首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have analyzed the lithium abundance in the atmospheres of 20 stars that are solar analogues based on high-resolution echelle spectra using model atmospheres in a non-LTE approach. In terms of their lithium abundances, the stars (which are located in a narrow range of temperatures of 5650–5900 K) can be divided into two groups: one with low lithium abundances, as in the solar atmosphere, and one with lithium abundances that are higher than the solar value by about 1 dex (with the accuracy of the lithium abundances being 0.15 dex).  相似文献   

2.
The non-LTE potassium abundances in the atmospheres of 33 Galactic-disk stars are derived and the parameters of the atmospheres of 23 of the stars are determined. Neglecting departures from LTE results in a systematic overestimation of the potassium abundances and an increase in their dispersion, even for differential analyses relative to the Sun. The non-LTE corrections are significant ((?0.2)–(?0.6) dex) and depend on the surface gravities and effective temperatures of the stars. The mean potassium abundance for a sample of ten stars with [Fe/H]~0.0 is in agreement with the solar and meteoritic abundances (log ? (K)=5.12). As the stellar metallicity increases from [Fe/H]=(?1.0) to (0.2) dex, the [K/Fe] ratio decreases systematically from 0.3 dex to ?0.1 dex. The derived dependence [K/Fe]-[Fe/H] is in agreement with the results of published model calculations of the chemical evolution of the Galaxy. This indicates the dominance of explosive oxygen burning in massive type II supernovae during the synthesis of potassium in the Galactic disk.  相似文献   

3.
Taking into account blending of the lithium 6108 Å line profile by adjacent rare-earth lines together with their spotted surface structure does not appreciably affect lithium abundance estimates for the atmospheres of HD 83368 and HD 60435 but provides a better fit of the observed and stimulated line profiles. Our computed non-LTE corrections reduce the lithium abundance estimates by 0.1–0.2 dex for both stars. Given the uncertainties in the lithium abundances, it is not possible to be certain whether the lithium abundances in roAp stars, or at least in their spots, exceed the cosmic (primordial) value.  相似文献   

4.
Using high-resolution spectra, we have determined the abundances of carbon (logε(C)), nitrogen (logε(N)), oxygen (logε(O)), silicon (logε(Si)), sulphur (logε(S)), and some other elements for three δ Scuti stars. Logε(C) for all three stars and logε(N) for δ Sct and HD 127986 are close to the solar values, while there appears to be a slight (0.15 dex) nitrogen deficiency for 14 Aur. The logε(O) values correspond to a 0.30-dex deficiency for 14 Aur and δ Sct and a 0.20-dex deficiency for HD 127986. The values of logε(Si) for the three stars are close to solar, and the logε(S) values indicate a slight deficiency (0.10 dex) for 14 Aur and HD 127986 and a 0.20-dex excess for δ Sct. Comparison of the elemental abundances for seven δ Scuti stars with those for Am stars shows that the mean deficiencies of C, N, and O are smaller for pulsating δ Scuti stars than for Am stars with similar effective temperatures. The sulphur abundances are virtually the same for both types of stars.  相似文献   

5.
The atmospheric abundances of 30 chemical elements in the halo star HD 221170 are analyzed by fitting synthetic spectra to observed spectra (i) with a resolution of 60 000 and signal-to-noise ratios of about 200 taken with the 1.93-m telescope of the Observatoire de Haute Provence and (ii) with a resolution of 35 000 and signal-to-noise ratios of more than 100 taken with the 2-m telescope of the Terskol Peak Observatory. The derived parameters of the stellar atmosphere are Teff=4475 K, log g=1.0, [Fe/H]=?2.03, Vmicro=1.7 km/s, and Vmacro=4 km/s. The parameters Teff, log g, [Fe/H], and Vmicro can be determined by analyzing the variations of the rms error of the mean iron abundance derived using different model atmospheres. The chemical composition of the star’s atmosphere is analyzed. The abundances of a total of 35 elements in HD 221170 have been derived in this paper and in previous studies. Overall, the abundances of elements lighter than praseodymium are consistent with the elemental abundances in the atmospheres of stars with similar metal deficits. Copper and manganese are underabundant by ?2.9 and ?2.6 dex, respectively, relative to the Sun (when the analysis includes the effects of hyperfine structure). Heavy r-process elements (starting from praseodymium) are overabundant compared to iron-group elements. This can be explained by an enrichment in r-process elements of the material from which the star was formed.  相似文献   

