首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The Euclidean spaces with their inner products are used to describe methods of least squares adjustment as orthogonal projections on finite-dimensional subspaces. A unified Euclidean space approach to the least squares adjustment methods “observation equations” and “condition equations” is suggested. Hence not only the two adjustment solutions are treated from the view-point of Euclidean space theory in a unified frame but also the existing duality relation between the methods of “observation equations” and “condition equations” is discussed in full detail. Another purpose of this paper is to contribute to the development of some familiarity with Euclidean and Hilbert space concepts. We are convinced that Euclidean and Hilbert space techniques in least squares adjustment are elegant and powerful geodetic methods.  相似文献   

2.
The term “entity” covers, when used in the field of electronic data processing, the meaning of words like “thing”, “being”, “event”, or “concept”. Each entity is characterized by a set of properties. An information element is a triple consisting of an entity, a property and the value of a property. Geodetic information is sets of information elements with entities being related to geodesy. This information may be stored in the form ofdata and is called ageodetic data base provided (1) it contains or may contain all data necessary for the operations of a particular geodetic organization, (2) the data is stored in a form suited for many different applications and (3) that unnecessary duplications of data have been avoided. The first step to be taken when establishing a geodetic data base is described, namely the definition of the basic entities of the data base (such as trigonometric stations, astronomical stations, gravity stations, geodetic reference-system parameters, etc...). Presented at the “International Symposium on Optimization of Design and Computation of Control Networks”, Sopron, Hungary, July 1977.  相似文献   

3.
It is shown that also in a rank deficient Gauss-Markov model higher weights of the observations automatically improve the precision of the estimated parameters as long as they are computed in thesame datum. However, the amount of improvement in terms of the trace of the dispersion matrix isminimum for the so-called “free datum” which corresponds to the pseudo-inverse normal equations matrix. This behaviour together with its consequences is discussed by an example with special emphasis on geodetic networks for deformation analysis.  相似文献   

4.
The problem of “global height datum unification” is solved in the gravity potential space based on: (1) high-resolution local gravity field modeling, (2) geocentric coordinates of the reference benchmark, and (3) a known value of the geoid’s potential. The high-resolution local gravity field model is derived based on a solution of the fixed-free two-boundary-value problem of the Earth’s gravity field using (a) potential difference values (from precise leveling), (b) modulus of the gravity vector (from gravimetry), (c) astronomical longitude and latitude (from geodetic astronomy and/or combination of (GNSS) Global Navigation Satellite System observations with total station measurements), (d) and satellite altimetry. Knowing the height of the reference benchmark in the national height system and its geocentric GNSS coordinates, and using the derived high-resolution local gravity field model, the gravity potential value of the zero point of the height system is computed. The difference between the derived gravity potential value of the zero point of the height system and the geoid’s potential value is computed. This potential difference gives the offset of the zero point of the height system from geoid in the “potential space”, which is transferred into “geometry space” using the transformation formula derived in this paper. The method was applied to the computation of the offset of the zero point of the Iranian height datum from the geoid’s potential value W 0=62636855.8 m2/s2. According to the geometry space computations, the height datum of Iran is 0.09 m below the geoid.  相似文献   

5.
Summary The problem to detect configurational defects in geodetic networks is solved by a graph-theoretical algorithm, here applied to triangular geodetic networks and being presented as a computer program in the Appendix. Based on an analysis of the incidence matrix the algorithm detects, for instance, missing vertical directions which cause two types of deficiencies. In case of only vertical direction measurements from one point to another, but no counter vertical direction measurements backwards, the rank deficiency of the first type is identified. Furtheron if there are “bare” points with no vertical direction measurements at all, the rank deficiency of the second type is found. The algorithm has proved a rank deficiency of 4+13=17 in theSW Finland triangular network which before has been found as the surprizing rank defect ofTAGNET 3d-operational adjustment.  相似文献   

