首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The uptake or adsorption of copper, nickel and cobalt by finely divided oxide solids in aqueous ammoniacal medium has been investigated experimentally in order to determine how adsorption on leach residues can affect the recovery of leachable metals. Hematite, rutile, alumina and quartz were used as model solid adsorbents. In the case of ammoniacal leach solutions the controlling metal species appears to be the aqueous neutral hydroxo species. Adsorption behavior was found to have maxima and minima as a function of pH, the magnitude of which depends on ammonia concentration, the metal cation, and the adsorbent.  相似文献   

2.
A set of free-drift experiments was undertaken to synthesize carbonates of mixed cation content (Fe, Ca, Mg) from solution at 25 and 70 °C to better understand the relationship between the mineralogy and composition of these phases and the solutions from which they precipitate. Metastable solid solutions formed at 25 °C which are not predicted from the extrapolation of higher temperature equilibrium assemblages; instead, solids formed that were intermediary in chemical composition to known magnesite–siderite and dolomite solid solutions. A calcite–siderite solid solution precipitated at 25 °C, with the percentage of CaCO3 in the solid being proportional to the aqueous Ca/Fe ratio of the solution, while Mg was excluded from the crystal structure except at relatively high aqueous Mg/Ca and Mg/Fe ratios and a low Ca content. Alternatively, at 70 °C Mg was the predominant cation of the solid solutions. These results are compatible with the hypothesis that the relative dehydration energies of Fe, Ca and Mg play an important role in the formation of mixed cation carbonates in nature.  相似文献   

3.
The leaching kinetics of chalcopyrite (CuFeS2) concentrate in sulfuric acid leach media with and without the initial addition of Fe3+ under carefully controlled solution conditions (Eh 750 mV SHE, pH 1) at various temperatures from 55 to 85 °C were measured. Kinetic analyses by (i) apparent rate (not surface area normalised), and rate dependence using (ii) a shrinking core model and (iii) a shrinking core model in conjunction with Fe3+ activity, were performed to estimate the activation energies (Ea) for Cu and Fe dissolution.The Ea values determined for Cu and Fe leaching in the absence of added Fe3+ are within experimental error, 80 ± 10 kJ mol−1 and 84 ± 10 kJ mol−1, respectively (type iii analyses Ea are quoted unless stated otherwise), and are indicative of a chemical reaction controlled process. On addition of Fe3+ the initial Cu leach rate (up to 10 h) was increased and Cu was released to solution preferentially over Fe, with the Ea value of 21 ± 5 kJ mol−1 (type ii analysis) suggestive of a transport controlled rate determining process. However, the rate of leaching rapidly decreased until it was consistently slower than for the equivalent leaches where Fe3+ was not added. The resulting Ea value for this leach regime of 83 ± 10 kJ mol−1 is within experimental error of that determined in the absence of added Fe3+. In contrast to Cu release, Fe release to solution was consistent with a chemical reaction controlled leach rate throughout. The Fe release Ea of 76 ± 10 kJ mol−1 is also within experimental error of that determined in the absence of added Fe3+. Where type (ii) and (iii) analyses were both successfully carried out (in all cases except for Cu leaching with added Fe3+, <10 h) the Ea derived are within experimental error. However, the type (iii) analyses of the leaches in the presence of added Fe3+ (>10 h), as compared to in the absence of added Fe3+, returned a considerably smaller pre-exponential factors for both Cu and Fe leach analyses commensurate with the considerably slower leach rate, suggestive of a more applicable kinetic analysis.XPS examination of leached chalcopyrite showed that the surface concentration of polysulfide and sulfate was significantly increased when Fe3+ was added to the leach liquor. Complementary SEM analysis revealed the surface features of chalcopyrite, most likely due to the nature of the polysulfide formed, are subtly different with greater surface roughness upon leaching in the absence of added Fe3+ as compared to a continuous smooth surface layer formed in the presence of added Fe3+. These observations suggest that the effect of Fe3+ addition on the rate of leaching is not due to the change in the chemical reaction controlled mechanism but due to a change in the available surface area for reaction.  相似文献   