6.
Late-type stars with chromospheric and coronal activities exceeding those of the Sun and other stars with well-defined cycles are considered. These rotate more rapidly than stars with well established cycles; for single stars, this appears to be due to their younger ages. The spots on such stars cover several per cent of the total area, which is an order of magnitude higher than for the Sun at its activity maximum. Our wavelet analysis of the chromospheric-emission variability, which has been observed since 1965 in the framework of the HK project, indicates that the period of the axial rotation of some of these starts varies from year to year. This is most pronounced in two “Good” stars according to the classification of Baliunas et al., HD 149661 and HD 115404, and also in a star with a more complex variability, HD 101501. No similar effect is exhibited by the “Excellent” cyclic-activity stars. Such variations in the period can be observed during epochs of appreciable rotational modulations of the chromospheric-emission fluxes, most likely, immediately after the maximum of a long-period wave (cycle?). This seems to provide evidence for the existence of huge activity complexes in the chromospheres of these stars, whose longitudes remain virtually constant over several years; they drift from fairly high latitudes to the equator at speeds close to the value typical of sunspots. The observed period variations are most likely due to differential rotation of the same sign that is known for the Sun. Our results provide independent confirmation of similar conclusions obtained by us previously using zonal models for highly spotted stars. Other activity features of a selected star group and the implications of the results for the theory of stellar and solar dynamos are discussed.  相似文献   

7.
We analyze previously published chemical abundances in the atmospheres of red giants. Excess abundances are observed not only for Na, but also for Al and Si, with the overabundances increasing with the stars’ luminosity. The observed anomalies provide evidence that, in addition to the CNO hydrogen-burning cycle, the Mg-Al and Ne-Na cycles operate in the interiors of main-sequence stars; their products are brought to the stellar atmospheres by convection after the transition to the red-giant phase. The abundance anomalies for s-process elements, also observed in the atmospheres of field stars, testify to the presence of a substantial number of neutrons. The s-process abundance anomalies are absent from giants of the young Hyades cluster.  相似文献   

8.
Numerical simulations of the chemical evolution of disk galaxies taking into account the influence of Population III stars are considered. The probability that stars with peculiar chemical compositions are present in the solar neigborhood is analyzed, and possibilities for their detection considered. For various assumptions about the slope of the initial mass function for Population III stars and the critical metallicity, the radius surrounding the Sun containing at least one such star is 10–12 pc. Such objects could be studied using modern large telescopes. The influence of Population III stars on the chemical evolution of disk galaxies is investigated. Taking into account the first stars in early stages leads to an earlier onset of chemical enrichment of the ISM and a characteristic chemical composition of the gas, but all traces of this enrichment have disappeared by the current epoch.  相似文献   

9.
We determine the abundances of Pr and Nd in the atmospheres of magnetic and non-magnetic chemically peculiar stars from the lines of rare earth elements in the first and second ionization states. The computations for the magnetic stars take into account the influence of the magnetic field on line formation. We studied the influence of errors in the stellar-atmosphere parameters and the atomic parameters of the spectral lines on the accuracy of abundance determinations. Within the derived accuracy, ionization equilibrium is satisfied in the atmospheres of non-pulsating magnetic and non-magnetic stars (so that abundances derived separately from lines of first and second ions agree). For all the pulsating magnetic (roAp) stars studied, the abundances derived from lines of second ions are 1.0 to 1.7 dex higher than those derived from first ions. The violation of ionization equilibrium in the atmospheres of pulsating stars is probably due to, first, considerable enrichment of Pr and Nd in the uppermost atmospheric layers, and second, a higher location for the layer of enhanced elemental abundance in roAp stars than in non-pulsating stars. Two objects from the list of non-pulsating magnetic stars, HD 62140 and HD 115708, exhibit anomalies of their Pr and Nd lines characteristic of roAp stars. The differences in the rare earth anomalies for the pulsating and non-pulsating peculiar stars can be used as a selection criterion for candidate roAp stars.  相似文献   

