首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Understanding the influences of local hydroclimatology and two large-scale oceanic-atmospheric oscillations (i.e., Atlantic Multidecadal Oscillation (AMO) and El Niño-Southern Oscillation (ENSO)) on seasonal precipitation (P) and temperature (T) relationships for a tropical region (i.e., Florida) is the focus of this study. The warm and cool phases of AMO and ENSO are initially identified using sea surface temperatures (SSTs). The associations of SSTs and regional minimum, maximum and average surface air temperatures (SATs) with precipitation are then evaluated. The seasonal variations in P-SATs and P-SSTs associations considering AMO and ENSO phases for sites in (1) two soil temperature regimes (i.e., thermic and hyperthermic); (2) urban and non-urban regions; and (3) regions with and without water bodies, are analysed using two monthly datasets. The analyses are carried out using trend tests, two association measures, nonparametric and parametric statistical hypothesis tests and kernel density estimates. Decreasing (increasing) trend in precipitation (SATs) is noted in the recent multi-decadal period (1985–2019) compared to the previous one (1950–1984) indicating a progression towards warmer and drier climatic conditions across Florida. Spatially and temporally non-uniform variations in the associations of precipitation with SATs and SSTs are noted. Strong positive (weak negative) P–T associations are noted during the wet (dry) season for both AMO phases and El Niño, while significant (positive) P–T associations are observed across southern Florida during La Niña in the dry season. The seasonal influences are predominant in governing the P–T relationship over the regions with and without water bodies; however, considerable variations between El Niño and La Niña are noted during the dry season. The climate variability influences on P–T correlations for hyperthermic and thermic soil zones are found to be insignificant (significant) during the wet (dry) season. Nonparametric clustering is performed to identify the spatial clusters exhibiting homogeneous P–T relationships considering seasonal and climate variability influences.  相似文献   

2.
The accurate measurement of precipitation is essential to understanding regional hydrological processes and hydrological cycling. Quantification of precipitation over remote regions such as the Tibetan Plateau is highly unreliable because of the scarcity of rain gauges. The objective of this study is to evaluate the performance of the satellite precipitation product of tropical rainfall measuring mission (TRMM) 3B42 v7 at daily, weekly, monthly, and seasonal scales. Comparison between TRMM grid precipitation and point‐based rain gauge precipitation was conducted using nearest neighbour and bilinear weighted interpolation methods. The results showed that the TRMM product could not capture daily precipitation well due to some rainfall events being missed at short time scales but provided reasonably good precipitation data at weekly, monthly, and seasonal scales. TRMM tended to underestimate the precipitation of small rainfall events (less than 1 mm/day), while it overestimated the precipitation of large rainfall events (greater than 20 mm/day). Consequently, TRMM showed better performance in the summer monsoon season than in the winter season. Through comparison, it was also found that the bilinear weighted interpolation method performs better than the nearest neighbour method in TRMM precipitation extraction.  相似文献   

3.
A long record (1862–2004) of seasonal rainfall and temperature from the Rome observatory of Collegio Romano are modeled in a nonstationary framework by means of the Generalized Additive Models in Location, Scale and Shape (GAMLSS). Modeling analyses are used to characterize nonstationarities in rainfall and related climate variables. It is shown that the GAMLSS models are able to represent the magnitude and spread in the seasonal time series with parameters which are a smooth function of time. Covariate analyses highlight the role of seasonal and interannual variability of large-scale climate forcing, as reflected in three teleconnection indexes (Atlantic Multidecadal Oscillation, North Atlantic Oscillation, and Mediterranean Index), for modeling seasonal rainfall and temperature over Rome. In particular, the North Atlantic Oscillation is a significant predictor during the winter, while the Mediterranean Index is a significant predictor for almost all seasons.  相似文献   