4.
Granite- and gabbrodiorite-associated skarn deposits of NW Iran   总被引:1,自引:0,他引:1  
Field and laboratory studies show that there are two types of skarn deposits in NW Iran: granite-associated (type I) and gabbrodiorite-associated (type II). Granite-associated deposits are accompanied by Cu and Fe mineralisation, whereas Mn and Fe are the main ore metals in gabbrodiorite-associated skarn deposits. There are some differences in the mineralogy of these skarn deposits. Bixbyite, piemontite and Cr-bearing garnet are found only in gabbrodiorite-associated skarns, whereas idocrase occurs only in granite-associated deposits. Type II skarns show exoskarn features, whereas some type I skarns have developed endoskarn as well. Evidence of boiling of hydrothermal fluid can be seen in both types and seems to be a common mechanism of mineral deposition. Gabbrodiorite-associated skarns show higher fO2 than granite-associated deposits. Based on mineralogical and textural evidence, mineralisation in both groups has started from about 550 °C. Early formed anhydrous minerals have begun to be replaced by hydrous minerals from about 400 °C.It seems that due to low fluid content in the gabbrodioritic magma, heated meteoritic water in the surrounding volcanoclastic and tuffaceous rocks was the main source of hydrothermal solution in the gabbrodiorite-associated skarn system.  相似文献   

5.
Immature vitrinite samples from a Miocene lignite seam of western Germany (H/C = 1.14, O/C = 0.41) and alginite concentrates from a Tasmanite deposit of Australia (H/C = 1.60, O/C = 0.10) were pyrolyzed in a stream of argon at heating rates of 0.1 and 2.0°C/min up to temperatures varying from 200 to 670°C. The solid maceral residues were subjected to elemental and microscopical analysis and studied by IR and 13C CP/MAS NMR spectroscopy with respect to structural modifications.The maximum pyrolytic weight loss amounts to 60% of the initial organic matter in the case of vitrinite and to 85% for alginite, the onset of degradation reactions being shifted to higher temperatures with increasing rate of heating. Both infrared and NMR spectra of the vitrinite samples indicate a rapid decomposition of the cellulose component upon heating whereas lignin related structures such as aromatic ether linkages remain remarkably stable. The main hydrocarbon release from vitrinite occurs at very early evolution stages (Tmax = 296°C, Rm = 0.20% at 0.1°C/min; Tmax = 337°C, Rm = 0.23 at 2.0°C/min). Hydrocarbon generation from alginite requires higher temperatures (Tmax = 388 and 438°C) and is completed within a distinctly narrower temperature range.The pronounced increase of vitrinite reflectance between 350 and 670°C seems to be associated with a rather time-consuming reorganization of the residual organic material. The concomitant growth of polyaromatic units is illustrated by the increasing intensity ratio of the aromatic ring stretching vibration bands at 1600 and 1500 cm−1. These reactions are moreover marked by increasing loss of phenolic oxygen and by increasing conversion of aliphatic carbon into fixed aromatic carbon.  相似文献   

6.
The evolution of the organic geochemistry and carbonate alkalinity of oilfield waters is apparently regular and predictable; this evolution can be typified by five generalizations (1) at or near 80°C there appears to be an exponential rise in the concentration of organic acid anions; (2) the maximum concentration of organic acid anions occurs over approximately the 80–100°C temperature interval; (3) the highest concentrations of difunctional acid anions are associated with the other organic species maxima; (4) difunctional acid anions are the first to be decarboxylated, typically at temperatures of 100–110°C; (5) with increasing temperature (110–130°C) monofunctional acid anions begin to become decarboxylated, resulting in a fluid alkalinity dominated by bicarbonate. Dissolution experiments using artificial and natural oilfield waters demonstrate that mono- and difunctional carboxylic acid anions and hydroxybenzoic acid anions (present in both oilfield waters and the aqueous phase of hydrous pyrolysates) are capable of greatly enhancing Al, Si, Fe and Ca concentrations in solutions from dissolution of minerals by organometallic complexation. This enhancement of mineral solubility has been called upon to explain aluminosilicate dissolution porosity which is quantitatively important in many subsurface reservoirs; certainly, no other viable mechanism has been proposed to explain aluminum transport in the subsurface. When integrated into basin models, the regular evolution of organic and carbonate alkalinity in oilfield waters and the changing mineral stabilities that accompany that evolution help explain commonly observed diagenetic sequences in clastic systems.  相似文献   

