首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The low-frequency seismic noise recorded by the broadband IRIS stations in 1994–2012 is studied in the period range of 40 to 360 s. It is shown that for samples of a few months in length, the power spectra of noise at stations spaced apart a few thousand kilometers and operating in different meteorological and seismotectonic conditions are overall similar, which indicates that the sources of the noise are global. At the same time, the slope of the spectra changes with the increase in the period in the subintervals of 40–90, 120–200, and 200–360 s, which points to the difference of the sources generating the seismic noise. The amplitude of the noise at the stations located a few thousand km apart from the Sumatra earthquake of December 26, 2004, M = 9.2, and from the Tohoku earthquake of March 11, 2011, M = 9.0, increased after these events. This indicates the global character of the aftermath of these seismic catastrophes. After the Kronotskoe earthquake of December 5, 1997, which was weaker (M = 7.9), the noise grew only at the PET station located within 300 km of the epicenter. According to the records at the PET station, this earthquake was preceded by the increased noise level observed in 1994–1997. After 1999, the seismic noise declined and remained low up to the end of the studied interval with a duration of 14 years. Our results show that the low-frequency seismic noise generated by the sources in the atmosphere of the Earth is contributed by the processes taking place in the lithosphere.  相似文献   

2.
Immediately following the M S7.0 Lushan earthquake on April 20, 2013, using high-pass and low-pass filtering on the digital seismic stations in the Shanxi Province, located about 870–1,452 km from the earthquake epicenter, we detected some earthquakes at a time corresponding to the first arrival of surface waves in high-pass filtering waveform. The earthquakes were especially noticed at stations in Youyu (YUY), Shanzizao (SZZ), Shanghuangzhuang (SHZ), and Zhenchuan (ZCH), which are located in a volcanic region in the Shanxi Province,but they were not listed in the Shanxi seismic observation report. These earthquakes occurred 4–50 min after the passage of the maximum amplitude Rayleigh wave, and the periods of the surface waves were mainly between 15 and 20 s following. The Coulomb stresses caused by the Rayleigh waves that acted on the four stations was about 0.001 MPa, which is a little lower than the threshold value of dynamic triggering, therefore, we may conclude that the Datong volcanic region is more sensitive to the Coulomb stress change. To verify, if the similar phenomena are widespread, we used the same filtering to observe contrastively continuous waveform data before, and 5 h after, the M S7.0 Lushan earthquake and M S9.0 Tohoku earthquake in 2011. The results show that the similar phenomena occur before the earthquakes, but the seismicity rates after the earthquakes are remarkably increased. Since these weak earthquakes are quite small, it is hard to get clear phase arrival time from three or more stations to locate them. In addition, the travel time differences between P waves and S waves (S–P) are all less than 4 s, that means the events should occur in 34 km around the stations in the volcanic region. The stress of initial dynamic triggering of the M S9.0 Tohoku earthquake was about 0.09 MPa, which is much higher than the threshold value of dynamic triggering stress. The earthquakes after the M S9.0 Tohoku earthquake are related to dynamic triggering stress, but the events before the earthquake cannot be linked to seismic events, but may be related to the background seismicity or from other kinds of local sources, such as anthropogenic sources (i.e., explosions). Using two teleseismic filtering, the small background earthquakes in the Datong volcanic region occur frequently, thus we postulate that previous catalog does not apply bandpass filter to pick out the weak earthquakes, and some of the observed weak events were not triggered by changes in the dynamic stress field.  相似文献   

3.
以2017年3月27日漾濞5.1级地震为例,根据区域特性和信噪比要求,选取数据较为完整的6个台站记录的2017年1月1日~6月6日期间的宾川地震信号发射台气枪震源波形资料,采用互相关检测技术提取6个台站各自稳定震相的走时数据,并对漾濞5.1级地震前后走时数据的变化情况进行分析。结果表明,漾濞5.1级地震前后6个台站各自稳定震相存在较为明显的走时变化,且短期内走时变化具有较好的同步性,相关台站异常幅度大小和异常出现时间存在细小差异。地震发生前,6个台站走时低值异常过程明显,以YUL台最为显著。地震发生前后走时变化形态特征为双“V”型,漾濞5.1级地震发生在第1个“V”型末端。地震发生后,不同方位相关台站受地震的影响程度不同,走时波动大小存在差异。  相似文献   

