首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In a study of surface monsoon winds over the China marginal seas, Sun et al. (2012) use singular value decomposition method to identify regional dominant modes and analyze their interdecadal variability. This paper continues to evaluate the interannual variability of each dominant mode and its relation to various atmospheric, oceanic and land factors. The findings include: 1) The intensity of the winter monsoon over the East China Sea is highly correlated with the Siberian High intensity and anti-correlated with the latitudinal position of the Aleutian Low as well as the rainfall in eastern China, Korean Peninsula and Japan; 2) The western Pacific subtropical high is significantly correlated with the summer monsoon intensity over the East China Sea and anti-correlated with the summer monsoon over the South China Sea; 3) The winter monsoon in a broad zonal belt through the Luzon Strait is dominated by the ENSO signal, strengthening in the La Ni a phase and weakening in the El Ni o phase. This inverse relation exhibits interdecadal shift with a period of weak correlation in the 1980s; 4) Analysis of tidal records validates the interdecadal weakening of the East Asian summer monsoon and reveals an atmospheric bridge that conveys the ENSO signal into the South China Sea via the winter monsoon.  相似文献   

2.
Thirteen-year satellite-derived data are used to investigate the temporal variability of net primary production (NPP) in the Oman upwelling zone and its potential forcing mechanisms. The NPP in the Oman upwelling zone is characterized by an abnormal decrease during El Ni o events. Such an NPP decrease may be related to El Ni o-driven anomalous summertime weak wind. During the summer following El Ni o, the anomalous northeasterly wind forced by southwest Indian Ocean warming weakens the southwest monsoon and warms the Arabian Sea. The abnormal wind weakens the coastal Ekman transport, offshore Ekman pumping and horizontal advection, resulting in reduced upward nutrient supply to the euphotic zone. A slightly declining trend in NPP after 2000 associated with a gradual decrease in surface monsoon winds is discussed.  相似文献   

3.
The relationship of the interannual variability of the transport and bifurcation latitude of the North Equatorial Current (NEC) to the El Ni o-Southern Oscillation (ENSO) is investigated. This is done through composite analysis of sea surface height (SSH) observed by satellite altimeter during October 1992-July 2009, and correspondingly derived sea surface geostrophic currents. During El Nio/La Ni a years, the SSH in the tropical North Pacific Ocean falls/rises, with maximum changes in the region 0-15°N, 130°E-160°E. The decrease/increase in SSH induces a cyclonic/anticyclonic anomaly in the western tropical gyre. The cyclonic/anticyclonic anomaly in the gyre results in an increase/decrease of NEC transport, and a northward/southward shift of the NEC bifurcation latitude near the Philippine coast. The variations are mainly in response to anomalous wind forcing in the west-central tropical North Pacific Ocean, related to ENSO events.  相似文献   

4.
ENSO cycle and climate anomaly in China   总被引:2,自引:0,他引:2  
The inter-annual variability of the tropical Pacific Subsurface Ocean Temperature Anomaly (SOTA) and the associated anomalous atmospheric circulation over the Asian North Pacific during the El Ni o-Southern Oscillation (ENSO) were investigated using National Centers for Environmental Prediction/ National Center for Atmospheric Research (NCEP/NCAR) atmospheric reanalysis data and simple ocean data simulation (SODA). The relationship between the ENSO and the climate of China was revealed. The main results indicated the following: 1) there are two ENSO modes acting on the subsurface tropical Pacific. The first mode is related to the mature phase of ENSO, which mainly appears during winter. The second mode is associated with a transition stage of the ENSO developing or decaying, which mainly occurs during summer; 2) during the mature phase of El Ni o, the meridionality of the atmosphere in the mid-high latitude increases, the Aleutian low and high pressure ridge over Lake Baikal strengthens, northerly winds prevail in northern China, and precipitation in northern China decreases significantly. The ridge of the Ural High strengthens during the decaying phase of El Ni o, as atmospheric circulation is sustained during winter, and the northerly wind anomaly appears in northern China during summer. Due to the ascending branch of the Walker circulation over the western Pacific, the western Pacific Subtropical High becomes weaker, and south-southeasterly winds prevail over southern China. As a result, less rainfall occurs over northern China and more rainfall over the Changjiang River basin and the southwestern and eastern region of Inner Mongolia. The flood disaster that occurred south of Changjiang River can be attributed to this. The La Ni a event causes an opposite, but weaker effect; 3) the ENSO cycle can influence climate anomalies within China via zonal and meridional heat transport. This is known as the "atmospheric-bridge", where the energy anomaly within the tropical Pacific transfers to the mid-high latitude in the northern Pacific through Hadley cells and Rossby waves, and to the western Pacific-eastern Indian Ocean through Walker circulation. This research also discusses the special air-sea boundary processes during the ENSO events in the tropical Pacific, and indicates that the influence of the subsurface water of the tropical Pacific on the atmospheric circulation may be realized through the sea surface temperature anomalies of the mixed water, which contact the atmosphere and transfer the anomalous heat and moisture to the atmosphere directly. Moreover, the reason for the heavy flood within the Changjiang River during the summer of 1998 is reviewed in this paper.  相似文献   