7.
A mesophilic iron oxidizing bacterium, Acidithiobacillus ferrooxidans, has been isolated (33 °C) from a typical, chalcopyrite concentrate of the Sarcheshmeh copper mine in the region of Kerman located in the south of Iran. In addition, a thermophilic iron oxidizing bacterium, Sulfobacillus, has been isolated (60 °C) from the sphalerite concentrate of Kooshk lead and zinc mine near the city of Yazd in the center point of Iran. Variation of pH, ferrous and ferric concentration on time and effects of some factors such as temperature, cell growth, initial ferrous concentration and pH on bioleaching of low-grade complex zinc–lead ore were investigated. The results obtained from bioleaching experiments indicate that the efficiency of zinc extraction is dependent on all of the mentioned variables; especially the temperature and initial Fe(II) concentration have more effect than other factors for these microorganisms. In addition, results show that the maximum zinc recovery was achieved using a thermophilic culture. Zinc dissolution reached 58% with Sulfobacillus while it was 51% with A. ferrooxidans at pH = 1.5, initial Fe(II) concentration = 7 and 9 g/L for A. ferrooxidans and Sulfobacillus, respectively, after 30 days.  相似文献   

8.
Fe isotopes are a potential tool for tracing the biogeochemical redox cycle of Fe in the ocean. Specifically, it is hypothesized that Fe isotopes could enable estimation of the contributions from multiple Fe sources to the dissolved Fe budget, an issue that has received much attention in recent years. The first priority however, is to understand any Fe isotope fractionation processes that may occur as Fe enters the ocean, resulting in modification of original source compositions. In this study, we have investigated the Fe inputs from a basalt-hosted, deep-sea hydrothermal system and the fractionation processes that occur as the hot, chemically reduced and acidic vent fluids mix with cold, oxygen-rich seawater.The samples collected were both end-member vent fluids taken from hydrothermal chimneys, and rising buoyant plume samples collected directly above the same vents at 5°S, Mid-Atlantic Ridge. Our analyzes of these samples reveal that, for the particulate Fe species within the buoyant plume, 25% of the Fe is precipitated as Fe-sulfides. The isotope fractionation caused by the formation of these Fe-sulfides is δFe(II)–FeS = +0.60 ± 0.12‰.The source isotope composition for the buoyant plume samples collected above the Red Lion vents is calculated to be −0.29 ± 0.05‰. This is identical to the value measured in end-member vent fluids collected from the underlying “Tannenbaum” chimney. The resulting isotope compositions of the Fe-sulfide and Fe-oxyhydroxide species in this buoyant plume are −0.89 ± 0.11‰ and −0.19 ± 0.09‰, respectively. From mass balance calculations, we have been able to calculate the isotope composition of the dissolved Fe fraction, and hypothesize that the isotope composition of any stabilised dissolved Fe species exported to the surrounding ocean may be heavier than the original vent fluid. Such species would be expected to travel some distance from areas of hydrothermal venting and, hence, contribute to not only the dissolved Fe budget of the deep-ocean but also it’s dissolved Fe isotope signature.  相似文献   

9.
Equilibrium and kinetic Fe isotope fractionation between aqueous ferrous and ferric species measured over a range of chloride concentrations (0, 11, 110 mM Cl) and at two temperatures (0 and 22°C) indicate that Fe isotope fractionation is a function of temperature, but independent of chloride contents over the range studied. Using 57Fe-enriched tracer experiments the kinetics of isotopic exchange can be fit by a second-order rate equation, or a first-order equation with respect to both ferrous and ferric iron. The exchange is rapid at 22°C, ∼60-80% complete within 5 seconds, whereas at 0°C, exchange rates are about an order of magnitude slower. Isotopic exchange rates vary with chloride contents, where ferrous-ferric isotope exchange rates were ∼25 to 40% slower in the 11 mM HCl solution compared to the 0 mM Cl (∼10 mM HNO3) solutions; isotope exchange rates are comparable in the 0 and 110 mM Cl solutions.The average measured equilibrium isotope fractionations, ΔFe(III)-Fe(II), in 0, 11, and 111 mM Cl solutions at 22°C are identical within experimental error at +2.76±0.09, +2.87±0.22, and +2.76±0.06 ‰, respectively. This is very similar to the value measured by Johnson et al. (2002a) in dilute HCl solutions. At 0°C, the average measured ΔFe(III)-Fe(II) fractionations are +3.25±0.38, +3.51±0.14 and +3.56±0.16 ‰ for 0, 11, and 111 mM Cl solutions. Assessment of the effects of partial re-equilibration on isotope fractionation during species separation suggests that the measured isotope fractionations are on average too low by ∼0.20 ‰ and ∼0.13 ‰ for the 22°C and 0°C experiments, respectively. Using corrected fractionation factors, we can define the temperature dependence of the isotope fractionation from 0°C to 22°C as: where the isotopic fractionation is independent of Cl contents over the range used in these experiments. These results confirm that the Fe(III)-Fe(II) fractionation is approximately half that predicted from spectroscopic data, and suggests that, at least in moderate Cl contents, the isotopic fractionation is relatively insensitive to Fe-Cl speciation.  相似文献   

