shift apparently represents a ‘template’ of the lake's response to glacial–interglacial transitions: a similar pattern of parallel changes in lithology and carbonate stable isotope composition is observed in at least 10 more intervals in the 1-Ma record, including the MIS 20/MIS19 transition at the Brunhes/Matuyama paleomagnetic reversal boundary. The comparison of carbon stable isotope ratios of untreated and in vacuo roasted bulk sediment with those of detrital carbonates suggests that clastic input of carbonates by lake tributaries does not affect the geochemistry of bulk carbonates in the HDP-04 section. The profiles of bulk carbonate δ18O and δ13C in the Pleistocene section of the HDP-04 drill core suggest at ca. 15.4 ka, at ca. 100 m below today's level, Lake Hovsgol still stood relatively high as compared with prior extended periods of time during late Matuyama and early Brunhes. Isotopically heavy δ18O and δ13C ratios during the mid–late Brunhes, particularly, in carbonate crusts and oolites, are suggestive of past episodes of dramatic evaporative 18O-enrichment of lake waters. Despite the expectation of muted amplitudes of temperature- and precipitation-related isotope signals, the sedimentary record from the sensitive ‘water gauge’ basin of Lake Hovsgol has high potential for providing important constraints on past hydrologic evolution of continental interior Asia during the Pleistocene.  相似文献   

13.
This study establishes for the first time the chronology and limnological history of Lake Amora (Dead Sea basin, Israel), whose deposits (the Amora Formation) comprise one of the longest exposed lacustrine records of the Pleistocene time. The Amora Formation consists of sequences of laminated primary aragonite and silty-detritus, Ca-sulfate minerals, halite and clastic units. This sedimentary sequence was uplifted and tilted by the rising Sedom salt diapir, exposing ∼320 m of sediments on the eastern flanks of Mt. Sedom (the Arubotaim Cave (AC) section).The chronology of the AC section is based on U-disequilibrium dating (230Th-234U and 234U-238U ages) combined with floating δ18O stratigraphy and paleomagnetic constraints. The determination of the 230Th-234U ages required significant corrections to account for detrital Th and U. These corrections were performed on individual samples and on suites of samples from several stratigraphic horizons. The most reliable corrected ages were used to construct an age-elevation model that was further tuned to the oxygen isotope record of east Mediterranean foraminifers (based on the long-term similarity between the sea and lake oxygen isotope archives).The combined U-series-δ18O age-elevation model indicates that the (exposed) Amora sequence was deposited between ∼740 and 70 ka, covering seven glacial-interglacial cycles (Marine Isotope Stages (MIS) 18 to 5).Taking the last glacial Lake Lisan and the Holocene Dead Sea lacustrine systems as analogs of the depositional-limnological environment of Lake Amora, the latter oscillated between wet (glacial) and more arid (interglacial) conditions, represented by sequences of primary evaporites (aragonite and gypsum that require enhanced supply of freshwater to the lakes) and clastic sediments, respectively. The lake evolved from a stage of rapid shifts between high and low-stand conditions during ∼740 to 550 ka to a sabkha-like environment that existed (at the AC site) between 550 and 420 ka. This stage was terminated by a dry spell represented by massive halite deposition at 420 ka (MIS12-11). During MIS10-6 the lake fluctuated between lower and higher stands reaching its highest stand conditions at the late glacial MIS6, after which a significant lake level decline corresponds to the transition to the last interglacial (MIS5) low-stand lake, represented by the uppermost part of the Formation.δ18O values in the primary aragonite range between 6.0 and −1.3, shifting cyclically between glacial and interglacial intervals. The lowest δ18O values are observed during interglacial stages and may reflect short and intense humid episodes that intermittently interrupted the overall arid conditions. These humid episodes, expressed also by enhanced deposition of travertines and speleothems, seem to characterize the Negev Desert, and in contrast to the overall dominance of the Atlantic-Mediterranean system of rain patterns in the Dead Sea basin, some humid episodes during interglacials may be traced to southern sources.  相似文献   

14.
Bosten Lake is a mid-latitude lake with water mainly supplied by melting ice and snow in the Tianshan Mountains. The depositional environment of the lake is spatially not uniform due to the proximity of the major inlet and the single outlet in the western part of the lake. The analytical results show that the carbon and oxygen isotopic composition of recent lake sediments is related to this specific lacustrine depositional environment and to the resulting carbonate mineralogy. In the southwestern lake region between the Kaidu River inlet and the Kongqi River outlet, carbon isotope composition (δ13C) values of the carbonate sediment (?1‰ to ?2‰) have no relation to the oxygen isotope composition of the carbonate (δ18O) values (?7‰ to ?8‰), with both isotopes showing a low variability. The carbonate content is low (<20%). Carbonate minerals analyzed by X-ray diffraction are mainly composed of calcite, while aragonite was not recorded. The salinity of the lake water is low in the estuary region as a result of the Kaidu River inflow. In comparison, the carbon and oxygen isotope values are higher in the middle and eastern parts of the lake, with δ13C values between approximately +0.5‰ and +3‰, and δ18O values between ?1‰ and ?5‰. There is a moderate correlation between the stable oxygen and carbon isotopes, with a coefficient of correlation r of approximately 0.63. This implies that the lake water has a relatively short residence time. Carbonate minerals constitute calcite and aragonite in the middle and eastern region of the lake. Aragonite and Mg–calcite are formed at higher lake water salinity and temperatures, and larger evaporation effects. More saline lake water in the middle and eastern region of the lake and the enhanced isotopic equilibrium between water and atmospheric CO2 cause the correlating carbon and oxygen isotope values determined for aragonite and Mg–calcite. Evaporation and biological processes are the main reasons for the salinity and carbonate mineralogy influence of the surface-sediment carbonate in Bosten Lake. The lake water residence time and the CO2 exchange between the atmosphere and the water body control the carbon and oxygen isotope composition of the carbonate sediment. In addition, organic matter pollution and decomposition result in the abnormally low carbon isotope values of the lake surface-sediment carbonate.  相似文献   

