首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
The EUV emission spectra in the wavelength range 110–1900 Å of the 5 September 1973 flare observed with the NRL slit spectrograph on Skylab are studied. The results are: (1) The chromospheric and transition-zone lines are greatly enhanced during the flare. In particular, the allowed lines are enhanced more than the intersystem lines. The Ni ii and P ii lines show the greatest enhancement with a factor of 800 increase in intensity. Other lines such as O i, C i, Si iii, S iii, S iv, O iv, O v, and N v show increases in intensity 10–100 times during the flare. (2) The chromospheric lines, although greatly enhanced during the flare, maintain their sharp and gaussian profiles and are not appreciably broadened. The transition zone lines, on the other hand, show a red-shifted component during the initial phase of the flare. The deduced downward velocity in the transition zone is 50 km s–1. In addition, there are large turbulent mass motions. The downward mass motion is probably caused by the pressure imbalance between the flare hot plasma at 13 × 106 K and the cooler plasma at 105 K. (3) The density of the 105 K flare plasma, as deduced from density-sensitive lines, is greater than 1012 cm-3. The depth of the 105 K plasma in the flare transition zone is only of the order of 0.1 km, giving a steep temperature gradient. Consideration of the energy balance between the conductive flux and the radiative energy losses shows that, indeed, the high density in the transition zone requires that its thickness be very small. This is a consequence of the maximum radiative efficiency at the temperature around 105 K in the solar plasma.Ball Brothers Research Corporation.  相似文献   

2.
Lites  Bruce W. 《Solar physics》1981,71(2):329-336
The rapid dissipation of flare energy has been observed in the transition-zone line of C iv at 1548.2 Å using the University of Colorado spectrometer aboard OSO-8. Impulsive brightenings have been resolved with characteristic risetimes as low as 3.5 s. One event is analyzed in detail, in which it is inferred that the electron density is greater than 2 × 1011 cm–3 at T = 60 000 K, and that the flare energy is deposited at a rate of 2 ergs cm–3 s–1 or greater. The temporal behavior of the intensity at the center of the C iv line is consistent with a non-equilibrium ionization of C iii through C v. If this event is a result of the multiple tearing mode instability as the primary energy release mechanism, then the observations indicate a pre-flare magnetic field of about 175 G.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

3.
We describe and analyse observations of an M1.4 flare which began at 17: 00 UT on 12 November, 1980. Ground based H and magnetogram data have been combined with EUV, soft and hard X-ray observations made with instruments on-board the Solar Maximum Mission (SMM) satellite. The preflare phase was marked by a gradual brightening of the flare site in Ov and the disappearance of an H filament. Filament ejecta were seen in Ov moving southward at a speed of about 60 km s–1, before the impulsive phase. The flare loop footpoints brightened in H and the Caxix resonance line broadened dramatically 2 min before the impulsive phase. Non-thermal hard X-ray emission was detected from the loop footpoints during the impulsive phase while during the same period blue-shifts corresponding to upflows of 200–250 km s–1 were seen in Ca xix. Evidence was found for energy deposition in both the chromosphere and corona at a number of stages during the flare. We consider two widely studied mechanisms for the production of the high temperature soft X-ray flare plasma in the corona, i.e. chromospheric evaporation, and a model in which the heating and transfer of material occurs between flux tubes during reconnection.  相似文献   

4.
In this paper we study the main features of the far UV spectrum of the binary star AX Mon, observed with the IUE satellite at phase 0.568.Ions indicating a large range of ionization stages, going fromCi,Oi,Ni toSiv,Civ,Nv are present.The spectrum is dominated by shell absorption lines of Feii, Feiii, Siiii,Cii, Alii, Mgii and Niii.Two satellite components are clearly indicated in all these lines except for Niii which presents only one. Their mean velocities are +10±5 km s–1, –75±10 km s–1, and –260±15 km s–1.Red emission wings are observed in the Mgii resonant doublet at 2800 Å, which shows a P Cygni profile. Each of the absorption lines of the Mgii doublet is formed by a narrow component, which is blended with the Mgii interstellar line and a broad component, which shows a complex structure.Broad and asymmetrical profiles are observed for the Siiv,Civ, andNv resonance lines with blue edge velocities about –700±30 km s–1.  相似文献   