6.
The atmosphere induces variations in Earth rotation. These effects are classically computed using the “angular momentum approach”. In this method, the variations in Earth rotation are estimated from the variations in the atmospheric angular momentum (AAM). Several AAM time-series are available from different meteorological centers. However, the estimation of atmospheric effects on Earth rotation differs when using one atmospheric model or the other. The purpose of this work is to build an objective criterion that justifies the use of one series in particular. Because the atmosphere is not the only cause of Earth rotation variations, this criterion cannot rely only on a comparison of AAM series with geodetic data. Instead, we determine the quality of each series by making an estimation of their noise level, using a generalized formulation of the “three-cornered hat method”. We show the existence of a link between the noise of the AAM series and their correlation with geodetic data: a noisy series is usually less correlated with Earth orientation data. As the quality of the series varies in time, we construct a combined AAM series, using time-dependent weights chosen so that the noise level of the combined series is minimal. To determine the influence of a minimal noise level on the correlation with geodetic data, we compute the correlation between the combined series and Earth orientation data. We note that the combined series is always amongst the best correlated series, which confirms the link established before. The quality criterion, while totally independent of Earth orientation observations, appears to be physically convincing when atmospheric and geodetic data are compared  相似文献   

7.
A review of recent progress and current activities towards an improved formulation and solution of geodetic boundary value problems is given. Improvements stimulated and required by the dramatic changes of the real world of geodetic measurements are focused upon. Altimetry–gravimetry problems taking into account various scenarios of non-homogeneous data coverage are discussed in detail. Other problems are related to free geodetic datum parameters, most of all the vertical datum, overdetermination or additional constraints imposed by satellite geodetic observations or models. Some brief remarks are made on pseudo-boundary value problems for geoid determination and on purely gravitational boundary-value problems. Received: 17 March 1999 / Accepted: 19 April 1999  相似文献   

8.
After reviewing the overall goals of geodesy, the paper focuses on the unique properties of inertial survey systems in the geodetic arsenal: three-dimensionality; ability to determine relative positions and changes in the anomalous components of the earth’s gravity field; and independence of line-of-sight observations and the effects of refraction, both traditional antagonists in geodetic operations. Inertial survey systems, including field and office computational procedures, are briefly reviewed. Their short-comings are pointed out and certain remedies offered. Future possible improvements in hardware and software, as well as the development of hybrid systems (e.g., with gravity gradiometers), are discussed. “Apart from the refinement of existing techniques through the use of computers and the introduction of electromagnetic and optical distance measurement devices, instrumental research and development has been conducted by scientists and engineers outside the geodetic profession. This separateness of geodetic instrument research and development is seen as a deficiency by some, because of the reduced interaction between measurement techniques and the problems to which they apply. However, geodesy does not seem extraordinarily different from other environmentally oriented sciences in this respect and certainly has been quick to adopt new techniques once the benefits become evident.” (NAS 1978, p. 6) From the Keynote Address presented at Second International Symposium on Inertial Technology for Surveying and Geodesy, June 1–5, 1981, Banff, Alberta, Canada.  相似文献   

9.
Summary . It is well known that for the comparison and combination of geodetic networks their heterogeneous datum definitions are well to be considered. Various algorithms have been developed for this purpose. As an alternative concept to deal with hybrid datum problems, the operator parallel sum of matrices is introduced in this paper. To begin with, a definition is given and some basic properties are explained. To demonstrate the usefulness of the operator, two practical applications are given. The first deals with the estimation of parameters describing the deformation of two networks which are to be compared to each other. The second one treats the estimation of parameters representing the heterogeneous datum definitions of two networks which are to be merged into a hybrid network. It will be shown that – regardless of the datum definitions of the preadjusted individual networks – the parallel sum of matrices can be used to simplify the algorithms applied for the estimation of those parameters. Received 15 December 1995; Accepted 24 September 1996  相似文献   

10.
The upward-downward continuation of a harmonic function like the gravitational potential is conventionally based on the direct-inverse Abel-Poisson integral with respect to a sphere of reference. Here we aim at an error estimation of the “planar approximation” of the Abel-Poisson kernel, which is often used due to its convolution form. Such a convolution form is a prerequisite to applying fast Fourier transformation techniques. By means of an oblique azimuthal map projection / projection onto the local tangent plane at an evaluation point of the reference sphere of type “equiareal” we arrive at a rigorous transformation of the Abel-Poisson kernel/Abel-Poisson integral in a convolution form. As soon as we expand the “equiareal” Abel-Poisson kernel/Abel-Poisson integral we gain the “planar approximation”. The differences between the exact Abel-Poisson kernel of type “equiareal” and the “planar approximation” are plotted and tabulated. Six configurations are studied in detail in order to document the error budget, which varies from 0.1% for points at a spherical height H=10km above the terrestrial reference sphere up to 98% for points at a spherical height H = 6.3×106km. Received: 18 March 1997 / Accepted: 19 January 1998  相似文献   