4.
Time–frequency characterization is useful in understanding the nonlinear and non-stationary signals of the hydro-climatic time series. The traditional Fourier transform, and wavelet transform approaches have certain limitations in analyzing non-linear and non-stationary hydro-climatic series. This paper presents an effective approach based on the Hilbert–Huang transform to investigate time–frequency characteristics, and the changing patterns of sub-divisional rainfall series in India, and explored the possible association of monsoon seasonal rainfall with different global climate oscillations. The proposed approach integrates the complete ensemble empirical mode decomposition with adaptive noise algorithm and normalized Hilbert transform method for analyzing the spectral characteristics of two principal seasonal rainfall series over four meteorological subdivisions namely Assam-Meghalaya, Kerala, Orissa and Telangana subdivisions in India. The Hilbert spectral analysis revealed the dynamic nature of dominant time scales for two principal seasonal rainfall time series. From the trend analysis of instantaneous amplitudes of multiscale components called intrinsic mode functions (IMFs), it is found that both intra and inter decadal modes are responsible for the changes in seasonal rainfall series of different subdivisions and significant changes are noticed in the amplitudes of inter decadal modes of two seasonal rainfalls in the four subdivisions since 1970s. Further, the study investigated the links between monsoon rainfall with the global climate oscillations such as Quasi Bienniel Oscillation (QBO), El Nino Southern Oscillation (ENSO), Sunspot Number (SN), Atlantic Multidecadal Oscillation (AMO) etc. The study noticed that the multiscale components of rainfall series IMF1, IMF2, IMF3, IMF4 and IMF5 have similar periodic structure of QBO, ENSO, SN, tidal forcing and AMO respectively. As per the seasonal rainfall patterns is concerned, the results of the study indicated that for Assam-Meghalaya subdivision, there is a likelihood of extreme rare events at ~0.2 cycles per year, and both monsoon and pre-monsoon rainfall series have decreasing trends; for Kerala subdivision, extreme events can be expected during monsoon season with shorter periodicity (~2.5 years), and monsoon rainfall has statistically significant decreasing trend and post-monsoon rainfall has a statistically significant increasing trend; and for Orissa subdivision, there are chances of extremes rainfall events in monsoon season and a relatively stable rainfall pattern during post-monsoon period, but both monsoon and post-monsoon rainfall series showed an overall decreasing trend; for Telangana subdivision, there is a likelihood of extreme events during monsoon season with a periodicity of ~4 years, but both monsoon and post-monsoon rainfall series showed increasing trends. The results of correlation analysis of IMF components of monsoon rainfall and five climate indices indicated that the association is expressed well only for low frequency modes with similar evolution of trend components.  相似文献   

5.
Variations in the Earth's climate have had considerable impact on society sectors such as energy, agriculture, fisheries, water resources, and environmental quality. This natural climate variability must be documented and understood in order to assess its potential impacts, its predictability and relationships with human-induced changes. Understanding the mechanisms responsible for natural variability proceeds through a strategy based on the use of a hierarchy of climate models and careful data analysis. In this paper, we examine primarily climate fluctuations on interannual-to-decadal time scales and their climate signature in terms of precipitation and temperature. First, space and time characteristics of two of the major variability modes, the Southern Oscillation (and its associated teleconnection patterns) and the North Atlantic Oscillation, are documented with a focus onto the midlatitudes of the Northern Hemisphere. Then, the current hypothesis regarding the nature of these modes (forced, coupled or internal) are reviewed based on both simulation results and statistical data analyses. Next, we address the potential predictability of seasonal surface temperature and land precipitation using an ensemble of atmospheric model simulations forced by observed sea surface temperatures. Finally, we review the relationships between the atmospheric variability modes and the recent low-frequency trends and suggest a possible influence of anthropogenic effects on these low-frequency variations.  相似文献   

6.
The extreme flood of Lake Constance in 1999 focused attention on the variability of annual lake levels. The year 1999 not only brought one of the highest floods of the last 180 years but also one of the earliest in the season. The 1999 extreme event was caused by heavy rainfall in the alpine and pre-alpine regions. The influence of precipitation in the two distinct regional catchments on lake level variations can be quantified by correlation analysis. The long-term variations in lake level and precipitation show similar patterns. This is seen through the use of spectral analysis, which gives similar bands of spectral densities for precipitation and lake level time series. It can be concluded from the comparison of these results with the analysis of climate change patterns in northern Europe, i.e. the index of the North Atlantic Oscillation, that the regional effects on lake level variations are more pronounced than those of global climate change.  相似文献   