5.
Solar flares in three broad EUV spectral bands have been observed from OSO-5 with a grating spectrophotometer. Results are given for three large flares of March 12, March 21 and April 21, 1969. In general the time dependence of flare intensity in each band is characterized by a slowly varying component with impulsive bursts superimposed. Bands 2 (465–630 Å) and 3 (760–1030 Å) are quite similar in their time variations, but band 1 (280–370 Å) shows less impulsive structure, and declines more slowly. Absolute EUV intensities for the flares are estimated, and a comparison made with the 2800 mc s–1 radio emission. A flare model is proposed to account for the EUV time variations during a large flare.  相似文献   

6.
Measurements of the C iv 1548 Å and Si iv 1393 Å lines made with the University of Colorado Ultraviolet Spectrometer on board OSO-8 show that the mean profiles are redshifted at disk center. Assuming these lines to be optically thin, we measure an apparent average downflow of material in the 50 000 to 100 000 K temperature range which is weighted by the emission measure in these lines. The magnitude of the redshift varies from 6–17 km s–1 with a mean of 12 km s–1 and is persistent at least on the order of months, which is the time covered by the observations presented in this paper. Pneuman and Kopp (1978) have demonstrated that the flux of material associated with this downflow is of the same order of magnitude as the flux of material being carried upward in spicules. Thus, it is possible that material observed to be downflowing in C iv and Si iv has its origins in the upward moving spicule material.  相似文献   

7.
The Extreme-ultraviolet Variability Experiment (EVE; see Woods et al., 2009) obtains continuous EUV spectra of the Sun viewed as a star. Its primary objective is the characterization of solar spectral irradiance, but its sensitivity and stability make it extremely interesting for observations of variability on time scales down to the limit imposed by its basic 10 s sample interval. In this paper we characterize the Doppler sensitivity of the EVE data. We find that the 30.4 nm line of He ii has a random Doppler error below 0.001 nm (1 pm, better than 10 km s−1 as a redshift), with ample stability to detect the orbital motion of its satellite, the Solar Dynamics Observatory (SDO). Solar flares also displace the spectrum, both because of Doppler shifts and because of EVE’s optical layout, which (as with a slitless spectrograph) confuses position and wavelength. As a flare develops, the centroid of the line displays variations that reflect Doppler shifts and therefore flare dynamics. For the impulsive phase of the flare SOL2010-06-12, we find the line centroid to have a redshift of 16.8 ± 5.9 km s−1 relative to that of the flare gradual phase (statistical errors only). We find also that high-temperature lines, such as Fe xxiv 19.2 nm, have well-determined Doppler components for major flares, with decreasing apparent blueshifts as expected from chromospheric evaporation flows.  相似文献   

8.
During operations on the Spacelab-2 Shuttle mission, the NRL High Resolution Telescope and Spectrograph (HRTS) recorded spectra of a variety of solar features in the 1200–1700 Å wavelength region which contains spectral lines and continua well suited for investigating the temperature minimum, the chromosphere and transition zone. These data show that, at the highest spatial resolution, the transition zone spectra are broken up from a continuous intensity distribution along the slit into discrete emission elements. The average dimensions of these discrete transition zone structures is 2400 km along the slit, but an analysis of their emission measures and densities shows that the dimensions of the actual emitting volume is conciderably less. If these structures are modelled as an ensemble of subresolution filaments, we find that these filaments have typical radii of from 3 to 30 km and that the cross-sectional fill factor is in the range from 10–5 to 10–2. The transport of mass and energy through these transition zone structures is reduced by this same factor of 10–5 to 10–2 which has significant consequences for our understanding of the dynamics of the solar atmosphere. Because the HRTS transition zone line profiles are not broadened by resolved large-spatial-scale solar velocity fields, the line widths of the Civ lines have been analyzed. The average line width is 0.195 Å (FWHM) and requires an average nonthermal velocity of 16 km s–1 (most-probable) or 19 km s–1 (root-mean-square) which is lower than previously observed values.  相似文献   

9.
Results are given of the detailed analysis of fourteen Fe xxv-xxiii lines ( = 1.850–1.870 Å) in the spectra of a solar flare on 16 Nov. 1970. The spectra were obtained with a resolution of about 4 × 10–4 Å, which revealed lines not previously observed and allowed the measurement of line profiles. The measured values of the wavelengths and emission fluxes are presented and compared with theoretical calculations. The analysis of the contour of the Fe xxv line ( = 1.850 Å) leads to the conclusion that there is unidirectional macroscopic gas motion in the flare region with the velocity (projection on the line of sight) ± 90 km s–1.Measurements of the 8.42 Å Mg xii and 9.16 Å Mg xi lines in the absence of solar flares indicate prolonged existence of active regions on the solar disk with T e = 4–6 × 106K and emission measure ME 1048 cm–3. The profile of the Mg xii line indicates a macroscopic ion motion with a velocity up to 100 km s–1.  相似文献   

