首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Geodinamica Acta》2013,26(1-3):101-126
The olistostromes formed in Northern Carpathians during the different stages of the development of flysch basins, from rift trough post-rift, orogenic to postorogenic stage. They are known from the Cretaceous, Paleocene, Eocene, Oligocene and Early Miocene flysch deposits of main tectonic units. Those units are the Skole, Subsilesian, Silesian, Dukla and Magura nappes as well as the Pieniny Klippen Belt suture zone. The oldest olistoliths in the Northern Carpathians represent the Late Jurassic-Early Cretaceous rifting and post-rifting stage of the Northern Carpathians and origin of the proto-Silesian basin. They are known from the Upper Jurassic as well as Upper Jurassic-Lower Cretaceous formations. In the southern part of the Polish Northern Carpathians as well as in the adjacent part of Slovakia, the olistoliths are known in the Cretaceous- Paleocene flysch deposits of the Pieniny Klippen Belt Zlatne Unit and in Magura Nappe marking the second stage of the plate tectonic evolution - an early stage of the development of the accretionary prism. The most spectacular olistostromes have been found in the vicinity of Haligovce village in the Pieniny Klippen Belt and in Jaworki village in the border zone between the Magura Nappe and the Pieniny Klippen Belt. Olistoliths that originated during the second stage of the plate tectonic evolution occur also in the northern part of the Polish Carpathians, in the various Upper Cretaceous-Early Miocene flysch deposits within the Magura, Fore-Magura, Dukla, Silesian and Subsilesian nappes. The Fore-Magura and Silesian ridges were destroyed totally and are only interpreted from olistoliths and exotic pebbles in the Outer Carpathian flysch. Their destruction is related to the advance of the accretionary prism. This prism has obliquely overridden the ridges leading to the origin of the Menilite-Krosno basin.

In the final, postcollisional stage of the Northern Carpathian plate tectonic development, some olistoliths were deposited within the late Early Miocene molasse. These are known mainly from the subsurface sequences reached by numerous bore-holes in the western part of the Polish Carpathians as well as from outcrops in Poland and the Czech Republic.

The largest olistoliths (kilometers in size bodies of shallow-water rocks of Late Jurassic-Early Cretaceous age) are known from the Moravia region. The largest olistoliths in Poland were found in the vicinity of Andrychów and are known as Andrychów Klippen. The olistostromes bear witness to the processes of the destruction of the Northern Carpathian ridges. The ridge basement rocks, their Mesozoic platform cover, Paleogene deposits of the slope as well as older Cretaceous flysch deposits partly folded and thrust within the prism slid northward toward the basin, forming the olistostromes.  相似文献   

2.
Four occurrences of Jurassic stromatactis mud-mounds were found in the Czorsztyn Unit of the Pieniny Klippen Belt (Western Carpathians) — in western Slovakia (Slavnické Podhorie, Babiná), and in the Transcarpathian Ukraine (Priborzhavskoe and Veliky Kamenets). Their stratigraphic range is from Bajocian to Callovian. The mounds consist of micropeloidal mudstones, wackestones to packstones with a fauna including pelecypods, brachiopods, ammonites and crinoids. Spicules and skeletons of siliceous sponges are abundant in every section. All of the mounds contain networks of stromatactis cavities that are partially filled with radiaxial fibrous calcite (RFC) and locally by internal sediments. At Slavnické Podhorie, the sparry masses that fill stromatactis cavities are weathered out and show casts of sponges. Parallel study of the weathered casts and their cross-sections in slabs showed that they bear all the signs of stromatactis (relatively flat bottoms and digitate upper parts, RFC initial fillings and eventual blocky calcite later filling). Almost no original sponge structures were preserved. This strongly supports the possible sponge-related origin for stromatactis cavities.  相似文献   