4.
The records from 161 identical broadband seismic stations located in different regions of the world after the strong earthquakes off Sumatra Island on December 26, 2004 with magnitude M = 9.1, in Chile on February 27, 2010 with M = 8.8, and the Tohoku earthquake in Japan on March 11, 2011 with M = 9.0 are studied. Oscillations with a period of ~11 h are analyzed. They are observed as pulsations in the free radial oscillations of the Earth lasting more than one week. The stations located a few hundred kilometers apart from each other demonstrate identical records. As the distance between the stations becomes larger, the structure of the records becomes different. At interstation distances of about 3800 km, the records at the stations have opposite phases, and at distances of ~7600 km, the phases coincide. This is reflected in the spatial structure of the areas of the positive and negative phases of the oscillations on the Earth’s surface. This structure recurs at the same time instant after the three considered earthquakes, which indicates that this effect is independent of the properties of the sources. The spatial positions of the areas of positive and negative phases are also not correlated to the geological conditions in the vicinity of the stations which are located both in the subduction zone and within the platform. The structure of the pulsations and their spatial distribution differ from the variations of the Earth’s tides.  相似文献   

5.
Spectral density estimates for distant whistlers in subranges of 8–12, 12–20, 20–30, and 30–40 kHz, based on data from stations located at distances of 250–300 km between each other, during the preparation of M = 5–6.2 earthquakes are obtained, and spectral density ratios are analyzed. It is shown that a stable decrease in spectral density ratios is observed for high frequency bands for a couple of stations which are the closest to and the farthest from the epicenter during a period of several days before an event (up to 2–3 weeks before it). Another peculiarity found is an increase in spectral density ratios several hours before an earthquake. These features can be used as short-term precursors.  相似文献   

6.
The records from wideband seismic stations are analyzed for studying the oscillations of the Earth that emerged after the earthquakes in Sumatra on December 26, 2004 (M = 9.2), Chile on February 27, 2010 (M = 8.8), and after the Tohoku megaearthquake on March 11, 2011 (M = 9.0). Attention is focused on the band with a period of 20.46 min, which includes the free radial mode 0S0. It is established that the emergence of oscillations in the frequency interval corresponding to the free oscillations of the Earth is delayed by a lag, which increases with increasing period. Pulsations of the 20.46-min band, which appear in the interval from 5 to 7 days after the earthquake and have a period of 127–129 min, are revealed. The patterns of the amplitude attenuation of the 20.46-min band are different at stations located in zones with different tectonic activity. These features manifest themselves in the search through different stations and through different earthquakes.  相似文献   

7.
Based on the scattering coda model by which local and regional earthquakes are interpreted (K. Aki, 1969), and using observational coda data of 68 aftershocks of the 1985 Luquan, Yunnan earthquake registered by the VGK seismographs installed at 12 stations in the Yunnan regional short-period network, theQ-values of coda waves are calculated respectively for 6 time intervals. It is observed that within the frequency range of 0.40–1.65 Hz of the observed data, theQ-values are closely related with the frequencies and the calculated codaQ ranges between 80–240 with the coefficient of frequency dependence η=0.45. The calculated source factorsB(f> p) of the coda waves which indicate the scattering strength are mostly within the order 10?23–10?24. Areas with lowQ-values present high scattering. It should be noted that by comparing data obtained before and after the Luquan earthquake, clear changes can be detected in theQ-values measured at stations close to the epicentral region, and that theQ-values of the aftershock coda are less than about one half of the pre-shock values. It may be mentioned that the time-dependent regional variations of theQ-values might possibly bring about practical significance in earthquake prediction. Moreover, aftershock focal parameters are determined. Through discussions on the quantitative relations between the focal parameters, we get: 1gE=1.59M L+ 11.335;E=(2.10 × 10?5)M 0; length of focal rupturea=0.40?0.80 km for 3.0≤M L<5.0 events; stress drop Δσ=(6.0–130) ×105 Pa. Through interpretation of the data, we have also learned the important characteristics that there is no linear relation between the stress drops and the earthquake magnitudes.  相似文献   

