首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The variation of the fine-structure constant α = e 2 / ħc can be probed by comparing the wavelength of atomic transitions from the redshift of quasars in the Universe and laboratory over cosmological time scales t ~ 1010 yr. After a careful selection of pairs of lines, the Thong method with a derived analytical expression for the error analysis was applied to compute the α variation. We report a new constraint on the variation of the fine-structure constant based on the analysis of the CIV, NV, MgII, AlIII, and SiIV doublet absorption lines. The weighted mean value of the variation in α derived from our analysis over the redshift range 0.4939 ≤ z ≤ 3.7 is = ( 0.09 ± 0.07)×10−5. This result is three orders of magnitude better than the results obtained by earlier analysis of the same data on the constraint on Δα/α .  相似文献   

2.
It is shown that the usual choice of units obtained by taking G=c==1, giving the Planck’s units of mass, length and time, introduces an artificial contradiction between cosmology and particle physics: the lambda problem that we associate with . We note that the choice of =1 does not correspond to the scale of quantum physics. For this scale we prove that the correct value is ≈1/10122, while the choice of =1 corresponds to the cosmological scale. This is due to the scale factor of 1061 that converts the Planck scale to the cosmological scale. By choosing the ratio G/c 3=constant=1, which includes the choice G=c=1, and the momentum conservation mc=constant, we preserve the derivation of the Einstein field equations from the action principle. Then the product Gm/c 2=r g , the gravitational radius of m, is constant. For a quantum black hole we prove that r g 2≈(mc)2. We also prove that the product Λ is a general constant of order one, for any scale. The cosmological scale implies Λ≈≈1, while the Planck scale gives Λ≈1/≈10122. This explains the Λ problem. We get two scales: the cosmological quantum black hole (QBH), size ∼1028 cm, and the quantum black hole (qbh) that includes the fundamental particles scale, size ∼10−13 cm, as well as the Planck’ scale, size ∼10−33 cm.   相似文献   

3.
The possible cosmological variation of the proton-to-electron mass ratio μ = m p /m e was estimated by measuring the H2 wavelengths in the high-resolution spectrum of the quasar Q 0347-382. Our analysis yielded an estimate for the possible deviation ofμ value in the past, 10 Gyr ago: for the unweighted valueΔ μ / μ = (3.0±2.4)×10-5; for the weightedvalueΔ μ / μ = (5.02±1.82)×10-5.Since the significance of the both results does not exceed3σ, further observations are needed to increase the statistical significance. In any case, this result may be considered as the most stringent estimate on an upper limit of a possible variation of μ (95% C.L.):|Δ μ / μ| < 8× 10-5 .This value serves as an effective tool for selection of models determining a relation between possible cosmological deviations of the fine-structure constant α and the elementary particle masses (mp, me, etc.). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The spatial-temporal distribution of absorption-line systems (ALSs) observed in QSO spectra within the cosmological redshift interval z=0.0–4.3 is investigated on the base of our updated catalog of absorption systems. We consider so-called metallic systems including basically lines of heavy elements. The sample of the data displays regular variations (with amplitudes ∼15–20%) in the z-distribution of ALSs as well as in the η-distribution, where η is a dimensionless line-of-sight comoving distance, relatively to smoother dependences. The η-distribution reveals the periodicity with period Δη=0.036±0.002, which corresponds to a spatial characteristic scale (108±6)h −1 Mpc or (alternatively) a temporal interval (350±20)h −1 Myr for the ΛCDM cosmological model. We discuss the possibility of a spatial interpretation of the results, treating the pattern obtained as a trace of an order imprinted on the galaxy clustering in the early Universe.  相似文献   