10.
Hydrothermal fields on submarine spreading centres were first studied systematically during dives of the deep submersible ALVIN on the crest of the Galapagos Ridge in 86°W in the spring of 1977. While the exiting waters had temperatures only about 20°C above that of the ambient water column detailed analysis of their chemistry showed them to be formed by mixing of cold sea water (as “ground-water”) with a hydrothermal endmember of approximate temperature 350°C. Subsequently fields of hot springs with this temperature were found on the crest of the East Pacific Rise at 21°N by ALVIN in 2 600 metres water depth. Reconnaissance water sampling of these systems was made in November 1979 and a detailed study has just been completed (November 1981).The 350°C solutions are completely depleted of their original sea-water concentrations of Mg and SO4. They are acid with a pH (25°C, 1 atmos) of 3.6 and an acidity of 400 μeq/kg. They contain about 7 mmol/kg of H2S. The isotopic composition of this sulphur and the arsenic to sulphur ratio in the solutions indicate that about 85% of it is of igneous origin. The “soluble elements” Li, K and Rb are strongly enriched over the sea-water values, as are Ca and Ba. Sr is present at close to the sea-water concentrations however the isotopic compositon is identical to that of the basalts. The exiting solutions are clear and homogeneous super-critical fluids of in situ density approximately 0.65 g/cm3. Velocities in the throat of the orifices are around 1.5 m/sec. The iron concentrations are 1.8 mmol/kg and the Fe/Mn ratio is about 3. The reconnaissance samples gave Zn of 120 μol/kg and Cu and Ni of about 15 μol/kg.Upon mixing with sea-water the hot springs precipitate a voluminous black “smoke” predominantly composed of fine-grained FeS. Anhydrite is precipitated around the throat of the orifice producing chimney-like constructional features up to 10-m high. As these grow vertically the anydrite is replaced by sulphide minerals. The outer surface of the chimneys is colonized by several species of worms that secrete mats of tubes, up to several centimetres in diameter, composed of a tough organic material. Lateral growth of the chimneys via leaks in their walls leads to precipitation of sulphide minerals in a morphology controlled by the organic mats. All the numerous extinct sulphide deposits in the area have this characteristic surface texture.The active deposits on the EPR are unlike ophiolite type massive sulphides chemically, mineralogically and texturally. However, they do represent the primary precipitate. It appears that during lateral growth and coalescence of the chimneys in a given field the original deposit is reworked chemically as the 350°C solutions stream through the disequilibrium rapidly precipitated material. A “zone refined” substrate results consisting of coarsely crystalline, permeable relatively pure pyrite. This secondary deposit is, of course, capped with juvenile chimneys. It is these that probably constitute the ochres, the oxidized surficial zones of massive sulphides historically worked for silver and other elements present at only trace levels in the bulk deposit.  相似文献   