8.
Maximum earthquake size varies considerably amongst the subduction zones. This has been interpreted as a variation in the seismic coupling, which is presumably related to the mechanical conditions of the fault zone. The rupture process of a great earthquake indicates the distribution of strong (asperities) and weak regions of the fault. The rupture process of three great earthquakes (1963 Kurile Islands, MW = 8.5; 1965 Rat Islands, MW = 8.7; 1964 Alaska, MW = 9.2) are studied by using WWSSN stations in the core shadow zone. Diffraction around the core attenuates the P-wave amplitudes such that on-scale long-period P-waves are recorded. There are striking differences between the seismograms of the great earthquakes; the Alaskan earthquake has the largest amplitude and a very long-period nature, while the Kurile Islands earthquake appears to be a sequence of magnitude 7.5 events.The source time functions are deconvolved from the observed records. The Kurile Islands rupture process is characterized by the breaking of asperities with a length scale of 40–60 km, and for the Alaskan earthquake the dominant length scale in the epicentral region is 140–200 km. The variation of length scale and MW suggests that larger asperities cause larger earthquakes. The source time function of the 1979 Colombia earthquake (MW = 8.3) is also deconvolved. This earthquake is characterized by a single asperity of length scale 100–120 km, which is consistent with the above pattern, as the Colombia subduction zone was previously ruptured by a great (MW = 8.8) earthquake in 1906.The main result is that maximum earthquake size is related to the asperity distribution on the fault. The subduction zones with the largest earthquakes have very large asperities (e.g. the Alaskan earthquake), while the zones with the smaller great earthquakes (e.g. Kurile Islands) have smaller scattered asperities.  相似文献   

9.
Based on data from ground-based vertical sounding stations, the behaviors of the ionosphere F region before a strong M 6.8 earthquake off the coast of Hokkaido, Japan, and during the moderate magnetic storm before this earthquake are compared. It was found that the critical frequency of the ionosphere F region (foF2) above the Wakkanai ground-based ionosphere vertical sounding station, which was located in the preparation zone of this earthquake, suffered a long-term disturbance of slightly more than an hour nearly half a day before the earthquake. The magnitude of earthquake-induced disturbance is comparable to that caused by a magnetic storm.  相似文献   

10.
To study the crustal movement in the vicinity of the epicenter before the Zhangye MS5.0 earthquake in 2019, the characteristics of crustal deformation before the earthquake are discussed through the GPS velocity field analysis based on the CMONOC data observed from GPS. The baseline time series between two continuous GPS stations and the strain time series of an area among several stations are analyzed in the epicenter area. The resulting time series of baseline azimuth around the epicenter reflects that the energy of the fault in the northern margin of Qilian Mountain is accumulated continuously before 2017. Besides, the movement trend of azimuth slows down after 2017, indicating the stress accumulation on both sides of the seismogenic fault zone has reached a certain degree. The first shear strain and EW-direction linear strain in the epicentral area of the Zhangye MS5.0 earthquake remain steady after 2017, and the surface strain rate decreases gradually after 2016. It is illustrated that there is an obvious deformation loss at the epicentral region three years before the earthquake, indicating that a certain degree of strain energy is accumulated in this area before the earthquake.  相似文献   

11.
Mean annual sea level (MASL) data for 25 Greek stations were analyzed for the time period 1969–1982. The data from 4 of these were unacceptably poor, and the record of 3 stations showed unexplained step functions that were interpreted as errors. Relative MASL between stations showed crustal stability at 10 of the 18 useful stations. The standard deviation from the long-term average of these stations was ±1.8 cm. We conclude that if station records are carefully kept in this area crustal movements in excess of 5 cm can be detected by relative MASL. A comparison of MASL data with gravity changes measured in the Peloponnese and Central Greece suggests that vertical movements occurred along a gradient equal to or larger than the free air gradient. We conclude that the gravity network should be reoccupied frequently such that the non-tectonic effects to be determined from the probable observed gravity changes, and the tectonic vertical movements may be better understood. A co-seismic subsidence of about 5 cm is inferred to have taken place near Korinth during the 1981,M s =6.8, earthquake, which occurred 20 km N of this tide gauge (Posidonia). During 2.5 years before the 1968 Thessaloniki,M s =6.6, earthquake, sea level was lower than average suggesting possible crustal elevation of 3.6 cm at about 28 km epicentral distance. Because of the small amplitude of this change we are not certain that it represents crustal uplift. At station Myrina (on Limnos) a strong and consistent trend of subsidence accumulated a 15 cm change between 1975 and 1980. Chios showed a trend of emergence (total accumulation about +5 cm), while Volos showed a trend of subsidence (approximately ?5 cm total). Kefalinia appears to have subsided about 10 cm during the data period. The six stations along the Hellenic arc plate boundary showed nearly constant MASL, suggesting that crustal stability existed there during the last 14 years. We conclude that MASL data in Greece can be useful for understanding tectonic processes, especially if these data are gathered carefully and at numerous locations, and are cross-correlated to high precision repeat gravity measurements, and geodetic releveling. Also, MASL data on active volcanic islands have excellent potential for detecting uplift before future eruptions.  相似文献   