5.
We study a gravitational model in which scale transformations play the key role in obtaining dynamical G and Λ. We take a non-scale invariant gravitational action with a cosmological constant and a gravitational coupling constant. Then, by a scale transformation, through a dilaton field, we obtain a new action containing cosmological and gravitational coupling terms which are dynamically dependent on the dilaton field with Higgs type potential. The vacuum expectation value of this dilaton field, through spontaneous symmetry breaking on the basis of anthropic principle, determines the time variations of G and Λ. The relevance of these time variations to the current acceleration of the universe, coincidence problem, Mach’s cosmological coincidence and those problems of standard cosmology addressed by inflationary models, are discussed. The current acceleration of the universe is shown to be a result of phase transition from radiation toward matter dominated eras. No real coincidence problem between matter and vacuum energy densities exists in this model and this apparent coincidence together with Mach’s cosmological coincidence are shown to be simple consequences of a new kind of scale factor dependence of the energy momentum density as ρa −4. This model also provides the possibility for a super fast expansion of the scale factor at very early universe by introducing exotic type matter like cosmic strings.  相似文献   

6.
In this paper we have considered axially symmetric Bianchi-I, Kantowski Sachs and Bianchi-III space-time models with bulk viscosity, where the gravitational constant G and the cosmological term Λ vary with time. In Einstein equations this variation in G and Λ are taken in such a way as to preserve the energy momentum tensor. Solutions are obtained with the cosmological term varying inversely with square of time.  相似文献   

7.
The Bianchi type-V cosmological model with variable modified Chaplygin gas having the equation of state p=B/ρ α , where 0≤α≤1, A is a positive constant and B is a positive function of the average scale factor a(t) of the universe [i.e. B=B(a)] has been studied. While studying its role in accelerated phase of the universe, it is observed that the equation of state of the variable modified Chaplygin gas interpolates from radiation dominated era to quintessence dominated era. The statefinder diagnostic pair {r,s} is adopted to characterize different phases of the universe.  相似文献   

8.
We update the bounds on a time-varying fine structure constant α at the time of BBN (z∼1010) and CMB (z∼103) and present the current CMB constraints on α, through a combined analysis of the BOOMERanG, MAXIMA and DASI datasets. We also present a discussion of the constraints on α coming from large-scale structure observations, focusing in particular on the power spectrum from the 2dF survey. Finally we provide a analysis of the degeneracies between α and the other cosmological parameters and discuss ways to break these with both existing and/or forthcoming data. Our results are consistent with no variation in α from the epoch of recombination to the present day, and restrict any such variation to be less than about 4%.We show that the forthcoming MAP and Planck experiments will be able to break most of the currently existing degeneracies between α and other parameters, and measure α to better than percent accuracy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Cargill  Peter J. 《Solar physics》2004,221(1):135-149
It is well known that the interaction of an interplanetary coronal mass ejection (ICME) with the solar wind leads to an equalisation of the ICME and solar wind velocities at 1 AU. This can be understood in terms of an aerodynamic drag force per unit mass of the form F D/M=−(ρe AC D/M)(V iV e)∣V iV e∣, where A and M are the ICME cross-section and sum of the mass and virtual mass, V i and V e the speed of the ICME and solar wind, ρe the solar wind density, C D a dimensionless drag coefficient, and the inverse deceleration length γ=ρe A/M. The optimal radial parameterisation of γ and C D beyond approximately 15 solar radii is calculated. Magnetohydrodynamic simulations show that for dense ICMEs, C D varies slowly between the Sun and 1 AU, and is of order unity. When the ICME and solar wind densities are similar, C D is larger (between 3 and 10), but remains approximately constant with radial distance. For tenuous ICMEs, the ICME and solar wind velocities equalise rapidly due to the very effective drag force. For ICMEs denser that the ambient solar wind, both approaches show that γ is approximately independent of radius, while for tenuous ICMEs, γ falls off linearly with distance. When the ICME density is similar to or less than that in the solar wind, inclusion of virtual mass effects is essential.  相似文献   

10.
We assume the four dimensional induced matter of the 5D Ricci flat bouncing cosmological solution contains a perfect fluid. The big bounce singularity of simple 5D cosmological model is studied with the cosmological term Λ=α ρ and Λ=β H 2 where α and β are constants and ρ and H are respectively energy density and Hubble parameter. This big bounce singularity is found to be an event horizon at which the scale factor and mass density of the universe are finite, while the pressure is infinite.   相似文献   