7.
We examine the warm season (April-September) rainfall climatology of the northeastern US through analyses of high-resolution radar rainfall fields from the Hydro-NEXRAD system and regional climate model simulations using the weather research and forecasting (WRF) model. Analyses center on the 5-year period from 2003 to 2007 and the study area includes the New York-New Jersey metropolitan region covered by radar rainfall fields from the Fort Dix, NJ WSR-88D. The objective of this study is to develop and test tools for examining rainfall climatology, with a special focus on heavy rainfall. An additional emphasis is on rainfall climatology in regions of complex terrain, like the northeastern US, which is characterized by land-water boundaries, large heterogeneity in land use and cover, and mountainous terrain in the western portion of the region. We develop a 5-year record of warm season radar rainfall fields for the study region using the Hydro-NEXRAD system. We perform regional downscaling simulations for the 5-year study period using the WRF model. Radar rainfall fields are used to characterize the interannual, seasonal and diurnal variation of rainfall over the study region and to examine spatial heterogeneity of rainfall. Regional climate model simulations are characterized by a wet bias in the rainfall fields, with the largest bias in the high-elevation regions of the model domain. We show that model simulations capture broad features of the interannual, seasonal, and diurnal variation of rainfall. Model simulations do not capture spatial gradients in radar rainfall fields around the New York metropolitan region and land-water boundaries to the east. The model climatology of convective available potential energy (CAPE) is used to interpret the regional distribution of warm season rainfall and the seasonal and diurnal variability of rainfall. We use hydrologic and meteorological observations from July 2007 to examine the interactions of land surface processes and rainfall from a regional perspective.  相似文献   

8.
High-frequency stable isotope data are useful for validating atmospheric moisture circulation models and provide improved understanding of the mechanisms controlling isotopic compositions in tropical rainfall. Here, we present a near-continuous 6-month record of O- and H-isotope compositions in both water vapour and daily rainfall from Northeast Australia measured by laser spectroscopy. The data set spans both wet and dry seasons to help address a significant data and knowledge gap in the southern hemisphere tropics. We interpret the isotopic records for water vapour and rainfall in the context of contemporaneous meteorological observations. Surface air moisture provided near-continuous tracking of the links between isotopic variations and meteorological events on local to regional spatial scales. Power spectrum analysis of the isotopic variation showed a range of significant periodicities, from hourly to monthly scales, and cross-wavelet analysis identified significant regions of common power for hourly averaged water vapour isotopic composition and relative humidity, wind direction, and solar radiation. Relative humidity had the greatest subdiurnal influence on isotopic composition. On longer timescales (weeks to months), isotope variability was strongly correlated with both wind direction and relative humidity. The high-frequency records showed diurnal isotopic variations in O- and H-isotope compositions due to local dew formation and, for deuterium excess, as a result of evapotranspiration. Several significant negative isotope anomalies on a daily scale were associated with the activity of regional mesoscale convective systems and the occurrence of two tropical cyclones. Calculated air parcel back trajectories identified the predominant moisture transport paths from the Southwest Pacific Ocean, whereas moisture transport from northerly directions occurred mainly during the wet season monsoonal airflow. Water vapour isotope compositions reflected the same meteorological events as recorded in rainfall isotopes but provided much more detailed and continuous information on atmospheric moisture cycling than the intermittent isotopic record provided by rainfall. Improved global coverage of stable isotope data for atmospheric water vapour is likely to improve simulations of future changes to climate drivers of the hydrological cycle.  相似文献   