11.
This investigation presents and interprets fluid inclusion data from different lithological units of the Cu skarn deposits at Mazraeh, north of Ahar, Azarbaijan, NW Iran. The results provide an assessment of the PT conditions and mineral–fluid evolution and suggest new exploration parameters. Five types of inclusions are recognized from quartz and garnet. The temperature of homogenization of Type I inclusions with daughter minerals halite and sylvite ranges from 312° to 470 °C with total salinity of 52 to 63 wt.% NaCl equiv.; Type II and III inclusions with halite have homogenization temperatures of 230° to 520 °C and salinity of 31 to 50 wt.% NaCl equiv. The salinity of Types IV and V biphase (liquid + vapor) inclusions, based on their final ice melting temperature, varies between 10.2 to 20.8 wt.% NaCl equiv. Th vs. salinity plots of inclusions show that the salinity of the fluids correlates positively with temperature. The inclusions formed at low pressure. Changes in the temperature and salinity of the fluids can be reconstructed from the inclusions. Highly saline, high-temperature fluids were most abundant during the main chalcopyrite ore-forming phase in the skarn and mineralized quartz veins. Low-salinity aqueous fluids were abundant in barren veins, in which there is no evidence for early hot high-salinity brine, and might have resulted from late-stage dilution and mixing of hydrothermal fluids with meteoric water. Based on petrographic features and fluid-inclusion data, early-stage magnetite deposition is related to boiling of fluid at temperatures of about 500 °C. At a later stage, boiling at temperatures of around 320° to 400 °C favored the deposition of sulfides and Fe mobility was decreased at these lower temperatures. The following inclusion characteristics may be used as exploration parameters in the Mazraeh area. (i) Presence of high-temperature, salt-bearing inclusions, with Th between 300 and 500 °C; (ii) High-salinity fluid inclusions; and (iii) Inclusions showing evidence of boiling of the fluid. In addition, the presence of magnetite is an important exploration parameter.  相似文献   

12.
In Mexico, many environmental problems are generated by large mining activities taking place in several mining districts. These mining activities produce great quantities of residues; large majorities of these have high sulfur content, which could generate acid drainage due to their interaction with the oxygen in the environment. The study area was located in the Mining District of Guanajuato, Mexico with abandoned tailings generated mainly by the gold and silver production. Two areas, called as Monte de San Nicolás (SN) and Peregrina (P) were selected for this study. The results study shows that there was no risk of production of acid drainage, since these tailings contained high amount of carbonates, which neutralized the generation of acidity and consequently decreased the possibility of leaching of some elements. However, not all elements leach in acid pH, as arsenic bound to oxyhydroxides, which is in a basic environment and its increased release by increasing the pH.  相似文献   

13.
《Applied Geochemistry》2003,18(9):1361-1371
The study of inactive As-bearing tailings impoundments at the Khovu-Aksy mine-site (Russia) revealed high concentrations of As in the porewater of tailings solids and in their aqueous extracts, as well as in adjacent soils. In these investigations, experimental leaching of As-containing tailings was performed in the laboratory. The three types of solutions which were used in the leach experiments to model natural waters and waters of anthropogenic origin were H2O, HNO3 and NH4HCO3, and during leaching with these solutions As concentrations were maintained at 10±2, 16±1 and ∼20 mg/l. No low-pH waters were observed at the end of the leach experiments, where pH varied between 8.3 and 9.1. These alkaline pH conditions are attributed to the effect of acid consuming carbonate mineral dissolution reactions, which are also indicated by increased concentrations of Mg and Ca. Also, the solution of certain heavy metals (Co, Ni, Fe) was negligible compared to that of As, and these metals were assumed to have been conserved in the solid phase. Analysis of the leach solutions, and modeling of the results showed that As could be removed from the surface of different particles where it had been adsorbed, and also its concentration could increase with time from the breakdown of Ca(Mg)- and Ni(Co)-arsenate phases. In the absence of an effective remediation program, As release will continue to be an environmental problem.  相似文献   