3.
The Late Cretaceous Brezová and Myjava Groups of the Western Carpathians in Slovakia and formations of the Gosau Group of the Northern Calcareous Alps in Lower Austria comprise similar successions of alluvial/shallow marine deposits overlain by deep water hemipelagic sediments and turbidites. In both areas the heavy mineral spectra of Late Cretaceous sediments contain significant amounts of detrital chrome spinel. In the Early Tertiary the amount of garnet increases. Cluster analysis and correspondence analysis of Coniacian/Santonian and Campanian/Early Maastrichtian heavy mineral data indicate strong similarities between the Gosau deposits of the Lunz Nappe of the north-eastern part of the Northern Calcareous Alps and the Brezova Group of the Western Carpathians. Similar source areas and a similar palaeogeographical position at the northern active margin of the Adriatic/Austroalpine plate are therefore suggested for the two tectonic units.Basin subsidence mechanisms within the Late Cretaceous of the Northern Calcareous Alps are correlated with the Western Carpathians. Subsidence during the Campanian-Maastrichtian is interpreted as a consequence of subduction tectonic erosion along the active northern margin of the Adriatic/Austroalpine plate. Analogous facies and heavy mineral associations from deep water sandstones of the Manin Unit and the Klape Unit indicate accretion of parts of the Pieniny Klippen Belt during the Late Cretaceous along the Adriatic/Austroalpine margin.  相似文献   

4.
《Geodinamica Acta》2013,26(1-3):83-100
The Magura Basin domain developed in its initial stage as a Jurassic-Early Cretaceous rifted passive margin that faced the eastern parts of the oceanic Alpine Tethys. In the pre- and syn-orogenic evolution of the Magura Basin the following prominent periods can be distinguished: Middle Jurassic-Early Cretaceous syn-rift opening of basins (1) followed by Early Cretaceous post-rift thermal subsidence (2), latest Cretaceous–Paleocene syn-collisional inversion (3), Late Paleocene to Middle Eocene flexural subsidence (4) and Late Eocene - Early Miocene synorogenic closing of the basin (5). The driving forces of tectonic subsidence of the basin were syn-rift and thermal post-rift processes, as well as tectonic loads related to the emplacement of accretionary wedge. This process was initiated at the end of the Paleocene at the Pieniny Klippen Belt (PKB)/Magura Basin boundary and was completed during Late Oligocene in the northern part of the Magura Basin. During Early Miocene the Magura Basin was finally folded, thrusted and uplifted as the Magura Nappe.  相似文献   