15.
The multi-proxy analysis of sediment cores recovered in karstic Lake Estanya (42°02′ N, 0°32′ E; 670 m a. s. l., NE Spain), located in the transitional area between the humid Pyrenees and the semi-arid Central Ebro Basin, provides the first high-resolution, continuous sedimentary record in the region, extending back the last 21 000 years. The integration of sedimentary facies, elemental and isotopical geochemistry and biogenic silica, together with a robust age model based on 17 AMS radiocarbon dates, enables precise reconstruction of the main hydrological and environmental changes in the region during the last deglaciation.Arid conditions, represented by shallow lake levels, predominantly saline waters and reduced organic productivity occurred throughout the last glacial maximum (21–18 cal kyrs BP) and the lateglacial, reaching their maximum intensity during the period 18–14.5 cal kyrs BP (including Heinrich event 1) and the Younger Dryas (12.9–11.6 cal kyrs BP). Less saline conditions characterized the 14.5–12.6 cal kyrs BP period, suggesting higher effective moisture during the Bölling/Allerød. The onset of more humid conditions started at 9.4 cal kyrs, indicating a delayed hydrological response to the onset of the Holocene which is also documented in several sites of the Mediterranean Basin. Higher, although fluctuating, Holocene lake levels were punctuated by a mid Holocene arid period between 4.8 and 4.0 cal kyrs BP. A major lake-level rise occurred at 1.2 cal kyrs BP, conducive to the establishment of conditions similar to the present and interrupted by a last major water level drop, occurring around 800 cal yrs BP, which coincides with the Medieval Climate Anomaly.The main hydrological stages in Lake Estanya are in phase with most Western Mediterranean and North Atlantic continental and marine records, but our results also show similarities with other Iberian and northern African reconstructions, emphasizing peculiarities of palaeohydrological evolution of the Iberian Peninsula during the last deglaciation.  相似文献   

16.
《Quaternary Science Reviews》2007,26(1-2):130-141
Analyses of sediment cores from Marcella Lake, a small, hydrologically closed lake in the semi-arid southwest Yukon, provides effective moisture information for the last ∼4500 years at century-scale resolution. Water chemistry and oxygen isotope analyses from lakes and precipitation in the region indicate that Marcella Lake is currently enriched in 18O by summer evaporation. Past lake water values are inferred from oxygen isotope analyses of sedimentary endogenic carbonate in the form of algal Charophyte stem encrustations. A record of the δ18O composition of mean annual precipitation at Jellybean Lake, a nearby evaporation-insensitive system, provides data of simultaneous δ18O variations related to decade-to-century scale shifts in Aleutian Low intensity/position. The difference between the two isotope records, Δδ, represents 18O-enrichment in Marcella Lake water caused by summer effective moisture conditions. Results indicate increased effective moisture between ∼3000 and 1200 cal BP and two marked shifts toward increased aridity at ∼1200 and between 300 and 200 cal BP. These prominent late Holocene changes in effective moisture occurred simultaneously with changes in Aleutian Low circulation patterns over the Gulf of Alaska indicated by Jellybean Lake. The reconstructed climate patterns are consistent with the topographically controlled climatic heterogeneity observed in the coastal mountains and interior valleys of the region today.  相似文献   