10.
The elemental abundances in the atmosphere of the red dwarf HD 32147, which belongs to the HR 1614 moving groups, are analyzed. The atmospheric parameters determined from spectroscopic data (the condition of equal abundances for neutral and ionized atoms of a given element) differ considerably from those derived from photometry and parallax data. The abundances of several elements are also anomalous, with the anomaly increasing with decreasing ionization potential. It is concluded that this star is a red dwarf displaying solar-like activity; i.e., having dark (cool) spots on its surface, which may sometimes be considerable in size. Modeling synthetic spectra of stars with cool spots on their surfaces, with the spectral lines consisting of two components formed in media with different temperatures, indicate that the spectroscopic atmospheric parameters derived in such cases are incorrect; this can also explain the observed dependence of the elemental abundances on the corresponding ionization potentials. This leads to the conclusion thatHD32147 is indeed a star with solar-like activity. Several other such stars considered as examples display the same anomalies as those of HD 32147. These modeling results are also valid for Ap and Am stars, and are able to explain short-wavelength observations of the Sun and some stars (the FIP effect).  相似文献   

11.
The angular diameters, radii, and effective temperatures of 16 G0–G5 main-sequence stars with color excesses 0.60≤B-V≤0.68 and parallaxes derived from Hipparcos data have been determined using their infrared fluxes, obtained from JHKLM photometric observations. For all the stars except BS 483, these effective temperatures differ from the spectroscopic temperatures by no more than 1–2%. Such differences are within the uncertainties expected for the IR-flux method. The effective temperatures of BS 483 derived from its infrared fluxes are 3% higher than those indicated by spectroscopic observations; this may be due to the specific atmospheric structure of this star. Spectroscopic observations at 3400–7500 Å and JHKLM photometric observations are compared with analogous solar data and Kurucz models. The best agreement with the model with T eff=5750 K and logg=4.5 in the interval 4400–7500 Å was obtained for BS 7503 and BS 7504 (16 Cyg A and 16 Cyg B). The infrared color indices H-K, K-L, and K-M for these stars differ from the corresponding solar indices, and their angular diameters grow with wavelength, which is not the case for the Sun. H-K for BS 6060, currently considered to be the closest analog to the Sun, is near the solar value. The vast majority of the stars studied (13 of 16) have higher luminosities than the Sun. These include 16 Cyg A, 16 Cyg B, and 51 Peg, which thus cannot be considered full “twins” of the Sun.  相似文献   

12.
We derived Sr, Y, Zr, and Ce abundances for a sample of 74 cool dwarfs and subgiants with iron abundances, [Fe/H], between 0.25 and ?2.43. These estimates were obtained using synthetic spectra, assuming local thermodynamic equilibrium (LTE) for Y, Zr, and Ce, allowing for non-LTE conditions for Sr. We used high-resolution (λ/Δλ?40 000 and 60 000) spectra with signal-to-noise ratios between 50 and 200. We find that the Zr/Y, Sr/Y, and Sr/Zr ratios for the halo stars are the same in a wide metallicity range (?2.43 ≤ [Fe/H] ≤ ?0.90), within the errors, indicating a common origin for these elements at the epoch of halo formation. The Zr/Y ratios for thick-disk stars quickly decrease with increasing Ba abundance, indicating a lower rate of production of Zr compared to Y during active thick-disk formation. The thick-disk and halo stars display an increase in the [Zr/Ba] ratio with decreasing Ba abundance and a correlation of the Zr and Eu overabundances relative to Ba. The evolutionary behavior of the abundance ratios found for the thick-disk and halo stars does not agree with current models for the Galaxy’s chemical evolution. The abundance ratios of Y and Zr to Fe and Ba for thin-disk stars, as well as the abundance ratios within each group, are, on average, solar, though we note a slight decrease of Zr/Ba and Zr/Y with increasing Ba abundance. These results provide evidence for a dominance of asymptotic-giant-branch stars in the enrichment of the interstellar medium in heavy elements during the thin-disk epoch, in agreement with the predictions of the nucleosynthesis theory for the main s-process component.  相似文献   

