首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The data of hourly measurements of ionospheric parameters in Petropavlovsk-Kamchatsk are analyzed for the period 1998–2002. In the vertical component of near-surface atmospheric quasistatic electric field Ez, earthquake precursors in the form of anomalous negative bays have been found earlier. In some cases, anomalously high sporadic layer Es, interpreted as an ionospheric precursor of an earthquake, was observed simultaneously with anomalous negative bays in Ez. All these cases were correlated with earthquakes of different magnitudes which occurred with a significant time delay (more than five days) after the precursor appearance. Based on the whole data set (including those for simultaneously measured Es and Ez), empirical dependences linking the prediction time of a precursor, earthquake magnitudes, and the distance from the observation point to the epicenter, are presented. It is shown that these dependences are close to those obtained earlier for long-term earthquake precursors in near-surface geophysical fields of the same seismoactive region. Estimates of the prediction time for earthquake precursors on the boundaries of preparation zones are presented.  相似文献   

2.
Data from 15-minute measurements at the vertical ionospheric sounding station in Irkutsk during the summer months of 2008–2011 are analyzed in order to detect in the ionosphere effects of preparation of weak earthquakes of the K = 10–12 energy class. The method of revealing disturbances in ionospheric parameters by simultaneous observations of the sporadic E layer and regular F2 layer, which was previously applied by the authors in the case of stronger earthquakes, was used. The efficiency of using this method to detect ionospheric disturbances preceding earthquakes also in the case of weak earthquakes is demonstrated. Possible ionospheric precursors of the selected series of earthquakes are identified. For them, an empirical dependence relating the time of advance of the shock moment by the probable ionospheric precursor on the energy class of the earthquake and the epicenter distance to the observation point is found.  相似文献   

3.
Seismoionospheric disturbances in the parameters of the ionospheric F 2 and sporadic E layers at the chain of the Japanese stations for vertical sounding of the ionosphere before strong crustal earthquakes with M>6.5 during the period from 1968 to 1992 have been considered. The dependence of the disturbance time of appearance in the ionospheric parameters on the earthquake magnitude and epicentral distance, obtained for each specific earthquake using the selected series of ionospheric stations, made it possible to consider these disturbances among medium-term precursors of earthquakes. The velocity of the disturbance front apparent motion has been determined based on the model of horizontal radially-isotropic disturbance propagation from the projection of the impending earthquake epicenter to the ionospheric altitudes. The conclusion has been made that the distinguished seismoionospheric disturbances follow the boundary of the earthquake preparation region, expanding on the Earth’s surface.  相似文献   

4.
The behavior of the HF signal parameters during magnetic storms and substorms has bee experimentally studied simultaneously on the Kiruna-Kirkenes auroral path, Kiruna-Longyearbyen polar path, and Murmansk-St. Petersburg subauroral path. The first two paths are equipped with the instruments making it possible to measure the values of the signal-to-noise ratio, Doppler frequency shift, and elevation angle. The method of oblique sounding of the ionosphere (OSI) was used on the Murmansk-St. Petersburg path. Two substantial substorms, a moderate storm, and an intense storm occurred during the studied period. Some new regularities have been revealed. On the Kiruna-Kirkenes and Kiruna-Longyearbyen paths, the signalto-noise ratio increased (due to the transition from the F 2 signal reflections to the E s reflections), the elevation angle increased (due to an increase in the ionospheric F 2 layer height and a decrease in the critical frequency), and the Doppler shift increased (due to the variations in ionization and the appearance of ionospheric irregularities during a substorm) when the signal was reflected from the F 2 layer close to the moment of the substorm or storm beginning T 0. It is possible to control the so-called “main effect” in the ionosphere on the Murmansk-St. Petersburg path.  相似文献   

5.
GPS observations of the European permanent network were used to identify seismo-ionospheric precursors of Baltic Sea earthquake of 21 September 2004. It is a very rare event for this region of Europe (magnitude of about 5.0). This value is the threshold for the occurrence of seismic effects in the ionosphere. In total electron content (TEC) data over the region of the earthquake, a specific ionospheric anomaly appeared one day before the earthquake was detected. The ionospheric variability had a positive sign with an enhancement of about 4–5 TECU (1 TECU = 1016 electrons/m2) relative to the non-disturbed state of the ionosphere. The anomaly had a duration of 4–5 hours in the day time. The special size of this anomaly was about 1000 km. The characteristic parameters of the anomaly show that it can be associated with ionospheric precursors of an earthquake.  相似文献   