9.
Most studies on separating the effects of climate change and human activities on runoff are mainly conducted at an annual scale with few analyses over different time scales, which is especially essential for regional water resources management. This paper investigates the impacts of climate change and human activities on runoff changes at annual, seasonal and monthly time scales in the Zhang River basin in North China. Firstly, the changing trends and inflection point are analyzed for hydro-climatic series over different time scales. Then the hydrological modeling based method and sensitivity based method are used to separate the effects. The results show that the effect of climate change is stronger than that of human activities on annual runoff changes. However, the driving factors on runoff are different at seasonal scale. In the wet season, the effect of human activities on runoff, accounting for 57 %, is stronger than that of climate change, while in the dry season climate change is the dominant factor for runoff reduction and the contribution rate is 72 %. Furthermore, the effects of climate change and human activities on monthly runoff changes are various in different months. The separated effects over different time scales in this study may provide more scientific basis for the water resources adaptive management over different time scales in this basin.  相似文献   

10.
《水文科学杂志》2013,58(6):1006-1020
Abstract

This paper aims to compare the shift in frequency distribution and skill of seasonal climate forecasting of both streamflow and rainfall in eastern Australia based on the Southern Oscillation Index (SOI) Phase system. Recent advances in seasonal forecasting of climate variables have highlighted opportunities for improving decision making in natural resources management. Forecasting of rainfall probabilities for different regions in Australia is available, but the use of similar forecasts for water resource supply has not been developed. The use of streamflow forecasts may provide better information for decision-making in irrigation supply and flow management for improved ecological outcomes. To examine the relative efficacy of seasonal forecasting of streamflow and rainfall, the shift in probability distributions and the forecast skill were evaluated using the Wilcoxon rank-sum test and the linear error in probability space (LEPS) skill score, respectively, at three river gauging stations in the Border Rivers Catchment of the Murray-Darling Basin in eastern Australia. A comparison of rainfall and streamflow distributions confirms higher statistical significance in the shift of streamflow distribution than that in rainfall distribution. Moreover, streamflow distribution showed greater skill of forecasting with 0–3 month lead time, compared to rainfall distribution.  相似文献   

11.
Ezer  Tal 《Ocean Dynamics》2022,72(11):741-759

The long-term variability of sea level and surface flows in the Gulf of Mexico (GOM) is studied using global monthly sea level reconstruction (RecSL) for 1900–2015. The study explored the long-term relation between the dynamics of the GOM and inflows/outflows through the Yucatan Channel (YC) and the Florida Straits (FS). The results show a century-long trend of increased mean velocity and variability in the Loop Current (LC); however, no significant upward trend was found in the YC and FS flows, only increased variability. Empirical orthogonal function (EOF) analysis of sea surface height found spatial patterns dominated by variations in the LC and temporal variations on time scales ranging from a few months to multidecadal. The time evolution of each EOF mode of sea level is correlated with the velocity of either the LC, the YC, or the FS or some combination of the different flows. The mean sea level difference between the GOM and the northwestern Caribbean Sea was found to be influenced by the North Atlantic Oscillation (NAO), with unusually high differences during the 1970s when the NAO index was low and the Atlantic Ocean circulation was weak. Extreme peaks in SL difference coincide with the extension of the LC and the seasonal eddy shedding pattern. The observed seasonal cycle in the extension area of the LC as obtained from 20 years of altimeter data is significantly correlated (R = 0.63; confidence level = 98%) with the seasonal YC flow obtained from 116 years of the RecSL data. However, the same LC extension record had lower correlation (R = 0.45; confidence level = 90%) with the observed YC transport obtained from direct moored measurements over ~ 5 years, indicating the need for much longer measurements, since the LC extension and the YC flow are strongly affected by interannual and decadal variations. The study demonstrates the usefulness of even a coarse-resolution reconstruction for studies of regional ocean variability and climate change over longer time scales than current direct observations allow.