10.
Extreme ultraviolet spectra of several active regions are presented and analyzed. Spectral intensities of 3 active regions observed with the NRL Skylab XUV spectroheliograph (170–630 Å) are derived. From this data density sensitive line ratios of Mg viii, Si x, S xii, Fe ix, Fe x, Fe xi, Fe xii, Fe xiii, Fe xiv, and Fe xv are examined and typically yield, to within a factor of 2, electron pressures of 1 dyne cm–2 (n e T = 6 × 1015 cm–3 K). The differential emission measure of the brightest 35 × 35 portion of an active region is obtained between 1.4 × 104 K and 5 × 106 K from HCO OSO-VI XUV (280–1370 Å) spectra published by Dupree et al. (1973). Stigmatic EUV spectra (1170–1710 Å) obtained by the NRL High Resolution Telescope and Spectrograph (HRTS) are also presented. Doppler velocities as a function of position along the slit are derived in an active region plage and sunspot. The velocities are based on an absolute wavelength scale derived from neutral chromospheric lines and are accurate to ±2 km s–1. Downflows at 105 K are found throughout the plage with typical velocities of 10 km s–1. In the sunspot, downflows are typically 5 to 20 km s–1 over the umbra and zero over the penumbra. In addition localized 90 and 150 km s–1 downflows are found in the umbra in the same 1 × 1 resolution elements which contain the lower velocity downflows. Spectral intensities and velocities in a typical plage 1 resolution element are derived. The velocities are greatest ( 10 km s–1) at 105 K with lower velocities at higher and lower temperatures. The differential emission measure between 1.3 × 104 K and 2 × 106 K is derived and is found to be comparable to that derived from the OSO-VI data. An electron pressure of 1.4 dynes cm–2 (n e T = 1.0 × 1016 cm–3 K) is determined from pressure sensitive line ratios of Si iii, O iv, and N iv. From the data presented it is shown that convection plays a major role in determining the structure and dynamics of the active region transition zone and corona.  相似文献   

11.
Scanning spectrometer measurements in the range 1310–270 Å, observed from the satellite OSO 3, are reported for the solar flare of 2114 UT March 27, 1967. This flare was a long lasting sequence of bursts with EUV spectra consisting of enhanced lines and recombination continua normally emitted from the chromosphere and chromosphere-corona transition region, with unusually small increases in lines normally emited from the corona. An EUV flare spectrum is presented and suggested as one example for interpreting broadband observations of EUV bursts. Any broadband continuum other than known recombination continua contributed less than 6 % of the meassured line and hydrogen recombination continua in the range 270–1310 Å. The ratio of photon flux of Ciii 1176 Å to that of Ciii 977 Å was 0.86, which suggests an ambient density in the region of emission greater than 1012 cm-3 at temperatures near 60000 K.  相似文献   

12.
The mean density of the UV Cet-type flare stars in the solar neighbourhood is estimated. If differences of activity levels on different flare stars are taken into account, their summary flare activity is equivalent to 0.03 YZ CMi's flare activity per cubic parsec or to 4×1026 erg s–1 pc–3 in U-passband. From the X-ray flare observation on YZ CMi of 19.10.74 we estimate the luminosity of stellar flares in soft and intermediate X-ray. The ratio of X-ray to optical radiation for stellar flares is close to the respective ratio for strong solar chromospheric flares. It is shown the set of red-dwarf flare stars has all essential features of an ensemble of discrete X-ray sources to represent the galactic diffuse X-ray background.  相似文献   