11.
A new estimator for VLBI baseline length repeatability   总被引:1,自引:1,他引:0  
O. Titov 《Journal of Geodesy》2009,83(11):1041-1049
The goal of this paper is to introduce a more effective technique to approximate for the “repeatability–baseline length” relationship that is used to evaluate the quality of geodetic VLBI results. Traditionally, this relationship is approximated by a quadratic function of baseline length over all baselines. The new model incorporates the mean number of observed group delays of the reference radio sources (i.e. estimated as global parameters) used in the estimation of each baseline. It is shown that the new method provides a better approximation of the “repeatability–baseline length” relationship than the traditional model. Further development of the new approach comes down to modeling the repeatability as a function of two parameters: baseline length and baseline slewing rate. Within the framework of this new approach the station vertical and horizontal uncertainties can be treated as a function of baseline length. While the previous relationship indicated that the station vertical uncertainties are generally 4–5 times larger than the horizontal uncertainties, the vertical uncertainties as determined by the new method are only larger by a factor of 1.44 over all baseline lengths.  相似文献   

12.
The transformation of the instantaneous terrestrial coordinate system to the mean or average earth-fixed one is parameterized by the polar motion components which are continuously changing in time. Using the non-symmetricity of the connection coefficients connecting the above frames the errors (“misclosures”) are estimated which would be present if the instantaneous frame would be used as the geodetic reference frame.  相似文献   

13.
Present day inertial surveys are limited to single traverse runs in which the number of unknown system parameters to be determined are few, depending on the number of control points available along the traverse. Further, conventional inertial surveys are generally restricted to the determination of coordinates with no possibility for a rigorous post-mission adjustment of the observations. The consequence is the continued presence of systematic trends in the residuals, even after the use of error models such as those proposed by Ball, Gregerson or Kouba. Future work aiming at higher accuracies obviously requires more comprehensive models and rigorous adjustment procedures. These can be accomplished by the development of such error models and by the use of “area surveys”, instead of the single traverses, together with rigorous adjustment procedures suitable for the network of criss-crossing lines inertially surveyed. In such a network the cross-over points serve as constraints for the geodetic parameters (latitude, longitude, height, gravity anomaly, deflection components) and allow the addition of hardware and software related error parameters. Thus an opportunity is provided to effectively self-calibrate the system—a concept successfully used, for example, in photogrammetry or in satellite tracking. The number and the strength of such parameters depend on the number of control and cross-over points. The adjustment, of course, also provides the necessary statistical information on the adjusted parameters, such as their precision and the correlation between them. The presentation will describe current work at OSU in this area. Presented at the Second International Symposium on Inertial Technology for Surveying and Geodesy, Banff, Canada, June 1–5, 1981.  相似文献   

14.
Doppler derived geocentric and relative geodetic positions are now widely used for detecting and controlling systematic scale and orientation errors in large classical terrestrial triangulation networks. However, the combined adjustment of terrestrial and space data raises several theoretical problems, including the choice of appropriate reference systems, the a priori weighting of the various types of observations, the modelling of systematic errors and the conditioning of the network in terms of internal and external rank deficiencies. Tests with large national networks show conclusively that, without correct modelling, systematic errors will largely be unaffected by “higher order” observations.  相似文献   

15.
The space orientation and geodetic azimuths of lines ranging from 300 km to 1400 km have been determined from simultaneous optical observations of the ANNA Flashing Satellite. The results of this test prove that the azimuth and the space direction between two stations can be achieved to an accuracy of 0.5″ and 0.8″ second respectively with only a limited amount of data. The reason for the high accuracy is attributed to two factors: [1] the metric quality of the PC-1000's stellar cameras, and [2] the “perfect” simultaneity in the observations provided by the ANNA flashing light. Much of this work was accomplished by the writer while employed by the Geodesy and Gravity Branch of Cambridge Research Laboratories.  相似文献   