  相似文献   

12.
This paper presents a quantitative ecohydrological framework for predicting regional distribution patterns of woody species in dryland ecosystems. The framework is based on an existing stochastic model for the daily mass balance of water that represents the interactions between soils, climate, and vegetation. Individual species selection is based on an optimality trade-off hypothesis, which states that dryland vegetation patterns are constrained by maximization of water use and simultaneous minimization of water stress. The relative importance of water use and stress avoidance to the overall fitness of three Acacia species is determined from the heterogeneous basin, the Upper Ewaso Ng’iro river basin, of the central Kenya highlands. The model results indicate that overall fitness is more strongly influenced by water use than stress avoidance but that consideration of both stress avoidance and water use is critical to predicting basin-scale patterns of species distribution. We identify a linear trend in the frequency and intensity of storms with the same annual total using a basin-wide gauge precipitation dataset. After calibration, we apply the basin average linear trends in time for average rain per storm and storm arrival rates. The model results indicate the upslope migration of two species, Acacia tortilis and Acacia xanthophloea to areas with higher total rainfall. Lastly, we explore the modeled changes of species cover in the basin influenced by changes in rainfall total holding growing season rainfall variability constant and changes in growing season rainfall variability holding total rainfall constant. We find that changes in dryland species distribution patterns and relative abundance may be as sensitive to growing season rainfall variability as they are to changes in total rainfall amounts.  相似文献   

13.
The root‐zone moisture replenishment mechanisms are key unknowns required to understand soil hydrological processes and water sources used by plants. Temporal patterns of root‐zone moisture replenishment reflect wetting events that contribute to plant growth and survival and to catchment water yield. In this study, stable oxygen and hydrogen isotopes of twigs and throughfall were continuously monitored to characterize the seasonal variations of the root‐zone moisture replenishment in a native vegetated catchment under Mediterranean climate in South Australia. The two studied hillslopes (the north‐facing slope [NFS] and the south‐facing slope [SFS]) had different environmental conditions with opposite aspects. The twig and throughfall samples were collected every ~20 days over 1 year on both hillslopes. The root‐zone moisture replenishment, defined as percentage of newly replenished root‐zone moisture as a complement to antecedent moisture for plant use, calculated by an isotope balance model, was about zero (±25% for the NFS and ± 15% for the SFS) at the end of the wet season (October), increased to almost 100% (±26% for the NFS and ± 29% for the SFS) after the dry season (April and May), then decreased close to zero (±24% for the NFS and ± 28% for the SFS) in the middle of the following wet season (August). This seasonal pattern of root‐zone moisture replenishment suggests that the very first rainfall events of the wet season were significant for soil moisture replenishment and supported the plants over wet and subsequent dry seasons, and that NFS completed replenishment over a longer time than SFS in the wet season and depleted the root zone moisture quicker in the dry season. The stable oxygen isotope composition of the intraevent samples and twigs further confirms that rain water in the late wet season contributed little to root‐zone moisture. This study highlights the significant role of the very first rain events in the early wet season for ecosystem and provides insights to understanding ecohydrological separation, catchment water yield, and vegetation response to climate changes.  相似文献   

14.
Using a rainfall stochastic generator to detect trends in extreme rainfall   总被引:4,自引:3,他引:1  
An original approach is proposed to estimate the impacts of climate change on extreme events using an hourly rainfall stochastic generator. The considered generator relies on three parameters. These parameters are estimated by average, not by extreme, values of daily climatic characteristics. Since climate changes should result in parameters instability in time, the paper focuses on testing the presence of linear trends in the generator parameters. Maximum likelihood tests are used under a Poisson–Pareto-Peak-Over-Threshold model. A general regionalization procedure is also proposed which offers the possibility to work on both local and regional scales. From the daily information of 139 rain gauge stations between 1960 and 2003, changes in heavy precipitations in France and their impacts on quantile predictions are investigated. It appears that significant changes occur mainly between December and May for the rainfall occurrence which increased during the four last decades, except in the Mediterranean area. Using the trend estimates, one can deduced that these changes, up to now, do not affect quantile estimations.  相似文献   