5.
The Cenomanian–Turonian carbonate-dominated lithofacies of Israel reflect a complex interplay between tectonics, sea-level change, and palaeoecology. Improved correlation based on revision of the bio- and chronostratigraphic framework has enabled the establishment of a sequence-stratigraphic model comprising five sequences delineated by four sequence boundaries, in the Late Cenomanian–Early Coniacian interval. The Late Cenomanian–Turonian succession begins with prograding, highstand, carbonate-platform deposits of the first sequence. Interruption of progradation and drowning of this platform took place within the Late Cenomanian guerangeri Zone (=the vibrayeanus Zone in Israel), resulting in a drowning unconformity which is regarded as a Type 3 sequence boundary (labelled CeUp). The drowning is attributed in part to extinctions in the rudist-dominated biofacies (e.g., Caprinidae), which led to reduced carbonate production and enhanced the impact of the sea-level rise. Similar drowning of Tethyan platforms around the C/T boundary has been linked to the establishment of coastal upwelling and consequent eutrophication. Outer ramp hemipelagic facies (Derorim and the Lower Ora formations) replaced the platform carbonates, thickening substantially southwards in the Eshet-Zenifim Basin of southern Israel. Along the ancient continental slope (Mediterranean coastal plain) evidence of this drowning is obscured by submarine erosion, while in central and northern Israel the drowned section is represented by condensation or a hiatus, reflecting an elevated, sediment-starved sea-floor. A carbonate platform dominated by rudistid shoals (‘Meleke’ Member; Shivta Formation) was re-established in the Judean hills and northern Negev during the middle part of the Turonian coloradoense Zone (local zone T4). Later, during kallesi Zone times (T7), the platform facies prograded southwards towards the Eshet-Zenifim intra-shelf basin. The drowning succession and overlying resurrected carbonate platform are topped in central and southern Israel by a pronounced Type 1 sequence boundary (Tu1) between the kallesi (T7) and ornatissimum (T8) zones (Middle Turonian). In central Israel and northern Negev the sequence boundary is overlain by lowstand deposits of the ‘Clastic Unit’ and by the transgressive and highstand inner to mid-ramp deposits of the Nezer and Upper Bina formations. In the southern Negev the sequence boundary is overlain by lowstand and transgressive systems tracts of mixed carbonates, siliciclastics, and localized evaporites (Upper Ora Formation), and then by mid to inner ramp carbonates of the Gerofit Formation. The latter represents a very high rate of accumulation, indicating rapid, continued subsidence balanced by platform growth. The Tu2 sequence boundary of the Late Turonian is expressed in the southern Negev by a shift from inner ramp carbonates of the Gerofit Formation to outer ramp chalky limestones of the Zihor Formation, indicating localized drowning. The succeeding Co1 sequence boundary again indicates localized drowning of the prograding highstand deposits of the Zihor Formation (‘Transition Zone’) overlain by Lower Coniacian transgressive deposits of the upper part of the Zihor Formation. All of these third-order sequences are expressed in southern Israel, where the rate of subsidence was in balance with sea-level fluctuations. In contrast, the Judean Hills and eastern Galilee areas have a more incomplete succession, characterized by hiatuses and condensation, because of reduced subsidence. More distal areas of continuous deep-water deposition in western Galilee and the coastal plain failed to record the Middle Turonian lowstand, while a longer term, second-order sequence spanning the entire Late Cenomanian–Early Coniacian interval, is present in the Carmel and Yirka Basin areas.  相似文献   

6.
Analysis of hydraulic heads and chemical compositions of Devonian formation waters in the west central part of the Alberta Basin, Canada, characterizes the origin of formation waters and migration of brines. The Devonian succession in the study area lies 2000–5000 m below the ground surface, and has an approximate total thickness of 1000 m and an average slope of 15 m/km. Four Devonian aquifers are present in the study area, which form two aquifer systems [i.e., a Middle–Upper Devonian aquifer system (MUDAS) consisting of the Elk Point and Woodbend–Beaverhill Lake aquifers, and an Upper Devonian aquifer system (UDAS) consisting of the Winterburn and Wabamun aquifers]. The Ireton is an effective aquitard between these two systems in the eastern parts of the study area. The entire Devonian succession is confined below by efficient aquitards of the underlying Cambrian shales and/or the Precambrian basement, and above by overlying Carboniferous shales of the Exshaw and Lower Banff Formations.The formation water chemistry shows that the Devonian succession contains two distinct brine types: a ‘heavy brine,’ located updip, defined approximately by TDS >200 g/l, and a ‘light brine’ with TDS <200 g/l. Hydraulic head distributions suggest that, presently, the ‘light brine’ attempts to flow updip, thereby pushing the ‘heavy brine’ ahead. The interface between the two brines is lobate and forms large-scale tongues that are due to channeled flow along high-permeability pathways. Geological and hydrogeochemical data suggest that the following processes determined the present composition of the ‘light’ and ‘heavy’ brines: original seawater, evaporation beyond gypsum but below halite saturation, dolomitization, clay dehydration, gypsum dewatering, thermochemical sulfate reduction (TSR), and halite dissolution. The influx of meteoric (from the south) and metamorphic (from the west) waters can be recognized only in the ‘light brine.’ Albitization can be unequivocally identified only in the ‘heavy brine.’ The ‘heavy brine’ may be residual Middle Devonian evaporitic brine from the Williston Basin or the Elk Point Basin, or it may have originated from partial dissolution of thick, laterally extensive Middle Devonian evaporite deposits to the east of the study area. The ‘light brine’ most probably originated from dilution of ‘heavy brine’ in post-Laramide times.  相似文献   