6.
The paper deals with the mechanism of generating a ground potential gradient electric field in regions of seismic activity and its penetration into the ionosphere. The mechanism is based on the electrode effect of charge separation under the action of the natural atmospheric electric field, A large, non-compensated, space charge is formed following a chain of ion-molecular reactions as a result of the anomalous increase of radon and aerosol emanation from the crust. This space charge leads to anomalous variations of the electric field ground level, which is supported by the experimental observations made in the seismo-active regions. In turn the variations of the strong electric field over the large earthquake areas lead to the modification of ionospheric parameters due to penetration of the anomalous electric field into the ionosphere. A theoretical model of these phenomena is proposed in this paper.  相似文献   

7.
The results of the experimental studies of the ionospheric effects originating under the action of high-power HF radiowaves, emitted by the SPEAR heating facility into the sporadic E s layer of the polar ionosphere, are presented. The experiment was performed on March 2, 2007, simultaneously at two spaced points: Barentsburg (Spitsbergen, a distance of about 40 km from the SPEAR facility) and Gor’kovskaya observatory near St. Petersburg, located at a distance of about 2000 km from SPEAR. The distributions of the heating signal intensity in the 100 kHz frequency band were measured in Barentsburg. Bistatic backscatter of diagnostic HF signals by small-scale artificial ionospheric irregularities was observed at Gor’kovskaya observatory. Based on an analysis of the experimental data obtained in Barentsburg, it has been found out that a broadband noise-like component originated and additional maximums appeared in the heating signal spectrum. The broadband emission intensity was a factor of 1.5–3 as high as the noise level. The additional maximums were formed in the regions of the positive and negative frequency shift relative to the heating signal frequency and were observed when the heating frequency was lower than the critical frequency of the E s layer; e.g., a high-power HF radiowave reflected from E s . The expression for determining the frequency shift of the additional maximum in the heating signal spectrum at altitudes of the ionospheric E region, taking into account the ion-electron collision frequency, has been obtained. The heating signal spectrum registration was compared with the observations of small-scale artificial ionospheric irregularities and the trajectory modeling of signals scattered by the considered irregularities. The observation results have been analyzed and interpreted taking into account the magnetic and ionospheric data characterizing the background geophysical conditions.  相似文献   

8.
The global pattern of the ionospheric response to large-scale acoustic gravity waves (LS AGW) has been constructed on the basis of an analysis of the large data set available during the 22 March 1979, magnetic storm. Ground-based ionospheric measurements and in-situ satellite measurements from Cosmos-900 were used in this study together with the Joule heating distribution in the high-latitude ionosphere specifically taken at the maxima of two substorms. The characteristics of the reconstructed planetary pattern of the LS AGW have been analysed in detail. It has been established that the LS AGW effects in the ionosphere in terms of both universal and local time were determined by the pattern of high-latitude atmospheric heating, and that the wave front of the LS AGW during both substorms covered practically all local times, i.e. all longitudes. In addition, it was established that one of the sources of the LS AGW was the thermospheric heating in the day-side cusp region. The local time dependence of the amplitude of the AGW effect in both maximum height, hmF2, and critical frequency, fOF2, has been reconstructed for the mid-latitude F2 layer. The AGW effects were clearly separated from the electric field effects related to turnings of the interplanetary magnetic field (IMF) BZ. In the day-time, electric field effects prevailed over the AGW effects, but during the night-time the amplitudes of these two effects were comparable. In contrast to the common view, fOF2 variations after the AGW passage had a quasi-sinusoidal character both in the day-time and in the night-time. In the night-time ionosphere a high degree of symmetry was observed for the AGW effects in Northern and Southern hemispheres. During the day-time a significant asymmetry was observed in the American longitudinal sector which was related largely to the peculiarities of the heating pattern in the high-latitude ionospheres of the Northern and Southern hemispheres. These observations demonstrate the complexity of the response of the ionosphere at all latitudes to heating of the auroral region.  相似文献   

9.
Small-scale (scales of ∼0.5–256 km) electric fields in the polar cap ionosphere are studied on the basis of measurements of the Dynamics Explorer 2 (DE-2) low-altitude satellite with a polar orbit. Nineteen DE-2 passes through the high-latitude ionosphere from the morning side to the evening side are considered when the IMF z component was southward. A rather extensive polar cap, which could be identified using the ɛ-t spectrograms of precipitating particles with auroral energies, was formed during the analyzed events. It is shown that the logarithmic diagrams (LDs), constructed using the discrete wavelet transform of electric fields in the polar cap, are power law (μ ∼ s α). Here, μ is the variance of the detail coefficients of the signal discrete wavelet transform, s is the wavelet scale, and index α characterizes the LD slope. The probability density functions PE, s) of the electric field fluctuations δE observed on different scales s are non-Gaussian and have intensified wings. When the probability density functions are renormalized, that is constructed of δE/s γ, where γ is the scaling exponent, they lie near a single curve, which indicates that the studied fields are statistically self-similar. In spite of the fact that the amplitude of electric fluctuations in the polar cap is much smaller than in the auroral zone, the quantitative characteristics of field scaling in the two regions are similar. Two possible causes of the observed turbulent structure of the electric field in the polar cap are considered: (1) the structure is transferred from the solar wind, which is known to have turbulent properties, and (2) the structure is generated by convection velocity shears in the region of open magnetic field lines. The detected dependence of the characteristic distribution of turbulent electric fields over the polar cap region on IMF B y and the correlation of the rms amplitudes of δE fluctuations with IMF B z and the solar wind transfer function (B y 2 + B z 2)1/2sin(θ/2), where θ is the angle between the geomagnetic field and IMF reconnecting on the dayside magnetopause when IMF B z < 0, together with the absence of dependence on the IMF variability are arguments for the second mechanism.  相似文献   