12.
Microseismic records from five broadband IRIS stations located at distances of 1000–2000 km from the earthquake source are studied. Unordinary programs are used to extract hidden periodicities, determine signal coherence at different stations, and reveal asymmetry in wave amplitudes. The records obtained at a few stations 60 h before the Sumatra earthquake include periodic oscillations in the range of periods from 20 to 60 min that arose after the McQuary earthquake and continued for about 24 h. Synchronization of waves recorded at all stations commenced 53 h before the Sumatra earthquake and continued up to the time of the earthquake, with the predominant period gradually increasing from a few minutes to tens of minutes.  相似文献   

13.
On the basis of the airgun source signals recorded by the stations from January, 2016 to June, 2017, we use cross-correlation detection technology to obtain the characteristics of the stable phase travel time change of each station. We used the Yunlong MS5.0 and Yangbi MS5.1 earthquakes as samples. According to regional characteristics, 13 stations with high signal-to-noise ratios and complete data were selected (including 3 fixed stations and 10 active source stations). They are divided into four regions, and on the basis of the GNSS baseline data, the characteristics of regional wave velocity changes before and after the earthquake are analyzed. The results show that the station phase travel time change and the regional stress characteristics represented by the GNSS baseline data have good correlation in the short-term. Due to different degrees of regional stress, there are differences in the travel time changes of different stations in the four regions. Before the Yunlong MS5.0 and Yangbi MS5.1 earthquakes, with regional stress adjustment, there is an upward trend in the travel time changes of related stations in the adjacent areas of up to 0.02s. The difference is that there are differences in the time nodes and duration of the travel time anomalies, and there is a reverse descent process after the Yangbi MS5.1 earthquake. There are different degrees of travel time fluctuations in the relevant stations before and after the two earthquakes, but the fluctuation range before and after the earthquake was small. Compared with the water level change of the reservoir, the adjustment of the regional stress is more likely to have a substantial impact on the travel time changes of the relevant stations.  相似文献   

14.
Based on data from the Japanese Kokubunji and Wakkanai stations of vertical sounding of the ionosphere, the variations in the foF2 critical frequency prior to the strong earthquakes of March 9 and 11, 2011 (M 7.2 and 9.0, respectively), are analyzed. It is found that significant positive disturbances of foF2 had been recorded approximately one day before the first earthquake. Notably, at the Irkutsk reference station, which is located about 3300 km from the earthquake epicenters, there were no significant disturbances of foF2. This suggests that the effects of increased foF2, observed at the Kokubunji and Wakkanai stations, were probably caused by the earthquake preparation processes. The seismo-ionospheric manifestations of the stronger earthquake on March 11, 2011, even if they took place, were hidden by the geomagnetic storm’s effects.  相似文献   

15.
基于2021年5月21日漾濞M_S6.4地震震中附近50 km范围内15个地震观测台站记录的2020年11月1日—2021年5月30日的气枪震源信号,采用互相关时延检测技术提取这15个台站各自稳定震相(Sg震相)的走时变化时间序列,并对漾濞M_S6.4地震前后各台站的走时变化特征进行分析。结果表明:(1)漾濞M_S6.4地震前10天左右,有4个台站走时开始出现异常,其中,Ey211和Ey213台走时呈"V"型变化结构,Ey210和CHT台走时呈上升趋势。(2)漾濞M_S6.4地震后短期内,大部分台站走时出现了明显的趋势性变化,以维西—乔后—巍山断裂为界,断裂带两侧台站走时变化趋势存在明显差异,断裂以东的EYA、HDQ、YSW09台走时呈上升趋势,变化最为显著的为HDQ台,走时差变化量为0.067 s;而断裂带以西的所有台站在漾濞M_S6.4地震当天(或震后1~2天)开始出现明显趋势性下降,走时下降持续时间在4~9天间,走时差变化量在-0.053~-0.201 s间,其中走时差下降量最大为53 285台,最小为CHT台。  相似文献   