13.
The spatial and temporal evolution of the high temperature plasma in the flare of 1973 June 15 has been studied using the flare images photographed by the NRL XUV spectroheliograph on Skylab.The overall event involves the successive activations of a number of different loops and arches bridging the magnetic neutral line. The spatial shifts and brightenings observed in the Fe xxiii–xxiv lines are interpreted as the activation of new structures. These continued for four or five minutes after the end of the microwave burst phase, implying additional energy-release unrelated to the nonthermal phase of the flare. A shear component observed in the coronal magnetic field may be a factor in the storage and release of the flare energy.The observed Fe xxiii–xxiv intensities define a post-burst heating phase during which the temperature remained approximately constant at 13 × 106 K while the Fe xxiv intensity and 0–3 Å flux rose to peak values. This phase coincided with the activation of the densest structure (N e = 2 × 1011 cm–3). Heating of higher loops continued into the decay phase, even as the overall temperature and flux declined with the fading of the lower Fe xxiv arches.The observed morphology of individual flaring arches is consistent with the idea of energy release at altitude in the arch (coincident with a bright, energetic core in the Fe xxiv image) and energy flow downward into the ribbons. The Doppler velocity of the Fe xxi 1354 Å line is less than 5 km s–1, indicating that the hot plasma region is stationary.The relation of this flare to the larger class of flares associated with filament eruptions and emerging magnetic flux is discussed.  相似文献   

14.
The observation of extreme ultraviolet (EUV) emission lines of Fe ix through Fe xvi made by Orbiting Solar Observatory-1 are discussed and applied to a study of the solar corona above active regions. Ultraviolet and radio emission are determined and compared for several levels of activity classified according to the type of sunspot group associated with the active region. Both radio emission and line radiation from Fe xvi, the highest stage of ionization of Fe observed, are observed to increase rapidly with the onset of activity and are most intense over an E-spot group early in the lifetime of the active region. As activity diminishes, radiation from Fe xv and Fe xvi becomes relatively more prominent. The observations imply that the coronal temperature reaches a maximum during the period of highest activity, as indicated by sunspot-group complexity and the occurrence of chromospheric flares. A maximum coronal electron temperature of 4.0 × 106 °K is estimated when taking into account the mechanism of dielectronic recombination. Concurrently, the average coronal electron density increases by a factor of 10–12. Both electron temperature and density decrease as activity subsides. The coronal temperature above the remaining Ca ii plage is estimated to be 2.5–3.0 × 106 °K after flare activity has ceased and sunspots have disappeared.  相似文献   

15.
Observations with the UVSP instrument on the SMM spacecraft were made at the polar limb and disk center for the accurate determination of Doppler shifts of the Civ 1548 Å emission line formed at 105 K in the transition region of the quiet Sun. Individual data points representing 3 arc sec square pixels yield both redshifts and blueshifts, but the mean values from four different days of observations are toward the red. The mean redshifts are in the range 4–8 km s-1 and are produced by nearly vertically directed flows; the uncertainty associated with the mean values correspond to ±0.5 km s-1. The redshift increases with brightness of the Civ line.  相似文献   

16.
We studied the evolution of a small eruptive flare (GOES class C1) from its onset phase using multi-wavelength observations that sample the flare atmosphere from the chromosphere to the corona. The main instruments involved were the Coronal Diagnostic Spectrometer (CDS) aboard SOHO and facilities at the Dunn Solar Tower of the National Solar Observatory/Sacramento Peak. Transition Region and Coronal Explorer (TRACE) together with Ramaty High-Energy Spectroscopic Imager (RHESSI) also provided images and spectra for this flare. Hα and TRACE images display two loop systems that outline the pre-reconnection and post-reconnection magnetic field lines and their topological changes revealing that we are dealing with an eruptive confined flare. RHESSI data do not record any detectable emission at energies ≥25 keV, and the observed count spectrum can be well fitted with a thermal plus a non-thermal model of the photon spectrum. A non-thermal electron flux F ≈ 5 × 1010 erg cm−2 s−1 is determined. The reconstructed images show a very compact source whose peak emission moves along the photospheric magnetic inversion line during the flare. This is probably related to the motion of the reconnection site, hinting at an arcade of small loops that brightens successively. The analysis of the chromospheric spectra (Ca II K, He I D3 and Hγ, acquired with a four-second temporal cadence) shows the presence of a downward velocity (between 10 and 20 km s−1) in a small region intersected by the spectrograph slit. The region is included in an area that, at the time of the maximum X-ray emission, shows upward motions at transition region (TR) and coronal levels. For the He I 58.4 and O v 62.97 lines, we determine a velocity of ≈−40 km s−1 while for the Fe XIX 59.22 line a velocity of ≈−80 km s−1 is determined with a two-component fitting. The observations are discussed in the framework of available hydrodynamic simulations and they are consistent with the scenario outlined by Fisher (1989). No explosive evaporation is expected for a non-thermal electron beam of the observed characteristics, and no gentle evaporation is allowed without upward chromospheric motion. It is suggested that the energy of non-thermal electrons can be dissipated to heat the high-density plasma, where possibly the reconnection occurs. The consequent conductive flux drives the evaporation process in a regime that we can call sub-explosive.  相似文献   