5.
The Simple Ocean Data Assimilation (SODA) package is used to better understand the variabilities of surface current transport in the Tropical Pacific Ocean from 1950 to 1999. Seasonal variation, internnual and decadal variability analyses are conducted on the three major surface currents of the Tropical Pacific Ocean: the North Equatorial Current (NEC), the North Equatorial Countecurrent (NECC), and the South Equatorial Current (SEC). The transport of SEC is quite larger than those of NEC and NECC. The SEC has two maximums in February and August. The NEC has a small annual variation. The NECC has a maximum in October and is very weak in March and April. All currents have remarkable interannual and decadal variabilities. The variabilities of the NEC and the SEC related to the winds over them well, but the relationship between the NECC and the wind over it is not close. Analysis related to El Niño-Southern Oscillation (ENSO) suggests that before El Niño (La Niña) the SEC is weaker (stronger) and the NECC is stronger (weaker), after El Niño (La Niña) the SEC is stronger (weaker) and the SEC is weaker (stronger). There is no notable relationship between the NEC and ENSO.  相似文献   

6.
The equatorial wave dynamics of interannual sea level variations between 2014/2015 and2015/2016 El Nino events are compared using the Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics Climate Ocean Model(LICOM) forced by the National Centers for Environmental Prediction(NCEP) reanalysis I wind stre s s and heat flux during 2000-2015.In addition,the LICOM can reproduce the interannual variability of sea surface temperature anomalies(SSTA) and sea level anomalies(SLA) along the equator over the Pacific Ocean in comparison with the Hadley center and altimetric data well.We extracted the equatorial wave coefficients of LICOM simulation to get the contribution to SLA by multiplying the meridional wave structure.During 2014/2015 El Nino event,upwelling equatorial Kelvin waves from the western boundary in April2014 reach the eastern Pacific Ocean,which weakened SLA in the eastern Pacific Ocean.However,no upwelling equatorial Kelvin waves from the western boundary of the Pacific Ocean could reach the eastern boundary during the 2015/2016 El Nino event.Linear wave model results also demonstrate that upwelling equatorial Kelvin waves in both 2014/2015 and 2015/2016 from the western boundary can reach the eastern boundary.However,the contribution from stronger westerly anomalies forced downwelling equatorial Kelvin waves overwhelmed that from the upwelling equatorial Kelvin waves from the western boundary in 2015.Therefore,the western boundary reflection and weak westerly wind burst inhibited the growth of the 2014/2015 El Nino event.The disclosed equatorial wave dynamics are important to the simulation and prediction of ENSO events in future studies.  相似文献   

7.
Feng  Junqiao  Wang  Fujun  Wang  Qingye  Hu  Dunxin 《中国海洋湖沼学报》2020,38(4):1108-1122
We investigated the intraseasonal variability of equatorial Pacific subsurface temperature and its relationship with El Nino-Southern Oscillation(ENSO) using Self-Organizing Maps(SOM) analysis.Variation in intraseasonal subsurface temperature is mainly found along the thermocline.The SOM patterns concentrate in basin-wide seesaw or sandwich structures along an east-west axis.Both the seesaw and sandwich SOM patterns oscillate with periods of 55 to 90 days,with the sequence of them showing features of equatorial intraseasonal Kelvin wave,and have marked interannual variations in their occurrence frequencies.Further examination shows that the interannual variability of the SOM patterns is closely related to ENSO;and maxima in composite interannual variability of the SOM patterns are located in the central Pacific during CP El Nino and in the eastern Pacific during EP El Nino.The se results imply that some of the ENSO forcing is manife sted through changes in the occurrence frequency of intraseasonal patterns,in which the change of the intraseasonal Kelvin wave plays an important role.  相似文献   