16.
In November 1968, a marine geodetic control point was established in the Pacific Ocean at a water depth of6,200 feet. The control point (reference point) consists of three underwater acoustic transponders, two of which are powered with lead-acid batteries and the third with an underwater radioisotope power source “URIPS” with a10- to20- year life expectancy. Four independent measuring techniques (LORAC airborne line-crossing, satellite, ship inertial, and acoustic techniques) were used to measure and determine the coordinates of the control point. Preliminary analysis of the acoustic and airborne data indicates that high accuracies can be achieved in the establishment of geodetic reference points at sea. Geodetic adjustment by the method of variation of coordinates yielded a standard point error of±50 to±66 feet in determining the unknown ship station. The original location of the ship station as determined by shipboard navigation equipment was off by about1,600 feet. Paper previously published in the Proceedings of the Second Marine Geodesy Symposium of the Marine Technology Society.  相似文献   

17.
Robust estimation of geodetic datum transformation   总被引:18,自引:1,他引:17  
Y. Yang 《Journal of Geodesy》1999,73(5):268-274
The robust estimation of geodetic datum transformation is discussed. The basic principle of robust estimation is introduced. The error influence functions of the robust estimators, together with those of least-squares estimators, are given. Particular attention is given to the robust initial estimates of the transformation parameters, which should have a high breakdown point in order to provide reliable residuals for the following estimation. The median method is applied to solve for robust initial estimates of transformation parameters since it has the highest breakdown point. A smooth weight function is then used to improve the efficiency of the parameter estimates in successive iterative computations. A numerical example is given on a datum transformation between a global positioning system network and the corresponding geodetic network in China. The results show that when the coordinates are contaminated by outliers, the proposed method can still give reasonable results. Received: 25 September 1997 / Accepted: 1 March 1999  相似文献   

18.
Astronomic azimuths are used in classical geodesy, through the Laplace equation, to control the orientation of geodetic networks. The method most commonly used by the United States National Geodetic Survey for the determination of astronomic azimuth is often referred to as the “direction method”, and is based on observations of Polaris at any hour angle. We have analyzed repeat determinations, by analysis of variance (ANOVA) techniques, to derive realistic estimates of the expected accuracy of typical astronomic azimuths to be used in the readjustment of the North American Datum. We found that the dominant errors are systematic in nature, with a very important source being observer bias, or “personal equation”. We were unable to decompose the remaining systematic error, which presumably consists primarily of instrument biases, anomalous refraction, and setup errors. We found, from an analysis of determinations that were first corrected for observer bias, an increase in the variance of repeat azimuth determinations as a function of latitude that agrees reasonably well with theoretical expectations.  相似文献   

19.
Summary A method of adjusting intersecting chains of triangulation by direct elimination, using variation of coordinates, is given which is suitable for a computer of modest storage capacity (about 4000–8000 words). The network is considered to be made up of “nodes” (where two or more chains intersect) and “links” (which connect two nodes). The normal equations for the points in each link are computed, the coefficients of the unknown coordinates of the associated nodes being treated as extra right hand sides. These equations are then solved to express the coordinates of any link station in terms of the associated nodes. The process is repeated for all links. The normal equations for the nodes are then set up and substitution made for all “link” terms. The method is particularly powerful for the adjustment of a few, long, interconnected chains since the reduced normal equation coefficients are then banded about the diagonal, the semi band width being a little greater than the largest number of unknowns in the nodes along a single tie chain. For a computer of 7000 words capacity it is possible to solve for a band width of over 100 unknowns i.e. more than 50 stations.  相似文献   

20.
介绍了日本曾采用了百余年的大地基准TD1918,阐述了它不能适应当前日本的经济、社会和军事发展的需求,日本于2002年开始采用新的地心三维大地基准JGD2000.概要介绍了JGD2000大地系统的定义及其框架,最后给出了这两个新老大地基准的转换.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号