17.
Properties of solar-flare EUV flashes measured via a type of ionospheric event, called a sudden frequency deviation (SFD), are presented. SFD's are sensitive to bursts of radiation in the 1–1030 Å wavelength range. He ii 303.8 Å, O v 629.7 Å, HL 972.5 Å and C iii 977.0 Å have essentially the same impulsive time dependence as the 1–1030 Å flash responsible for SFD's. Soft X-rays (2–20 Å) and certain EUV lines have a much slower time dependence than the 1–1030 Å flash. Most SFD's have some fine structure, but marked quasi-periodicity in EUV flashes is quite rare. EUV flashes are closely associated with hard X-ray bursts, white-light emission, microwave radio bursts and small bright impulsive kernels in the H flare. The intensity of EUV flashes depends on the central meridian distance of the H flare location; the intensity decreases at the limb. The total energy radiated in the 10–1030 Å flash for the largest events observed is about 1031 ergs.  相似文献   

18.
A time sequence of magnetograms and velocity-grams in the H and Fe i 6569 Å lines has been made at a rate of 12 h–1 of McMath Region 10385 from 26 to 29 October, 1969. The 14 flares observed during this period have been studied in relation to the configuration and changes in the magnetic and velocity fields. There was little correlation between flare position and the evolutionary changes in the photospheric magnetic and velocity field, except at large central meridian distances where the velocity observations suggested shearing taking place at flare locations. At central meridian distances > 30° we found that flares are located in areas of low line-of-sight photospheric velocity surrounded by higher velocity hills. The one exception to this was the only flare which produced a surge. Blue-shifted velocity changes in the photosphere of 0.3 to 1 km s–1 were observed in localized areas at the times of 8 of 14 flares studied.Visiting Astronomer, Kitt Peak National Observatory.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

19.
Two-dimensional evolutions of two flares of October 18, 1990 have been well observed in the Caii K line with a CCD camera at Norikura station of National Astronomical Observatory in Japan. There are two common characteristics for the flares: 3 - 5 min before the impulsive phase, the heating already begins at the footpoints of the flares, but no asymmetry in line emission has been detected. After the onset of the impulsive phase, Caii K line emission at the footpoints shows strong red asymmetry, with the maximum asymmetry occurring at the same time as the peak of the radio bursts. The maximum downward velocity is about 30 50 km s–1. For flare 1, blue and red asymmetries were observed in two sides of the footpoint area. They developed and attained a maximum nearly at the same time and the inferred Doppler velocities are comparable (30 40 km s–1). This implies that two mass jets started from a small region and ejected along a loop but in opposite directions with roughly equivalent momentum. A possible mechanism has been discussed.  相似文献   

20.
The analysis of the high temperature plasma in Fe xxiii–xxiv in the 15 June 1973 flare is presented. The observations were obtained with the NRLXUV spectroheliograph on Skylab. The results are: (1) There was preheating of the active region in which the flare occurred. In particular, a large loop in the vicinity of the flaring region showed enhanced brightness for many hours before the flare. The loop disappeared when the flare occurred, and returned in the postflare phase, as if the energy flux which had been heating the large loop was blocked during the flare and restored after the flare was gone. The large magnetic fields did not change significantly. (2) The flare occurred in low-lying loop or loops. The spatial distribution of flare emission shows that there was a temperature gradient along the loop. (3) The high temperature plasma emitting Fe xxiii and xxiv had an initial upward motion with a velocity of about 80 km s–1. (4) There was large turbulent mass motion in the high temperature plasma with a random velocity of 100 to 160 km s–1. (5) The peak temperature of the hot plasma, determined from the Fe xxiii and xxiv intensity ratio, was 14 × 106 K. It decreased slightly and then, for a period of 4 min, remained at 12.6 × 106 K before dropping sharply to below 10 × 106 K. The density of the central core of the hot plasma, determined from absolute intensity of Fe xxiv 255 Å line, was of the order of 1011 cm–3.The persistence of the high level of turbulence and of the high temperature plateau in the decaying phase of the flare indicates the presence of secondary energy release. From the energy balance equation the required energy source is calculated to be about 3 to 7 ergs cm–3 s–1.Ball Brothers Research Corporation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号