8.
Deng  Kangping  Cheng  Xuhua  Feng  Tao  Ma  Tian  Duan  Wei  Chen  Jiajia 《中国海洋湖沼学报》2021,39(1):26-44
Feature s of the interannual variability of the spring Wyrtki Jet in the tropical Indian Ocean are revealed using observation data and model output.The results show that the jet has significant interannual variation,which has a significant correlation with winter El Nino Modoki index(R=0.62).During spring after an El Nino(La Nina) Modoki event,the Wyrtki Jet has a positive(negative) anomaly,forced by a westerly(easterly) wind anomaly.The result of a linear-continuously stratified model shows that the first two baroclinic modes explain most of the interannual variability of the spring Wyrtki Jet(-70%) and the third to fifth modes together account for approximately 30%.Surface wind anomalies in the tropical Indian Ocean are related to the Walker circulation anomaly associated with El Nino/La Nina Modoki.The interannual variability of the spring Wyrtki Jet has an evident impact on sea surface salinity transport before the onset phase of the summer monsoon in the Indian Ocean.  相似文献   

9.
Using interpolation and averaging methods, we analyzed the sea surface wind data obtained from December 1992 to November 2008 by the scatterometers ERS-1, ERS-2, and QuikSCAT in the area of 2°N–39 °N, 105°E–130°E, and we reported the monthly mean distributions of the sea surface wind field. A vector empirical orthogonal function (VEOF) method was employed to study the data and three temporal and spatial patterns were obtained. The first interannual VEOF accounts for 26% of the interannual variance and displays the interannual variability of the East Asian monsoon. The second interannual VEOF accounts for 21% of the variance and reflects the response of China sea winds to El Niño events. The temporal mode of VEOF-2 is in good agreement with the curve of the Niño 3.4 index with a four-month lag. The spatial mode of VEOF-2 indicates that four months after an El Niño event, the southwesterly anomalous winds over the northern South China Sea, the East China Sea, the Yellow Sea, and the Bohai Sea can weaken the prevailing winds in winter, and can strengthen the prevailing winds in summer. The third interannual VEOF accounts for 10% of the variance and also reflects the influence of the ENSO events to China Sea winds. The temporal mode of VEOF-3 is similar to the curve of the Southern Oscillation Index. The spatial mode of VEOF-3 shows that the northeasterly anomalous winds over the South China Sea and the southern part of the East China Sea can weaken the prevailing winds, and southwesterly anomalous winds over the northern part of the East China Sea, the Yellow Sea, and the Bohai Sea can strengthen the prevailing winds when El Niño occurs in winter. If El Niño happens in summer, the reverse is true.  相似文献   

10.
????1992??11???2007??5?μ???????????????????????????仯???????????????1???????24~42???μ???????Я???????????ENSO?????2??SLA_2442?????????????????????????????????????????????????????????????????3?????????У????????????SLA_2442?????????·??????O???Σ??????????????,??γ????????λ??????9.86??N??8??S??????  相似文献   

11.
We analyzed the temporal and spatial variation, and interannual variability of the North Pacific meridional overturning circulation using an empirical orthogonal function method, and calculated mass transport using Simple Ocean Data Assimilation Data from 1958–2008. The meridional streamfunction field in the North Pacific tilts N-S; the Tropical Cell (TC), Subtropical Cell (STC), and Deep Tropical Cell (DTC) may be in phase on an annual time scale; the TC and the STC are out of phase on an interannual time scale, but the interannual variability of the DTC is complex. The TC and STC interannual variability is associated with ENSO (El Niño-Southern Oscillation). The TC northward, southward, upward, and downward transports all weaken in El Niños and strengthen in La Niñas. The STC northward and southward transports are out of phase, while the STC northward and downward transports are in phase. Sea-surface water that reaches the middle latitude and is subducted may not completely return to the tropics. The zonal wind anomalies over the central North Pacific, which control Ekman transport, and the east-west slope of the sea level may be major factors causing the TC northward and southward transport interannual variability and the STC northward and southward transports on the interannual time scale. The DTC northward and southward transports decrease during strong El Niños and increase during strong La Niñas. DTC upward and downward transports are not strongly correlated with the Niño-3 index and may not be completely controlled by ENSO.  相似文献   