7.
Eighteen Albian and Cenomanian planktic Foraminiferida from the Pieniny Klippen Belt of Poland are discussed. A local biostratigraphic zonation (six zones) is proposed and certain problems of palaeoecology are reviewed. The lithostratigraphical element is the so-called Trawne Beds, a Cretaceous flysch in the Pieniny Klippen Belt.  相似文献   

8.
The analysis of calpionellid associations from jebels Amar and Jédidi sections in North-Atlasic Tunisia provides, for the first time, a precise biozonation of the Jurassic–Cretaceous transition succession. In the light of the new data obtained and considering recently published results, the age of Upper Jurassic formations is clarified, allowing correlations with the Tunisian ‘Dorsale’ and the North–South Axis successions. Within the Maghrebides' range, sections from the external zones correlated to the Tunisian successions are quite distinctive from their equivalent in the internal zones. Both have evolved in different palaeogeographic domains related to the early structuration of the northwestern and southwestern Tethys margins. To cite this article: M. Boughdiri et al., C. R. Geoscience 338 (2006).  相似文献   

9.
This is a critical assessment of the paper by Oszczypko et al. (2004: Cretaceous Research 25, 89–113), in which they tried to prove a mid-Cretaceous age for the Szlachtowa (“black flysch”) and Opaleniec Formations, in the Pieniny Klippen Belt, West Carpathians, both of which had previously been shown to be of Jurassic age. We argue that the mid-Cretaceous age assignment is a misinterpretation, primarily resulting from their field samples having been collected from some Cretaceous lithostratigraphic units, tectonically associated with the Jurassic formations, and/or from tectonic contact-breccias involving Jurassic and Cretaceous strata. In addition, we suggest that they have overlooked a number of significant palaeontological papers, published since 1962, which record the presence of in situ ammonites, aptychi, belemnites, thin-shelled bivalves (Bositra), gryphaeids, foraminifera, and ostracod assemblages, all indicating a Jurassic (mainly Aalenian), and not a Cretaceous, age for the Szlachtowa Formation, and also the in situ Jurassic (Bajocian) ammonites and thin-shelled bivalves (Bositra), Bositra-microfacies, and age-diagnostic foraminiferal assemblages of the Opaleniec Formation.Our presentation here of recently published dinocyst data from well-preserved assemblages further supports the Jurassic ages for the Szlachtowa (“black flysch”) and Opaleniec Formations.  相似文献   

10.
Two cored boreholes in the central part of the North West German Basin recovered a unique section of Upper Barremian to Lower Aptian strata. Calcareous nannofossils show a distinctive shift from boreal endemic assemblages in the Barremian to cosmopolitan ones in the Aptian. This onset of new cosmopolitan species (e.g., Chiastozygus litterarius, Flabellites oblongus, Rhagodiscus angustus, Braarudosphaera sp., Eprolithus sp.) is spread over an interval of 25m, starting well below the early Aptian "Fischschiefer", a dark laminated shale rich in organic matter. These changes in the composition of calcareous nannofossils indicate that major palaeoceanographic changes occurred before the deposition of the Fischschiefer.The distribution pattern of calcispheres allows the differentiation of two sedimentary successions, separated by the Fischschiefer. The lower succession, which includes the sediments below the base of the Fischschiefer, indicates a boreal-pelagic environment. The lower part of the upper successions which includes the Fischschiefer, represents warmer inner shelf conditions. This corresponds to the presence of rich Tethyan-derived nannoconid assemblages and the presence of the planktonic foraminifera Hedbergella in the Fischschiefer. The topmost part of the upper succession (middle Aptian, Hedbergella marl) suggests a change to a pelagic warmer water environment. Two new taxa are introduced: the calcareous dinoflagellate cyst Obliquipithonella laqueata n. sp. and the foraminiferan Choanaella fortunate n. gen. n. sp.  相似文献   