14.
Analytical perspective on trace element species of interest in exploration   总被引:1,自引:0,他引:1  
Analysis of soil and sediment samples, using selective extraction methods to distinguish different phases, is of particular interest in exploration geochemistry to locate deeply buried mineral deposits. There are various mechanisms of binding labile elements in the secondary environment, including physical and chemical sorption, precipitation, chelation and complexation. Phases present in soils and sediments which are likely to scavenge ‘free' elements include amorphous Mn and Fe oxides, the humic and fulvic components of humus, and clays. This paper reviews these forms of trace elements and the methods in current use to quantify them. Examples of precision data, both for control and survey samples, are given with respect to trace elements dissolved from the ‘soluble organic' component of humus, Mn oxides and amorphous Fe oxides. The high sensitivity of inductively coupled plasma mass spectrometry (ICP–MS) is required to measure accurately and precisely a large suite of trace elements, especially where only small fractions of elements are dissolved by such leaches as the commercially available Enzyme and MMI (Mobile Metal Ion) extractions. The relative standard deviations (RSD) obtained for 33 elements (e.g. Ag, Cd, In, I) in the standard reference sample (SRM), TILL-2, are in the range 0.5–8% for the hydroxylamine hydrochloride (NH2OH·HCl) leach designed to extract hydrous Fe and Mn oxides. The corresponding RSDs for elements in the reactive Mn oxide phase extracted by the Enzyme leach are in the range 3–19% except for some trace elements at levels close to detection limit (e.g. Cd, Bi). The RSDs obtained for field duplicates are inferior to those for analytical replicates (i.e. sample splits), probably a reflection of different concentrations of the host phase. In one soil survey, the Fe extracted by a 0.25 M NH2OH·HCl leach ranged conservatively from 0.2 to 1.7% whereas the Mn extracted by the Enzyme leach varied extensively, from 0.3 to >999 ppm. In contrast, precision, at 1–7% RSD, for field duplicates was found to be comparable with that for both analytical duplicates and the SRM, LKSD-4, for elements associated with the humic and fulvic component of humus samples sieved to <177 μm.  相似文献   

15.
Platinum, gold and silver are lost from solution by the filtration procedure usually followed in the pre-analytical treatment of resuspended ashed or acid-digested plant tissues. Sorption losses however, may be reduced by the presence of other cations in the filtrate. Low concentration gold solutions (1–10 ng ml−1) cannot be stored in borosilicate glass containers for more than 48 hours, even with acidification. Synthetic solution data from this study suggest that some published values for these precious metals may have underestimated plant tissue concentrations.  相似文献   

16.
长坑矿床矿化过程中元素的质量迁移及金银关系   总被引:6,自引:0,他引:6       下载免费PDF全文
在长坑矿床的金矿化和银矿化过程中,质量迁移计算显示SiO2,Al2O3,FeO,Ni,Zn,As,Ba均为带入组分,而CaO,MgO,Na2O,Sc,V,Co,Bi,Sr,REE则为带出物质:Fe2O3,MnO,Cu,Pb的得失性质因矿化类型而异,轻,重稀土在金矿化中发生分离,但在银矿石形成过程中却表现出比较一致的行为。  相似文献   

17.
Sorption and catalytic oxidation of Fe(II) at the surface of calcite   总被引:1,自引:0,他引:1  
The effect of sorption and coprecipitation of Fe(II) with calcite on the kinetics of Fe(II) oxidation was investigated. The interaction of Fe(II) with calcite was studied experimentally in the absence and presence of oxygen. The sorption of Fe(II) on calcite occurred in two distinguishable steps: (a) a rapid adsorption step (seconds-minutes) was followed by (b) a slower incorporation (hours-weeks). The incorporated Fe(II) could not be remobilized by a strong complexing agent (phenanthroline or ferrozine) but the dissolution of the outmost calcite layers with carbonic acid allowed its recovery. Based on results of the latter dissolution experiments, a stoichiometry of 0.4 mol% Fe:Ca and a mixed carbonate layer thickness of 25 nm (after 168 h equilibration) were estimated. Fe(II) sorption on calcite could be successfully described by a surface adsorption and precipitation model (Comans & Middelburg, GCA51 (1987), 2587) and surface complexation modeling (Van Cappellen et al., GCA57 (1993), 3505; Pokrovsky et al., Langmuir16 (2000), 2677). The surface complex model required the consideration of two adsorbed Fe(II) surface species, >CO3Fe+ and >CO3FeCO3H0. For the formation of the latter species, a stability constant is being suggested. The oxidation kinetics of Fe(II) in the presence of calcite depended on the equilibration time of aqueous Fe(II) with the mineral prior to the introduction of oxygen. If pre-equilibrated for >15 h, the oxidation kinetics was comparable to a calcite-free system (t1/2 = 145 ± 15 min). Conversely, if Fe(II) was added to an aerated calcite suspension, the rate of oxidation was higher than in the absence of calcite (t1/2 = 41 ± 1 min and t1/2 = 100 ± 15 min, respectively). This catalysis was due to the greater reactivity of the adsorbed Fe(II) species, >CO3FeCO3H0, for which the species specific rate constant was estimated.  相似文献   