12.
Seventeen coupled general circulation models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are employed to assess the relationships of interannual variations of sea surface temperature (SST) between the tropical Pacific (TP) and tropical Indian Ocean (TIO). The eastern/central equatorial Pacific features the strongest SST interannual variability in the models except for the model CSIRO-Mk3-6-0, and the simulated maximum and minimum are produced by models GFDL-ESM2M and GISS-E2-H respectively. However, It remains a challenge for these models to simulate the correct climate mean SST with the warm pool-cold tongue structure in the equatorial Pacific. Almost all models reproduce El Niño-Southern Oscillation (ENSO), Indian Ocean Dipole mode (IOD) and Indian Ocean Basin-wide mode (IOB) together with their seasonal phase lock features being simulated; but the relationship between the ENSO and IOD is different for different models. Consistent with the observation, an Indian Ocean basin-wide warming (cooling) takes place over the tropical Indian Ocean in the spring following an El Niño (La Niña) in almost all the models. In some models (e.g., GFDL-ESM2G and MIROC5), positive ENSO and IOB events are stronger than the negative events as shown in the observation. However, this asymmetry is reversed in some other models (e.g., HadGEM2-CC and HadGEM2-ES).  相似文献   

13.
近些年,对于东亚季风区石笋δ18O的气候环境指示意义的争论较多,主要在东亚季风区石笋δ18O代表夏季和风强度、夏季风降水还是水汽源变化。基于中国东部华北地区降水与长江中下游地区降水反相变化和长江中下游地区降水与菲律宾海降水反相变化(遥相关),从年际-年代际到千年-轨道尺度对石笋δ18O与夏季风降水、厄尔尼诺-南方涛动(ENSO)的相互关系进行了探讨分析。通过对比石笋δ18O记录与华北和梅雨区降水,发现石笋δ18O偏负对应华北降水增加,梅雨区降水减少;石笋δ18O偏正对应华北降水减少,梅雨区降水增加。这种对应关系不仅存在年际-年代际尺度,而且在千年-轨道尺度同样存在,石笋δ18O不仅反映夏季风强弱变化,同时与中国东部区域降水关系是明确对应的。通过降水的空间相互关系,发现ENSO活动主要通过影响中国东部降水的空间分布格局而作用于石笋δ18O。La Ni?a态导致南海及菲律宾海对流加强,西太副高位置偏北,长江中下游地区梅雨期缩短,华北夏季降水增加,东亚季风区石笋δ18O偏负。El Ni?o态,南海和菲律宾海对流受到抑制,西太副高位置南移,长江中下游地区梅雨期延长,华北夏季降水减少,东亚季风区石笋δ18O偏正。另外,水汽源分析发现,菲律宾海水汽输送对东亚季风区降水及降水δ18O贡献相对较小。因此,综合分析认为,东亚季风区石笋δ18O主要反映了亚洲夏季风的强弱变化。   相似文献   

14.
By using Season-reliant Empirical Orthogonal Function (S-EOF) analysis, three dominant modes of the spatial-temporal evolution of the drought/flood patterns in the rainy season over the east of China are revealed for the period of 1960-2004. The first two leading modes occur during the turnabout phase of El Nino-Southern Oscillation (ENSO) decaying year, but the drought/flood patterns in the rainy season over the east of China are different due to the role of the Indian Ocean (IO). The first leading mode appears closely correlated with the ENSO events. In the decaying year of El Nino, the associated western North Pacific (WNP) anticyclone located over the Philippine Sea persists from the previous winter to the next early summer, transports warm and moist air toward the southern Yangtze River in China, and leads to wet conditions over this entire region. Therefore, the precipitation anomaly in summer exhibits a ’Southern Flood and Northern Drought’ pattern over East China. On the other hand, the basin-wide Indian Ocean sea surface temperature anomaly (SSTA) plays a crucial role in prolonging the impact of ENSO on the second mode during the ENSO decaying summer. The Indian Ocean basin mode (IOBM) warming persists through summer and unleashes its influence, which forces a Matsuno-Gill pattern in the upper troposphere. Over the subtropical western North Pacific, an anomalous anticyclone forms in the lower troposphere. The southerlies on the northwest flank of this anticyclone increase the moisture transport onto central China, leading to abundant rainfall over the middle and lower reaches of the Yangtze River and Huaihe River valleys. The anomalous anticyclone causes dry conditions over South China and the South China Sea (SCS). The precipitation anomaly in summer exhibits a ’Northern Flood and Southern Drought’ pattern over East China. Therefore, besides the ENSO event the IOBM is an important factor to influence the drought/flood patterns in the rainy season over the east of China. The third mode is positively correlated with the tropical SSTA in the Indian Ocean from the spring of preceding year(-1) to the winter of following year(+1), but not related to the ENSO events. The positive SSTA in the South China Sea and the Philippine Sea persists from spring to autumn, leading to weak north-south and land-sea thermal contrasts, which may weaken the intensity of the East Asia summer monsoon. The weakened rainfall over the northern Indian monsoon region may link to the third spatial mode through the ’Silk Road’ teleconnection or a part of circumglobal teleconnection (CGT). The physical mechanisms that reveal these linkages remain elusive and invite further investigation.  相似文献   