11.
This paper investigates slope channel initiation by seabed irregularities that were initially formed by slump scars in the lower to middle Jatiluhur Formation, part of the middle- to late Miocene successions in the Bogor Trough, West Java. This Miocene succession is up to 1000 m thick in the study area, and is interpreted as a prograding slope–shelf system that formed during a period of falling- and lowstand stages in relative sea level. The lower part of the formation is a siltstone-dominated siliciclastic succession, containing slump deposits, slump-scar-fill deposits, and minor channel-fill deposits, which formed in slope and shelf-margin environments. In contrast, the middle part, which gradationally overlies the lower part, is characterized by shallow-marine carbonates.The slump-scars-fill deposits have an overall lenticular geometry, and are 140–480 m wide and 0.4–1.6 m thick. Some have distinct erosional bases, which cut into the underlying siltstones, in association with medium- to coarse-grained sandstones with lateral-accretion surfaces and tractional structures common in channel-fill deposits. The incident link of slump-scar-fill deposits and channel-fill deposits in the prograding slope–shelf succession of the lower to middle Jatiluhur Formation suggests that some slump scars formed incipient seabed irregularities that may have played an important role in the development of slope channels. The present study provides one example of the various potential mechanisms that can result in channel formation in a slope setting.  相似文献   

12.
A Late Hauterivian interval (127.5 Ma), called the ‘Faraoni Event’, which is characterised by the deposition of deep-marine black shales in the Mediterranean Tethys, is demonstrably of sufficient geological brevity to be qualified as an anoxic event. This event lies within the Pseudothurmannia catulloi ammonite subzone, coincides with the extinction of the calcareous nannofossil species Lithraphidites bollii, and records an increase in a globular planktonic foraminifer. High quantities of marine organic matter were preserved in pelagic successions from northern and central Italy, Switzerland, southeastern France, southern Spain and probably elsewhere in the Mediterranean Tethys and Atlantic Ocean. Carbon-isotope stratigraphy from Tethyan and Atlantic sections shows a minor positive excursion in the uppermost part of the Hauterivian and Lowermost Barremian, suggesting accelerated extraction of organic carbon from the ocean reservoir just after the ‘Faraoni Event’. The duration of this short event is less than 100 ka according to cyclostratigraphy and coincides with a third-order sea-level rise. It is likely that similar forcing mechanisms responsible for global OAEs operated during this short time interval. To cite this article: F. Baudin, C. R. Geoscience 337 (2005).  相似文献   

13.
KAr analyses on whole rock and minerals are reported for the Kokoumi anorogenic pluton and alkaline volcanics of the Benue valley, west of Garoua (northern Cameroon), which belong to the northern part of the ‘Cameroon Line’. The two formations yield similar ages of 39 and 37 Ma, respectively. These values likely correspond to the time of emplacement. They are in agreement with the interpretation considering the ‘Cameroon Line’ as a huge lithospheric crack tapping a hot deep asthenospheric zone. To cite this article: R. Montigny et al., C. R. Geoscience 336 (2004).  相似文献   

14.
The Permo-Triassic Beaufort Group (Karoo Basin) of South Africa is biostratigraphically subdivided into eight, temporally successive assemblage zones based on therapsids (‘mammal-like reptiles’). The Temnospondyli, fossil tetrapods usually regarded as extinct amphibians, are second only to therapsids in terms of diversity and abundance in these strata, with nine higher-level taxa (‘families’) known. Temnospondyls are also playing an increasingly important role in biostratigraphy and correlation of the Beaufort strata. The lower Beaufort Group (Late Permian) contains six of the eight biozones, but only one temnospondyl ‘family’, the Rhinesuchidae, whose record in the Karoo is the richest in the world. However, rhinesuchid taxonomy remains in flux and the group is thus of limited biostratigraphic utility. The Early Triassic Lystrosaurus Assemblage Zone (middle Beaufort Group) contains the Rhinesuchidae, Amphibamidae, Lydekkerinidae, Tupilakosauridae, Rhytidosteidae, Mastodonsauridae and Trematosauridae, although the biostratigraphy of temnospondyls within this biozone is poorly constrained. The uppermost reaches of the Lystrosaurus biozone contain a paucity of fossils but includes ‘Kestrosaurus’ (Mastodonsauridae) and ?Trematosuchus (Trematosauridae), taxa previously thought to pertain to the lower part of the overlying Cynognathus biozone. The late Early to Middle Triassic Cynognathus Assemblage Zone (upper Beaufort Group) hosts the Mastodonsauridae, Trematosauridae, Brachyopidae, Laidleriidae and, possibly, the Rhytidosteidae. Based largely on the spatial and temporal distribution of mastodonsaurids, this biozone has been biostratigraphically subdivided into a lower A, middle B and upper C subzones, characterised by differing ages and faunas.  相似文献   