17.
The Hovsgol Drilling Project retrieved Pleistocene sediment section with the basal age of ca. 1 Ma from the Hovsgol rift basin, NW Mongolia. Detailed lithologic data on drill cores is presented and compared with analogous sediment facies in the radiocarbon-dated records of the last glacial–interglacial transition. Drill cores from two sites, presently in 239 m and 235 m water depth, represent somewhat different depositional settings. The shorter HDP-06 drill core (26 m) at the base of the gentler SE slope of the rift basin contains lithologic evidence for several recent lake lowstands on the order of −200 m. The longer HDP-04 drill core (81 m) some 8 km away at the base of the steep NW underwater slope is composed of finer sediments and contains at least 10 characteristic transitions from calcareous to carbonate-free (diatomaceous) layers. These lithologic transitions are interpreted here as signals of repeated Pleistocene lake transgressions in the Hovsgol basin. Transgressions appear to have been associated with lower sedimentation rates and with the deposition of thin turbidite beds at the drill site. Comparison of drill core lithology with the available seismic data shows reasonable agreement in terms of the number of lowstand events and the general trends of changing lake level. HDP-04 drill core retrieved shallow-water facies containing sand and carbonate oolites deposited at the time of the most dramatic mid-Pleistocene regression of the lake. At ca. 24 m core depth, this interval corresponds to a major basinwide angular unconformity apparent in the seismic pattern. Lake Hovsgol, a smaller sister rift lake of the grand Lake Baikal, has a confined local catchment, which makes it very sensitive to regional variations in the effective moisture. Consisting primarily of calcareous mud, the sedimentary record of Lake Hovsgol provides a unique regional sedimentary archive. Future multi-proxy studies of the Hovsgol sedimentary records will allow constraint of the mid-late Pleistocene history of the hydrologic budget in the Baikal region of continental interior Asia.  相似文献   

18.
Modeling the bulk sediment XRD patterns allows insight into the environmental and depositional histories of two neighboring rift lake basins within the Baikal watershed. Parallel 14C-dated LGM-Holocene records in Lakes Baikal and Hovsgol are used to discuss the mineralogical signatures of regional climate change. In both basins, it is possible to distinguish ‘glacial’ and ‘interglacial’ mineral associations. Clay minerals comprise in excess of 50% of layered silicates in bulk sediment.The abundance of smectite (expandable) layers in mixed-layer illite–smectites and the total illite abundance are the main paleoclimatic indices in the clay mineral assemblage. Both indices exhibit coherent responses to the Bølling–Allerød and the Younger Dryas. The smectite layer index is not equivalent to the abundance of illite–smectite, because illite–smectite tends to transform into illite. Repeated wetting–drying cycles in soils and high abundance of expandable layers in illite–smectites (>42%) favor the process of illitization. This relationship is clearly shown in both Baikal and Hovsgol records for the first time. The opposite late Holocene trends in illite abundance in Lake Baikal and Lake Hovsgol records suggest that a sensitive optimal regime may exist for illite formation in the Baikal watershed with regard to warmth and effective moisture.The Lake Hovsgol sediments of the last glacial contain carbonates, suggesting a positive trend in the lake's water budget. A progressive change towards lower Mg content in carbonates indicates lowering mineralization of lake waters. This trend is consistent with the lithologic evidence for lake-level rise in the Hovsgol basin.The pattern of mineralogical changes during the past 20 ka is used to interpret bulk sediment and carbonate mineralogy of the long 81-m Lake Hovsgol drill core (HDP-04) with a basal age of 1 Ma. The interglacial-type silicate mineral associations are confined to several thin intervals; most of the sediment record is calcareous. Carbonates are represented by six main mineral phases: calcite, low-Mg calcite, intermediate/high-Mg calcite, dolomite, excess-Ca dolomite and metastable monohydrocalcite. These mineral phases tend to form stratigraphic successions indicative of progressive changes in lake water chemistry. Five sediment layers with abundant Mg-calcites in the HDP-04 section suggest deposition in a low standing lake with high mineralization (salinity) and high Mg/Ca ratios of lake waters. Lake Hovsgol sediments contain the oldest known monohydrocalcite, found tens of meters below lake bottom in sediments as old as 800 ka. This unusual find is likely due to the conditions favorable to preservation of this metastable carbonate.  相似文献   

19.
A simple impulse-decay model driven by the history of atmospheric dust loading from Greenland can match the history of glacial–interglacial changes in atmospheric carbon dioxide concentration rather accurately, if model parameters are tuned within physically possible ranges; forcing with the Greenland temperature record produces a similarly good match. Calculations using southern forcing do not match as accurately. These results leave open the possibility of northern control of glacial–interglacial carbon dioxide changes.  相似文献   

20.
This study presents results from geomorphological mapping and cosmogenic radionuclide dating (10Be) of moraine sequences at Otgon Tenger (3905 m), the highest peak in the Khangai Mountains (central Mongolia). Our findings indicate that glaciers reached their last maximum extent between 40 and 35 ka during Marine Oxygen Isotope Stage (MIS) 3. Large ice advances also occurred during MIS-2 (at ~ 23 and 17–16 ka), but these advances did not exceed the limits reached during MIS-3. The results indicate that climatic conditions during MIS-3, characterized by a cool-wet climate with a greater-than-today input from winter precipitation, generated the most favorable setting for glaciation in the study region. Yet, glacial accumulation also responded positively to the far colder and drier conditions of MIS-2, and again during the last glacial–interglacial transition when precipitation levels increased. Viewed in context of other Pleistocene glacial records from High Asia, the pattern of glaciation in central Mongolia shares some features with records from southern Central Asia and NE-Tibet (i.e. ice maxima during interstadial wet phases), while other features of the Mongolian record (i.e. major ice expansion during the MIS-2 insolation minimum) are more in tune with glacier responses known from Siberia and western Central Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号