11.
A rigorous theoretical investigation of nonlinear electron-acoustic (EA) waves in a plasma system (containing cold electrons, hot electrons obeying a Boltzmann distribution, and hot ions obeying a nonthermal distribution) is studied by the reductive perturbation method. The modified Gardner (MG) equation is derived and numerically solved. It has been found that the basic characteristics of the EA Gardner solitons (GSs), which are shown to exist for α around its critical value α c [where α is the nonthermal parameter, α c is the value of α corresponding to the vanishing of the nonlinear coefficient of the Korteweg-de Vries (K-dV) equation, e.g. α c ≃0.31 for μ=n h0/n i0=0.5, σ=T h /T i =10, n h0, n i0 are, respectively, hot electron and nonthermal ion number densities at equilibrium, T h (T i ) is the hot electron (ion) temperature], are different from those of the K-dV solitons, which do not exist for α around α c , and mixed K-dV solitons, which are valid around αα c , but do not have any corresponding double layers (DLs) solution. The parametric regimes for the existence of the DLs, which are found to be associated with positive potential, are obtained. The present investigations can be observed in various space plasma environments (viz. the geomagnetic tail, the auroral regions, the cusp of the terrestrial magnetosphere, etc.).  相似文献   

12.
In this paper we study the evolution of a LRS Bianchi I Universe, filled with a bulk viscous cosmological fluid in the presence of time varying constants “but” taking into account the effects of a c-variable into the curvature tensor. We find that the only physical models are those which “constants” G and c are growing functions on time t, while the cosmological constant Λ is a negative decreasing function. In such solutions the energy density obeys the ultrastiff matter equation of state i.e. ω = 1.  相似文献   

13.
Bianchi type-I string cosmological models are studied in Saez-Ballester theory of gravitation when the source for the energy momentum tensor is a viscous string cloud coupled to gravitational field. The bulk viscosity is assumed to vary with time and is related to the scalar expansion. The relationship between the proper energy density ρ and string tension density λ are investigated from two different cosmological models.  相似文献   

14.
The present study deals with spatially homogeneous and totally anisotropic locally rotationally symmetric (LRS) Bianchi type I cosmological model with variable G and Λ in presence of imperfect fluid. To get the deterministic model of Universe, we assume that the expansion (θ) in the model is proportional to shear (σ). This condition leads to A=ℓB n , where A, B are metric potential. The cosmological constant Λ is found to be decreasing function of time and it approaches a small positive value at late time which is supported by recent Supernovae Ia (SN Ia) observations. Also it is evident that the distance modulus curve of derived model matches with observations perfectly.  相似文献   

15.
The generalized Chaplygin gas (GCG) model in spatially flat universe is investigated. The cosmological consequences led by GCG model including the evolution of EoS parameter, deceleration parameter and dimensionless Hubble parameter are calculated. We show that the GCG model behaves as a general quintessence model. The GCG model can also represent the pressureless CDM model at the early time and cosmological constant model at the late time. The dependency of transition from decelerated expansion to accelerated expansion on the parameters of model is investigated. The statefinder parameters r and s in this model are derived and the evolutionary trajectories in sr plane are plotted. Finally, based on current observational data, we plot the evolutionary trajectories in sr and qr planes for best fit values of the parameters of GCG model. It has been shown that although, there are similarities between GCG model and other forms of Chaplygin gas in statefinder plane, but the distance of this model from the ΛCDM fixed point in sr diagram is shorter compare with standard Chaplygin gas model.  相似文献   

16.
We study a massive cosmic strings with BII symmetries cosmological models in two contexts. The first of them is the standard one with a barotropic equation of state. In the second one we explore the possibility of taking into account variable “constants” (G and Λ). Both models are studied under the self-similar hypothesis. We put special emphasis in calculating the numerical values for the equations of state. We find that for ω∈(0,1], G, is a growing time function while Λ, behaves as positive decreasing time function. If ω=0, both “constants”, G and Λ, behave as true constants.  相似文献   