15.
A ca. 600 m thick siliciclastic succession in northern Russia contains abundant and diverse microfossils that document early to middle Ediacaran deposition along the northeastern margin of the East European Platform. The Vychegda Formation is poorly exposed but is well documented by a core drilled in the Timan trough region (Kel’tminskaya-1 borehole). Vychegda siliciclastics lie unconformably above Tonian to lower Cryogenian strata and below equivalents of the late Ediacaran Redkino succession that is widely distributed across the platform. The basal 10 m of the formation preserve acritarchs and fragments of problematic macrofossils known elsewhere only from pre-Sturtian successions. In contrast, the upper, nearly 400 m of the succession contains abundant and diverse large acanthomorphic acritarchs attributable to the Ediacaran Complex Acanthomorph Palynoflora (ECAP). This distinctive set of taxa is known elsewhere only from lower, but not lowermost, Ediacaran rocks. In between lies an additional assemblage of relatively simple filaments and stratigraphically long ranging sphaeromorphic acritarchs interpreted as early Ediacaran in age. Bearing in mind that knowledge of late Cryogenian (post-Strurtian/pre-Marinoan) microfossils is sparse, the Vychegda record is consistent with data from Australia and China which suggest that diverse ECAP microfossil assemblages appeared well into the Ediacaran Period. Accumulating paleontological observations underscore both the promise and challenges for the biostratigraphic characterization of the early Ediacaran Period.  相似文献   

16.
A strongly deformed and metamorphosed Triassic oceanic seamount(s) and plateau succession extends as an east–west belt for 1100 km along the Pontides of northern Turkey. This succession, known widely as the Nilüfer unit, consists mainly of metabasic lava and tuff–marble–phyllite association including tectonic slices of ultramafic rock and gabbro. According to the conodont findings the unit formed during the Early to Mid-Triassic, and the isotopic age data indicate that it underwent high-pressure greenschist facies metamorphism during the latest Triassic period. The metavolcanic rocks form over 80% of the sequence. The Nilüfer unit covers an area of 120,000 km2, with the volume of mafic lava estimated as 2×105 km3. Such a huge volcanic pile has erupted rapidly in a relatively short period during the Early to Mid-Triassic (approx. 10 Ma). Hypotheses for the origin of the Nilüfer unit include a ‘seamount’, ‘intra-arc and/or fore-arc basin’, ‘oceanic plateau’, and ‘Early Triassic rift’. The geochemistry of metabasites and that of relict magmatic clinopyroxenes indicate that there are two main mafic rock groups in the Nilüfer unit displaying tholeiitic and alkaline affinities. No metabasite and clinopyroxene sample display typical orogenic basalt affinity or a subduction signature. Geochemical data obtained in this study are consistent with the derivation of the metabasites from the topmost extrusive layers of an oceanic plateau (LIP) together with the volcanic rocks of seamount(s).  相似文献   