15.
Stochastic rainfall models are important for many hydrological applications due to their appealing ability to simulate synthetic series that resemble the statistical characteristics of the observed series for a location of interest. However, an important limitation of stochastic rainfall models is their inability to preserve the low-frequency variability of rainfall. Accordingly, this study presents a simple yet efficient stochastic rainfall model for a tropical area that attempts to incorporate seasonal and inter-annual variabilities in simulations. The performance of the proposed stochastic rainfall model, the tropical climate rainfall generator (TCRG), was compared with a stochastic multivariable weather generator (MV-WG) in various aspects. Both models were applied on 17 rainfall stations at the Kelantan River Basin, Malaysia, with tropical climate. The validations were carried out on seasonal (monsoon and inter-monsoon) and annual basis. The third-order Markov chain of the TCRG was found to perform better in simulating the rainfall occurrence and preserving the low-frequency variability of the wet spells. The log-normal distribution of the TCRG was consistently better in modelling the rainfall amounts. Both models tend to underestimate the skewness and kurtosis coefficient of the rainfall. The spectral correction approach adopted in the TCRG successfully preserved the seasonal and inter-annual variabilities of rainfall amounts, whereas the MV-WG tends to underestimate the variability bias of rainfall amounts. Overall, the TCRG performed reasonably well in the Kelantan River Basin, as it can represent the key statistics of rainfall occurrence and amounts successfully, as well as the low-frequency variability.  相似文献   

16.
Heavy rainfall events during the fall season are causing extended damages in Mediterranean catchments. A peaks‐over‐threshold model is developed for the extreme daily areal rainfall occurrence and magnitude in fall over six catchments in Southern France. The main driver of the heavy rainfall events observed in this region is the humidity flux (FHUM) from the Mediterranean Sea. Reanalysis data are used to compute the daily FHUM during the period 1958–2008, to be included as a covariate in the model parameters. Results indicate that the introduction of FHUM as a covariate can improve the modelling of extreme areal precipitation. The seasonal average of FHUM can improve the modelling of the seasonal occurrences of heavy rainfall events, whereas daily FHUM values can improve the modelling of the events magnitudes. In addition, an ensemble of simulations produced by five different general circulation models are considered to compute FHUM in future climate with the emission scenario A1B and hence to evaluate the effect of climate change on the heavy rainfall distribution in the selected catchments. This ensemble of climate models allows the evaluation of the uncertainties in climate projections. By comparison to the reference period 1960–1990, all models project an amplification of the mean seasonal FHUM from the Mediterranean Sea for the projection period 2070–2099, on average by +22%. This increase in FHUM leads to an increase in the number of heavy rainfall events, from an average of 2.55 events during the fall season in present climate to 3.57 events projected for the period 2070–2099. However, the projected changes have limited effects on the magnitude of extreme events, with only a 5% increase in the median of the 100‐year quantiles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Rainfall data collected on and around the Soufriere Hills Volcano, Montserrat between 1998 and 2003 were analysed to assess the impact on primary volcanic activity, defined here as pyroclastic flows, dome collapses, and explosions. Fifteen such rainfall-triggered events were identified. If greater than 20 mm of rain fell on a particular day, the probability of a dome collapse occurring on that day increased by a factor of 6.3% to 9.2%, compared to a randomly chosen day. Similarly, the probability of observing pyroclastic flows and explosions on a day with > 20 mm of rainfall increased by factors of 2.6 and 5.4, respectively. These statistically significant links increased as the rainfall threshold was increased. Seventy percent of these rainfall-induced dome collapse episodes occurred on the same calendar day (most within a few hours) as the onset of intense rainfall, but an extra 3 occurred one or two calendar days later. The state of the volcano was important, with the rainfall–volcanic activity link being strongest during periods of unstable dome growth and weakest during periods of no dome growth or after a recent major collapse.Over 50% of the heavy rain days were associated with large-scale weather systems that can potentially be forecast up to a few days ahead. However, the remaining heavy rain days were associated with small-scale, essentially unpredictable weather systems. There was significant variability in the amount of rainfall recorded by different rain gauges, reflecting topographic variations around the volcano but also the inherent small-scale variability within an individual weather system. Hence, any monitoring/warning program is recommended to use a network, rather than just a single gauge. The seasonal cycle in rainfall was pronounced, with nearly all the heavy rain days occurring in the May–December wet season. Hence, the dome was at its most vulnerable at the beginning of the wet season after a period of uninterrupted growth. Interannual variability in rainfall was related to tropical Pacific and Atlantic sea surface temperature anomalies, and holds out the prospect of some limited skill in volcanic hazard forecasts at even longer lead times.  相似文献   