18.
Chondrule formation models involving precursors of granoblastic olivine aggregates (GOA) of either planetesimal or nebular origin have recently been proposed. We have therefore conducted chondrule simulation experiments using mixtures of 100 h-thermally annealed GOA and An + En to test the viability of GOA as predecessors of porphyritic olivine (PO) chondrules. Isothermal runs of less than 5 min at 1350–1550 °C result in GOA disaggregation and Fe–Mg exchange; runs of 0.5–4 h show textures superficially similar to granular and PO chondrules, but with reversely zoned olivine. Charges isothermally heated at 1550 °C for 1 and 4 h before being cooled at 10 and 100 °C/h undergo olivine crystallization and yield classical PO textures. Although most evidence of origin from GOA is erased, the cores of normally zoned euhedral crystals are relict. As ‘phenocrysts’ in Type I chondrules can be relict such chondrules could have experienced similar peak temperatures to those of Type II chondrules.Chondrules containing GOA with olivine triple junctions resemble experimental charges heated for minutes at temperatures between 1350 and 1450 °C and Type I chondrules with subhedral to anhedral olivine plus GOA relicts resemble charges heated at the same temperatures but for longer duration. Type I chondrules with a mass of granular olivine or irregular, anhedral olivine grains in the center, and much glass nearer the margin, on the other hand, require limited heating at high temperature (1550 °C) while Type I chondrules with euhedral olivines, resemble charges heated at 1550 °C for 4 h. The majority of Type I chondrules in CV chondrites display evidence of derivation from GOA. Many finer-grained chondrules in CR and UOC on the other hand, could not have been derived from such coarse-grained precursors, but could have formed from fine-grained dustballs as stipulated in the standard paradigm. Thus, both GOA and dustballs represent viable chondrule precursors of coarser and finer-grained Type I PO chondrules, respectively.  相似文献   

19.
The primary phases and minerals of the Plombières dumps include typical smelting furnace products such as metallic Fe, Pb, Cu, Zn, Fe-Zn alloys, carbides, phosphides, sulfides of Fe, Zn, Pb, Cu, Mn (alabandite), and FeAs. Spinels, mainly of Fe and Al, are common constituents of the primary assemblage; substitution by Zn, V, Cr, Ti, Mg, and Ca occurs. Primary phases also include the most common Zn-rich fayalite, Zn-rich Ca-Fe silicates, melilite, corundum, and apatite. Most of the Zn is incorporated in iron silicates, ZnO and ZnS. Lead occurs mainly as PbS, metallic lead, and is also present in coal residues. Cadmium is found mainly in metallic zinc and its alloys and in ZnO. The dumps also contain mining wastes composed of pyrite, melnikovite, and iron oxides produced by natural weathering of Zn-Pb ores. Melnikovite and iron oxides are rich in As, Pb, and Zn and possess an increased content of Tl. Leaching tests carried out on the surfaces of polished sections indicate that acid rain (solutions I and II) will mobilize mainly Zn and Cd and, to a much smaller extent, Pb and Sb. Leaching of metals by sulfate-chloride fluids present in the pore network of dumps (solutions III, IV, and V) depends on the pH, which in the dumps is controlled by the proportion of carbonates to sulfides. The more acid fluids leach both sulfides and silicates.  相似文献   

20.
Chalcopyrite (CuFeS2) leaching in perchloric acid (HClO4) at an initial pH of one and a temperature of 85 °C has been examined. The rate of leaching of Cu and Fe increased progressively over the duration of the experiment. The Cu leach rate was initially greater (up to 24 h) but thereafter the leach rates for Cu and Fe were approximately equal. After 313 h 81% Cu release was achieved at which time the leach experiment was terminated. Only 25% of the available S was released into solution during the leaching process. Surface speciation over the duration of the leach was examined using X-ray photoelectron spectroscopy (XPS), time of flight secondary ion mass spectrometry (ToF-SIMS) and scanning electron microscopy (SEM). As a result, a three-step reaction pathway is proposed. The first oxidation step involves the release of Cu and Fe into solution and the polymerisation of monosulfide (S2−) to polysulfide . The subsequent reduction step does not result in the release of cations to solution but does result in the reformation of surface S2− and other short chain polysulfides, which then on further oxidation restructure to form crystalline elemental sulfur (S0). This final oxidation step is accompanied by further cation release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号