17.
An exact Bianchi type-V perfect fluid cosmological model is obtained in a scalar tensor theory proposed by Sen (Z. Phys. 149:311, 1957) based on Lyra Manifold in case of β is a constant and it is shown that this cosmological model exists only in the case of Radiation Universe (ρ=3p) if β is a function of ‘t’ using negative constant deceleration parameter. Some physical and geometrical properties of these models are discussed.  相似文献   

18.
This paper presents anisotropic, homogeneous two-fluid cosmological models in a Bianchi type I space–time with a variable gravitational constant G and cosmological constant Λ. In the two-fluid model, one fluid represents the matter content of the universe and another fluid is chosen to model the CMB radiation. We find a variety of solutions in which the cosmological parameter varies inversely with time t. We also discuss in detail the behavior of associated fluid parameters and kinematical parameters. This paper pictures cosmic history when the radiation and matter content of the universe are in an interactive phase. Here, Ω is closing to 1 throughout the cosmic evolution.   相似文献   

19.
We prove here that Newton’s universal gravitation and momentum conservation laws together reproduce Weinberg’s relation. It is shown that the Hubble parameter H must be built in this relation, or equivalently the age of the Universe t. Using a wave-to-particle interaction technique we then prove that the speed of light c decreases with cosmological time, and that c is proportional to the Hubble parameter H. We see the expansion of the Universe as a local effect due to the LAB value of the speed of light c 0 taken as constant. We present a generalized red shift law and find a predicted acceleration for photons that agrees well with the result from Pioneer 10/11 anomalous acceleration. We finally present a cosmological model coherent with the above results that we call the Mass-Boom. It has a linear increase of mass m with time as a result of the speed of light c linear decrease with time, and the conservation of momentum mc. We obtain the baryonic mass parameter equal to the curvature parameter, Ω m k , so that the model is of the type of the Einstein static, closed, finite, spherical, unlimited, with zero cosmological constant. This model is the cosmological view as seen by photons, neutrinos, tachyons etc. in contrast with the local view, the LAB reference. Neither dark matter nor dark energy is required by this model. With an initial constant speed of light during a short time we get inflation (an exponential expansion). This converts, during the inflation time, the Planck’s fluctuation length of 10?33 cm to the present size of the Universe (about 1028 cm, constant from then on). Thereafter the Mass-Boom takes care to bring the initial values of the Universe (about 1015 gr) to the value at the present time of about 1055 gr.  相似文献   

20.
Although it is well known that any consideration of the variations of fundamental constants should be restricted to their dimensionless combinations, the literature on variations of the gravitational constant G is entirely dimensionfull. To illustrate applications of this to cosmology, we explicitly give a dimensionless version of the parameters of the standard cosmological model, and describe the physics of both Big Bang Nucleosynthesis and recombination in a dimensionless manner. Rigorously determining how to talk about the model in a way which avoids physical dimensions is a requirement for proceeding with a calculation to constrain time-varying fundamental constants. The issue that appears to have been missed in many studies is that in cosmology the strength of gravity is bound up in the cosmological equations, and the epoch at which we live is a crucial part of the model. We argue that it is useful to consider the hypothetical situation of communicating with another civilization (with entirely different units), comparing only dimensionless constants, in order to decide if we live in a Universe governed by precisely the same physical laws. In this thought experiment, we would also have to compare epochs, which can be defined by giving the value of any one of the evolving cosmological parameters. By setting things up carefully in this way one can avoid inconsistent results when considering variable constants, caused by effectively fixing more than one parameter today. We show examples of this effect by considering microwave background anisotropies, being careful to maintain dimensionlessness throughout. We present Fisher matrix calculations to estimate how well the fine structure constants for electromagnetism and gravity can be determined with future microwave background experiments. We highlight how one can be misled by simply adding G to the usual cosmological parameter set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号