17.
18.
The paper reviews paleomagnetic data from the Central West Carpathians (CWC) of Poland and Slovakia. The CWC constitute an orogen deformed by pre-Tertiary and Tertiary events, situated on the internal side of the Pieniny Klippen Belt and the Tertiary Outer West Carpathian accretionary wedge. The CWC are regarded as the eastern prolongation of the Austroalpine series. There are paleomagnetic evidences for a counterclockwise rotation of the CWC after Oligocene. Having subtracted the effect of this rotation, Middle Cretaceous paleomagnetic poles from the CWC are brought into agreement with preGosau paleopoles from the Upper Austroalpine units of the Northern Calcareous Alps (NCA). It is inferred that a common clockwise rotation of the CWC and NCA had taken place between 90-60 Ma (Middle — Late Cretaceous) during the oblique convergence of the Austroalpine/Central Carpathian realm with the Penninic continental basement.  相似文献   

19.
Benthic foraminifera are one of the most commonly used indicators to infer paleodepth. The information on depth distribution of fossil benthic foraminifera is generally obtained from normal marine environments. However, a significant gap exists with respect to implications of benthic foraminiferal distributions in unique sedimentary successions, such as those deposited under upwelling regimes. In such settings, the paleobathymetric signal is somewhat obscured by the extreme food fluxes and oxygen depletion at the seafloor that cause changes in benthic foraminiferal assemblage composition. Nevertheless, the dynamics of upwelling systems, and as a result the sediment and organic matter accumulation, are known to be directly influenced by eustatic changes, making paleobathymetric reconstruction highly valuable for understanding these systems.The Upper Cretaceous high productivity marine succession of southern Israel, with its variable lithologies, provides a unique opportunity for addressing this issue. Through this succession, a significant turnover in the benthic foraminiferal assemblages is observed associated with a sharp change in lithology from phosphate (Phosphate Member) to organic rich carbonates (Oil Shale Member; OSM). Statistical nMDS analysis distinguished four groups of species indicative of distinct depth habitats: <200 m, 100–300 m, 300–500 m, and >500 m. Each one of these groups corresponds to different parts of the sequence. According to our analysis, the shift in the benthic foraminiferal assemblages is attributed to a distinct regional deepening from shelf environment (<200 m) in the Phosphate Member (upper Campanian) to upper bathyal (200–500 m) at the base of OSM (base Maastrichtian), and deeper to middle bathyal (>500 m) during the Maastrichtian. While taking into account other factors affecting benthic foraminiferal distribution, this study demonstrates that depth distribution models based on normal marine settings might also be applicable as proxies for paleobathymetry in high productivity environments.  相似文献   

20.
Xenoliths from the upper mantle and lower crust are abundant in Plio–Pleistocene alkali basalts of the Nógrád-Gömör Volcanic Field (NGVF; northern Pannonian Basin, northern Hungary/southern Slovakia), representing a valuable ‘probe’ of lithospheric structures and processes. Ultramafic xenoliths have been divided into two groups: (1) Type-I, composed mostly of olivine with subsidiary orthopyroxene, clinopyroxene and spinel, and (2) Type-II, containing mostly Al- and Ti-rich clinopyroxene with subordinate olivine, spinel and plagioclase. Both types often contain amphibole and, to a lesser extent, mica. The refractory character of Type-I xenoliths suggests they represent mantle depleted by prior episodes of partial melting. In contrast, Type-II series (wehrlites, olivine clinopyroxenites, clinopyroxenites and plagioclase-bearing ultramafic lithologies), on the basis of their textural features, thermobarometric histories and major and trace element variation, appear to have formed as magmatic cumulates. Petrologic and geochemical studies of Type-II xenoliths from Nógrád-Gömör suggest they crystallized from basaltic melts emplaced within the lithospheric mantle and lower crust, prior to the onset of Plio–Pleistocene volcanic activity. After their consolidation, metasomatic agents reacted with the anhydrous cumulate phases producing amphiboles and micas at the expense of olivine and clinopyroxene. The metasomatic agents appear to have been adakitic rather than basaltic in composition, possibly linked to a retreating arc–forearc system. Large-scale contamination of the lithospheric mantle can therefore be attributed to fluid and melt fractions related to subduction beneath the outer Carpathian arc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号