13.
The abundances of 19 chemical elements in the atmospheres of five stars belonging to three globular clusters have been determined by applying the model-atmospheremethod to 430.0–790.0 nm spectra obtained with the échelle spectrometer of the 6-m telescope of the Special Astrophysical Observatory. The abundances of silicon, calcium, iron-peak elements, copper, zinc, and neutron-capture elements follow the abundance patterns for halo stars. The abundance of sodium in M 10 giants provides evidence that different mixing mechanisms operate in halo and cluster stars or that light elements are enriched in different ways in the pre-stellar matter from which some globular clusters and halo stars were formed.  相似文献   

14.
The basic parameters and detailed chemical compositions of three asymptotic giant branch stars with similar effective temperatures and surface gravities have been determined using CCD spectra obtained with the échelle spectrometers of the SAO 6-m telescope. The metallicity and chemical composition of the optical counterpart of the OH/IR star IRAS 18123 + 0511 have been derived for the first time. The abundance [X/H] of the iron group elements (V, Cr, Fe) is ?0.45 dex. An overabundance of oxygen, [O/Fe]=1.44 dex, is detected in the atmosphere of this star. The abundances of s-process heavy elements are not enhanced, and are instead underabundant with respect to the metallicity: the average value of [X/Fe] for Y, Zr, Ba, La, Ce, Pr, Nd is ?0.25. The derived abundances confirm that IRAS 18123 + 0511 is in the AGB stage of its evolution. The metallicity of the object, together with its radial velocity V r=78.0 km/s and Galactic latitude |b|=11°, suggest that it belongs to the old disk population. The expansion velocity of the circumstellar envelope, V exp≈21 km/s, is derived from the positions of circumstellar absorption bands. The set of parameters obtained for the low-metallicity, highlatitude supergiants BD + 18° 2757 and BD + 18° 2890 (with iron abundances [Fe/H]=2.10 and ?1.48, respectively) confirm that they are evolved halo stars, and probably UU Her-type stars.  相似文献   