18.
天气尺度瞬变扰动的物理分解原理   总被引:16,自引:8,他引:8       下载免费PDF全文
钱维宏 《地球物理学报》2012,55(5):1439-1448
大气变量可以在时空域内物理分解成四个部分.前两个是纬圈-时间平均的对称部分和时间平均的非对称部分,分别由太阳辐射和海陆分布热力调节的季节变化引起,并形成规则的逐日气候.第三部分是由年际和季节内的热带海洋或极地热力强迫引起的纬圈平均瞬变对称扰动,可形成大气变量的行星尺度指数循环.第四部分是一些复杂的天气尺度瞬变非对称扰动.大气变量中的逐日天气尺度瞬变扰动,可以用于指示区域持续性的干旱、暴雨、低温和热浪等极端天气事件.天气尺度瞬变扰动天气图能在极端天气事件的预报中发挥应有的作用.  相似文献   

19.
Isotopes of water (2H/1H and 18O/16O) are commonly used to trace hydrological processes such as moisture recycling, evaporation loss, and moisture source region and often vary temporally in a given region. This study provides a first‐ever characterization of temporally variable precipitation mechanisms of San Cristóbal Island, Galápagos. We collected fog, rain, and throughfall samples over three field seasons to understand the mechanisms driving seasonal‐ and event‐based variability in the isotopic composition of precipitation in Galápagos. We establish that fog is a common phenomenon in San Cristóbal, especially during the dry season, and we found that fog, compared with cocollected rainfall, is consistently enriched. We further suggest that the relative contribution of fog formed via different mechanisms (orographic, advective, radiation) varied seasonally. We found that the source region is the most dominant control of the isotopic composition of rainfall in the Galápagos at both the seasonal and event scales, but subcloud evaporative processes (the nontraditional manifestation of the amount effect) became a dominant control on the isotopic composition of rainfall during the dry season. Overall, our findings suggest that understanding seasonally variable water‐generating mechanisms is required for effective water resource management in San Cristóbal Island and other semiarid island ecosystems under current and future regimes of climate change.  相似文献   

20.
Tonle Sap Lake (TSL) is one of the world's most productive lacustrine ecosystems, driven by the Mekong River's seasonal flood pulse. This flood pulse and its long-term dynamics under the Mekong River basin's (MRB) fast socio-economic development and climate change need to be identified and understood. However, existing studies fall short of sufficient time coverage or concentrate only on changes in water level (WL) that is only one of the critical flood pulse parameters influencing the flood pulse ecosystem productivity. Considering the rapidly changing hydroclimatic conditions in the Mekong basin, it is crucial to systematically analyse the changes in multiple key flood pulse parameters. Here, we aim to do that by using observed WL data for 1960–2019 accompanied with several parameters derived from a Digital Bathymetry Model. Results show significant declines of WL and inundation area from the late 1990s in the dry season and for the whole year, on top of increased subdecadal variability. Decreasing (increasing) probabilities of high (low) inundation area for 2000–2019 have been found, in comparison to the return period of inundation area for 1986–2000 (1960–1986). The mean seasonal cycle of daily WL in dry (wet) season for 2000–2019, compared to that for 1986–2000, has shifted by 10 (5) days. Significant correlations and coherence changes between the WL and large-scale circulations (i.e., El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and Indian Ocean Dipole (IOD)), indicate that the atmospheric circulations could have influenced the flood pulse in different time scales. Also, the changes in discharge at the Mekong mainstream suggest that anthropogenic drivers may have impacted the high water levels in the lake. Overall, our results indicate a declining flood pulse since the late 1990s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号