10.
An exceptionally long total solar eclipse occurred over the Yangtze River Basin in the mid-latitudes of China on 22 July 2009. The moon’s umbral shadow crossed through the ionospheric equatorial anomaly region. During the solar eclipse, new ionospheric behaviors were observed using a multi-station sounding approach. These new phenomena include: (1) visible Doppler spreading of F layer echoes at multiple group distances during the solar eclipse period, (2) strong ionospheric response near the peak of the northern equatorial anomaly crest and (3) synchronous oscillations in the Es and F layer during the recovery phase of the solar eclipse.  相似文献   

11.
The results of a periodogramanalysis of the variations in the ionospheric parameters, measured using the vertical radio sounding method at midlatitude Irkutsk observatory (Eastern Siberia), are presented. The 1984–1986 period of observations was used. It has been indicated that the statistically significant oscillations with periods typical of planetary waves are present in the variations in f 0Es, f bEs, h′Es, f min, f 0F2, and h′F.  相似文献   

12.
The paper presents the results of studying anomalous variations in the total electron content (TEC) of the ionosphere as probable precursors of strong seismic events. The vertical drift of the F2 layer’s ionospheric plasma under the effect of seismically generated zonal electric field is considered as a likely reason for the observed variations in the TEC. An estimation of this drift effects is made by mathematical simulation utilizing the global numerical model of the Earth’s upper atmosphere (UAM). Midlatitude ionospheric effects were simulated. Two types of seismogenerated electric fields (dipole and monopole) were used with various magnitudes and spatial configurations. The derived results were compared with the TEC data of GPS observations from the IGS for the Kitira earthquake in southern Greece (January 8, 2006; M 6.8). It was shown that variations generated by additional sources of the dipole type are consistent with the observed data; monopole-type sources did not reproduce some typical peculiarities of these observations and systematically underestimated the deviation value.  相似文献   

13.
The effects of morning magnetospheric substorms in the variations in near-Earth atmospheric electricity according to the observations of the electric field vertical component (E z ), at Hornsund polar observatory (Spitsbergen). The E z, data, obtained under the conditions of fair weather (i.e., in the absence of a strong wind, precipitation, and fog), are analyzed. An analysis of the observations indicated that the development of a magnetospheric substorm in the Earth’s morning sector is as a rule accompanied by positive deviations in E z, independently of the Hornsund location: in the polar cap or at its boundary. In all considered events, Hornsund was located near the center of the morning convection vortex. In the evening sector, when Hornsund fell in the region of evening convection vortex, the development of a geomagnetic substorm was accompanied by negative deviations in E z., It has been concluded that the variations in the atmospheric electric field E z), at polar latitudes, observed during the development of magnetospheric substorms, result from the penetration of electric fields of polar ionospheric convection (which are intensified during a substorm) to the Earth’s surface.  相似文献   

14.
伴随我国一些大地震的电离层异常现象   总被引:1,自引:0,他引:1       下载免费PDF全文
本文初步总结了伴随我国一些大地震前后电离层的异常现象,结果表明,临震前电离层形态扰动异常是比较普遍的现象;其次是F层“高点位移”的时空分布异常。它们可能与电离层局部生成不均匀电子“云块”有关,以及与震前地磁场、地电场及地面电学性质有关。进一步观测和研究电离层异常现象将有助于估计强震的大致地区和临震时间。文中还就电离层—地磁场—地震关系进行了初步的讨论,指出电离层与地震的联系可能是由于地磁场耦合作用。  相似文献   

15.

The results of a periodogramanalysis of the variations in the ionospheric parameters, measured using the vertical radio sounding method at midlatitude Irkutsk observatory (Eastern Siberia), are presented. The 1984–1986 period of observations was used. It has been indicated that the statistically significant oscillations with periods typical of planetary waves are present in the variations in f 0Es, f bEs, h′Es, f min, f 0F2, and h′F.