15.
We review a large body of available meteoritic and stellar halogen data in the literature used for solar system abundances (i.e., representative abundances of the solar system at the time of its formation) and associated analytical problems. Claims of lower solar system chlorine, bromine and iodine abundances from recent analyses of CI-chondrites are untenable because of incompatibility of such low values with nuclear abundance systematics and independent measurements of halogens in the Sun and other stars. We suspect analytical problems associated with these peculiar rock types have led to lower analytical results in several studies. We review available analytical procedures and concentrations of halogens in chondrites. Our recommended values are close to previously accepted values. Average concentrations by mass for CI-chondrites are F = 92 ± 20 ppm, Cl = 717 ± 110 ppm, Br = 3.77 ± 0.90 ppm, and I = 0.77 ± 0.31 ppm. The meteoritic abundances on the atomic scale normalized to N(Si) =106 are N(F) = 1270 ± 270, N(Cl) = 5290 ± 810, N(Br) = 12.3 ± 2.9, and N(I) = 1.59 ± 0.64. The meteoritic logarithmic abundances scaled to present-day photospheric abundances with log N(H) = 12 are A(F) = 4.61 ± 0.09, A(Cl) = 5.23 ± 0.06, A(Br) = 2.60 ± 0.09, and A(I) = 1.71 ± 0.15. These are our recommended present-day solar system abundances. These are compared to the present-day solar values derived from sunspots of N(F) = 776 ± 260, A(F) = 4.40 ± 0.25, and N(Cl) = 5500 ± 810, A(Cl) = 5.25 ± 0.12. The recommended solar system abundances based on meteorites are consistent with F and Cl abundance ratios measured independently in other stars and other astronomical environments. The recently determined chlorine abundance of 776 ± 21 ppm by Yokoyama et al. (2022) for the CI-chondrite-like asteroid Ryugu is consistent with the chlorine abundance evaluated for CI-chondrites here. Historically, the halogen abundances have been quite uncertain and unfortunately remain so. We still need reliable measurements from large, representative, and well-homogenized CI-chondrite samples. The analysis of F, Br, and I in Ryugu samples should also help to obtain more reliable halogen abundances. Updated equilibrium 50 % condensation temperatures from our previous work (Lodders, 2003; Fegley and Schaefer, 2010; Fegley and Lodders, 2018) are 713 K (F), 427 K (Cl), 392 K (Br) and 312 K (I) at a total pressure of 10−4 bar for a solar composition gas. We give condensation temperatures considering solid-solution as well as kinetic inhibition effects. Condensation temperatures computed with lower halogen abundances do not represent the correct condensation temperatures from a solar composition gas.  相似文献   

16.
The chemical compositions of the atmospheres of six metal-poor stars are analyzed. Spectra with signal-to-noise ratios of no less than 100 and a resolution of R≈17 000 were obtained using the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. The abundances of Li, O, α-process elements (Mg, Si, Ca, Ti), Na, K, Sc, iron-peak elements (Cr, Mn, Fe, Ni, Cu, Zn), and s-process elements (Y, Ba) are derived. The star G251-54 ([Fe/H]=?1.55, T eff=5541 K, logg=3.58) is deficient in some elements compared to both stars with similar metallicities and the Sun. The atmosphere of G251-54 has the following elemental abundances relative to iron: [O/Fe]=+0.47, [α/Fe]≈?0.3, [Na/Fe]=?0.60, [Sc/Fe]=?0.57, [Cr, Ni, Fe]≈0, [Zn/Fe]=+0.16, [Cu/Fe]=?0.66, [Y/Fe]=?0.70, and [Ba/Fe]=?1.35. The remaining five stars have metallicities in the range ?1.6<[Fe/H]相似文献   

17.
We have used published, high-accuracy, ground-based and satellite proper-motion measurements, a compilation of radial velocities, and photometric distances to compute the spatial velocities and Galactic orbital elements for 174 RR Lyrae (ab) variable stars in the solar neighborhood. The computed orbital elements and published heavy-element abundances are used to study relationships between the chemical, spatial, and kinematic characteristics of nearby RR Lyrae variables. We observe abrupt changes of the spatial and kinematic characteristics at the metallicity [Fe/H]≈?0.95 and also when the residual spatial velocities relative to the LSR cross the critical value V res≈290 km/s. This provides evidence that the general population of RR Lyrae stars is not uniform and includes at least three subsystems occupying different volumes in the Galaxy. Based on the agreement between typical parameters for corresponding subsystems of RR Lyrae stars and globular clusters, we conclude that metal-rich stars and globular clusters belong to a rapidly rotating and fairly flat, thick-disk subsystem with a large negative vertical metallicity gradient. Objects with larger metal deficiencies can, in turn, be subdivided into two populations, but using different criteria for stars and clusters. We suggest that field stars with velocities below the critical value and clusters with extremely blue horizontal branches form a spherical, slowly rotating subsystem of the protodisk halo, which has a common origin with the thick disk; this subsystem has small but nonzero radial and vertical metallicity gradients. The dimensions of this subsystem, estimated from the apogalactic radii of orbits of field stars, are approximately the same. Field stars displaying more rapid motion and clusters with redder horizontal branches constitute the spheroidal subsystem of the accreted outer halo, which is approximately a factor of three larger in size than the first two subsystems. It has no metallicity gradients; most of its stars have eccentric orbits, many display retrograde motion in the Galaxy, and their ages are comparatively low, supporting the hypothesis that the objects in this subsystem had an extragalactic origin.  相似文献   