16.
宋成科 《地震工程学报》2021,43(5):1037-1044
分析距离九寨沟MS7.0地震震中分别为65 km、254 km和238 km的松潘地磁台、成都地磁台和天水地磁台2017年连续观测结果,发现九寨沟地震前,松潘地磁台出现异常变化,主要表现为2017年5月开始,松潘地磁台长时间垂直分量累积变化量达40 nT。短时间内也存在地磁场突变,最高可达10 nT,而成都地磁台和天水地磁台地磁场无明显异常。通过对观测数据的详细检查发现松潘地磁台很多观测日的最后一个观测值与后一观测日的第一个观测值相差超过1 nT,因此认为九寨沟地震前观测数据的异常是由观测系统异常导致。对三个台站地磁场垂直分量日变化的统计分析发现垂直分量在不同时段相关性保持一致,说明地震前短时间内不存在地磁垂直分量的明显异常变化,三个台站地磁场日变化的差异是由地下介质性质不同导致。岩石圈磁场在震中西侧区域出现正负异常交替现象,这可能与九寨沟地震的孕育有关。  相似文献   

17.
Seismoionospheric disturbances in the parameters of the ionospheric F 2 and sporadic E layers at the chain of the Japanese stations for vertical sounding of the ionosphere before strong crustal earthquakes with M>6.5 during the period from 1968 to 1992 have been considered. The dependence of the disturbance time of appearance in the ionospheric parameters on the earthquake magnitude and epicentral distance, obtained for each specific earthquake using the selected series of ionospheric stations, made it possible to consider these disturbances among medium-term precursors of earthquakes. The velocity of the disturbance front apparent motion has been determined based on the model of horizontal radially-isotropic disturbance propagation from the projection of the impending earthquake epicenter to the ionospheric altitudes. The conclusion has been made that the distinguished seismoionospheric disturbances follow the boundary of the earthquake preparation region, expanding on the Earth’s surface.  相似文献   

18.
2021年5月21日云南漾濞县发生M_S6.4地震、5月22日青海玛多县发生M_S7.4地震,分别分析漾濞震中500 km内12个地电场台数据、玛多震中500 km内8个地电场台数据,获知:(1)漾濞地震周围罗茨等8台优势方位角在震前出现了异常变化,弥渡等4台看不出明显异常变化;盐源等7台相关系数在震前2~6个月出现了大幅度下降,元谋、苴林等5台相关系数看不出明显异常变化。(2)玛多地震周围门源等4台方位角在震前出现了异常变化,都兰等4台方位角看不出明显异常变化;门源等5台在玛多地震前2~6个月相关系数出现了大幅下降、变化范围明显变窄等现象,都兰、白水河、金银滩等3台优势方位角和相关系数都看不出明显异常变化。(3)两次地震分析中地电场优势方位角和相关系数异常变化在时间上皆具有同步或准同步性。  相似文献   

19.
Spatial and time variations in the critical frequencies foF2 before the strong earthquake of August 15, 1963, with the magnitude M = 7.75 are analyzed. The epicenter of the earthquake was located in the vicinity of the magnetic equator in the American longitudinal sector. The data of the topside ionosonde on board Alouette-1 and of the series of ground-based ionosondes has been used for this purpose. The ground-based ionosondes made it possible to detect an insignificant anomalous decrease in foF2 within the zone of earthquake preparation a few days prior to the earthquake. This result confirms the conclusion drawn earlier on the basis of the satellite data. The modification of the ionosphere at the F-region level is more evident in the satellite than in the ground-based data. It is also noted that the character of the time variations in foF2 a day before the earthquake is similar to the so called “quiet time” Q-disturbances in the ionosphere, when the electron concentration at the F region maximum differs from the median values by more than 20% under undisturbed geophysical conditions.  相似文献   

20.
The paper considers synchronous continuous records of microseismic background obtained within a month before the Kronotskii (Kamchatka) December 5, 1997, earthquake (M = 7.8) at six IRIS broadband stations that are located in a large region extending from central European Russia (the town of Obninsk) to the Far East (Kamchatka and Sakhalin). By averaging and downsampling, initial records were discretized at an interval of 30 s and the microseismic background was examined in the range of periods from 1 min to 2.4 h, after scale-dependent trends due to the effects of tides and temperature variations had been removed. Microseismic fluctuations were analyzed with the help of estimates of the evolution of their multifractal singularity spectra in a moving time window 12 h wide. As the criterion characterizing the background properties in a current time window, we took the values of the generalized Hurst exponent α* realizing the maximum of the singularity spectrum. Hidden synchronization effects of a microseismic field preceding a seismic event are identified by estimating the evolution of the spectral measure of coherent behavior of α* variations in a moving time window 5 days long for various combinations of jointly analyzed stations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号