  相似文献   

16.
We have studied changes in the ionosphere prior to strong crustal earthquakes with magnitudes of М ≥ 6.5 based on the data from the ground-based stations of vertical ionospheric sounding Kokobunji, Akita, and Wakkanai for the period 1968–2004. The data are analyzed based on hourly measurements of the virtual height and frequency parameters of the sporadic E layer and critical frequency of the regular F2 layer over the course of three days prior to the earthquakes. In the studied intervals of time before all earthquakes, anomalous changes were discovered both in the frequency parameters of the Es and F2 ionospheric layers and in the virtual height of the sporadic E layer; the changes were observed on the same day at stations spaced apart by several hundred kilometers. A high degree of correlation is found between the lead-time of these ionospheric anomalies preceding the seismic impact and the magnitude of the subsequent earthquakes. It is concluded that such ionospheric disturbances can be short-term ionospheric precursors of earthquakes.  相似文献   

17.
The changes of the ionospheric electric field before and after four huge earthquakes, which include the Ms 8.7 earthquake of 2004 and the Ms 8.5 earthquake of 2005 in Sumatra of Indonesia, the Ms 8.0 Wenchuan earthquake of 2008 in China, the Ms 8.8 earthquake of 2010 in Chile, and their strong aftershocks are studied in this paper. The significant results revealed that the power spectral density of low-frequency electric field below 20 Hz in the ionosphere, a kind of electromagnetic radiation phenomena, increased abnormally before and after the earthquakes and partially corresponded to the increased power spectral density of the low-frequency geoelectric field in time. This research preliminarily indicates that the low-frequency electromagnetic radiation during the imminent stages before such earthquakes could be detected by the observation of the ionospheric electric field. However, the spatial, temporal, and intensive complexities of the electric field anomalies in the ionosphere before earthquakes have come in sight also.  相似文献   

18.
Exact distributions of the electric field and current density in the vicinity of the rotating magnetized planet are determined within the planetary electric generator model. The model planetary plasma envelope is assumed to be inhomogeneous and consists of an atmosphere, an ionospheric layer rotating with respect to the atmosphere, and a magnetosphere located beyond the ionosphere. The model parameters, under which the influence of a large-scale flow of the ionospheric plasma on the electric field and current in the lower atmosphere is significant are determined. It is shown that the ionospheric superrotation reduces the electric field arising in the Earth’s lower atmosphere due to the planetary generator effect.  相似文献   

19.
The spatial distributions of electric fields and currents in the Earth’s atmosphere are calculated. Electric potential distributions typical of substorms and quiet geomagnetic conditions are specified in the ionosphere. The Earth is treated as a perfect conductor. The atmosphere is considered as a spherical layer with a given height dependence of electrical conductivity. With the chosen conductivity model and an ionospheric potential of 300 kV with respect to the Earth, the electric field near the ground is vertical and reaches 110 Vm−1. With the 60-kV potential difference in the polar cap of the ionosphere, the electric field disturbances with a vertical component of up to 13 V m−1 can occur in the atmosphere. These disturbances are maximal near the ground. If the horizontal scales of field nonuniformity are over 100 km, the vertical component of the electric field near the ground can be calculated with the one-dimensional model. The field and current distributions in the upper atmosphere can be obtained only from the three-dimensional model. The numerical method for solving electrical conductivity problems makes it possible to take into account conductivity inhomogeneities and the ground relief.  相似文献   

20.
Measurements of midlatitude E region coherent backscatter obtained during four summers with SESCAT, a 50 MHz Doppler system operating in Crete, Greece, and concurrent ionosonde recordings from the same ionospheric volume obtained with a CADI for one of these summers, are used to analyse the long-term variability in echo and Es occurrence. Echo and Es layer occurrences, computed in percent of time over a 12-h nighttime interval, take the form of time sequences. Linear power spectrum analysis shows that there are dominant spectral peaks in the range of 2–9 days, the most commonly observed periods appearing in two preferential bands, of 2–3 days and 4–7 days. No connection with geomagnetic activity was found. The characteristics of these periodicities compare well with similar properties of planetary waves, which suggests the possibility that planetary waves are responsible for the observed long-term periodicities. These findings indicate also a likely close relation between planetary wave (PW) activity and the well known but not well understood seasonal Es dependence. To test the PW postulation, we used simultaneous neutral wind data from the mesopause region around 95 km, measured from Collm, Germany. Direct comparison of the long-term periodicities in echo and Es layer occurrence with those in the neutral wind show some reasonable agreement. This new evidence, although not fully conclusive, is the first direct indication in favour of a planetary wave role on the unstable midlatitude E region ionosphere. Our results suggest that planetary waves observation is a viable option and a new element into the physics of midlatitude Es layers that needs to be considered and investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号