18.
Antipova  L. I.  Boyarchuk  A. A. 《Astronomy Reports》2015,59(11):1015-1018

The atmospheric abundances of various chemical elements and other atmospheric parameters of four stars belonging to the HR 1614 moving cluster are determined and analyzed using a single technique. For three of the stars, the derived atmospheric parameters are typical of stars of their types, and their elemental abundances are close to those determined earlier for these and other stars of the moving cluster. However, the atmospheric parameters derived for the red dwarf HD 32147 would be more typical of a giant, and its metallicity is much lower than is characteristic of stars of this moving group.

  相似文献   

19.
Data of our compiled catalog containing the positions, velocities, and metallicities of 415 RR Lyrae variable stars and the relative abundances [el/Fe] of 12 elements for 101 RR Lyrae stars, including four α elements (Mg, Ca, Si, and Ti), are used to study the relationships between the chemical and spatial–kinematic properties of these stars. In general, the dependences of the relative abundances of α elements on metallicity and velocity for the RR Lyrae stars are approximately the same as those for field dwarfs. Despite the usual claim that these stars are old, among them are representatives of the thin disk, which is the youngest subsystem of the Galaxy. Attention is called to the problem of lowmetallicity RR Lyrae stars. Most RR Lyrae stars that have the kinematic properties of thick disk stars have metallicities [Fe/H] < ?1.0 and high ratios [α/Fe] ≈ 0.4, whereas only about 10% of field dwarfs belonging to the so-called “low-metallicity tail” have this chemical composition. At the same time, there is a sharp change in [α/Fe] in RR Lyrae stars belonging just to the thick disk, providing evidence for a long period of formation of this subsystem. The chemical compositions of SDSS J1707+58, V455 Oph, MACHO176.18833.411, V456 Ser, and BPSCS 30339–046 do not correspond to their kinematics.While the first three of these stars belong to the halo, according to their kinematics, the last two belong to the thick disk. It is proposed that they are all most likely extragalactic, but the possible appearance of some of them in the solar neighborhood as a result of the gravitational action of the bar on field stars cannot be ruled out.  相似文献   

20.
Marsakov  V. A.  Gozha  M. L.  Koval’  V. V. 《Astronomy Reports》2019,63(3):203-211

The surface gravities and effective temperatures have been added to a compilative catalog published earlier, which includes the relative abundances of several chemical elements for 100 field RR Lyrae stars. These atmoshperic parameters and evolutionary tracks from the Dartmouth database are used to determine the masses of the stars and perform a comparative analysis of the properties of RR Lyrae stars with different chemical compositions. The masses of metal-rich ([Fe/H] > −0.5) RR Lyrae stars with thin disk kinematics are in the range (0.51−0.60)M. Only stars with initial masses exceeding 1M can reach the horizontal branch during the lifetime of this subsystem. To become an RR Lyrae variable, a star must have lost approximately half of its mass during the red-giant phase. The appearance of such young, metal-rich RR Lyrae stars is possibly due to high initial helium abundances of their progenitors. According to the Dartmouth evolutionary tracks for Y = 0.4, a star with an initial mass as low as 0.8 M could evolve to become an RR Lyrae variable during this time. Such stars should have lost (0.2−0.3)M in the red-giant phase, which seems quite realistic. Populations of red giants and RR Lyrae stars with such high helium abundances have already been discovered in the bulge; some of these could easily be transported to the solar neighborhood as a consequence of perturbations due to inhomogeneities of the Galaxy’s gravitational potential.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号