15.
Time series of sea surface temperature (SST),wind speed and significant wave height (SWH) from meteorologicalbuoys of the National Data Buoy Center (NDBC) are useful for studying the interannual variability and trend of these quantities at the buoy areas.The measurements from 4 buoys (B51001,B51002,B51003 and B51004) in the Hawaii area are used to study theresponses of the quantities to EI Nino and Southern Oscillation (ENSO).Long-term averages of these data reflect precise seasonaland climatological characteristics of SST,wind speed and SWH around the Hawaii area.Buoy observations from B51001 suggest asignificant warming trend which is,however,not very clear from the other three buoys.Compared with the variability of SST andSWH,the wind speeds from the buoy observations show an increasing trend.The impacts of El Nifio on SST and wind waves arealso shown.Sea level data observed by altimeter during October 1992 to September 2006 are analyzed to investigate the variabilityof sea level in the Hawaii area.The results also show an increasing trend in sea level anomaly (SLA).The low-passed SLA in theHawaii area is consistent with the inverse phase of the low-passed Sol (Southern Oscillation Index).Compared with the low-passedSOl and PDO (Pacific Decadal Oscillation),the low-passed PNA (Pacific-North America Index) has a better correlation with thelow-passed SLA in the Hawaii area.  相似文献   

16.
The South China Sea (SCS) is significantly influenced by El Niño and the Southern Oscillation (ENSO) through ENSO-driven atmospheric and oceanic changes. We analyzed measurements made from 1960 to 2004 to investigate the interannual variability of the latent and sensible heat fluxes over the SCS. Both the interannual variations of latent and sensible heat fluxes are closely related to ENSO events. The low-pass mean heat flux anomalies vary in a coherent manner with the low-pass mean Southern Oscillation Index (SOI). Time lags between the heat flux anomalies and the SST anomalies were also studied. We found that latent heat flux anomalies have a minimum value around January of the year following El Niño events. During and after the mature phase of El Niño, a change of atmospheric circulation alters the local SCS near-surface humidity and the monsoon winds. During the mature phase of El Niño, the wind speed decreases over the entire sea, and the air-sea specific humidity difference anomalies decreases in the northern SCS and increases in the southern SCS. Thus, a combined effect of wind speed anomalies and air-sea specific humidity difference anomalies results in the latent heat flux anomalies attaining minimum levels around January of the year following an El Niño year.  相似文献   

17.
This study investigated the impact of sea surface temperature(SST)in several important areas of the Indian-Pacific basin on tropical cyclone(TC)activity over the western North Pacific(WNP)during the developing years of three super El Ni?o events(1982,1997,and 2015)based on observations and numerical simulations.During the super El Ni?o years,TC intensity was enhanced considerably,TC days increased,TC tracks mostly recurved along the coasts,and fewer TCs made landfall in China.These characteristics are similar to the strong ENSO-TC relationship but further above the climatological means than in strong El Ni?o years.It indicates that super El Ni?o events play a dominant role in the intensities and tracks of WNP TCs.However,there were clear differences in both numbers and positions of TC genesis among the different super El Ni?o years.These features could be attributed to the collective impact of SST anomalies(SSTAs)in the tropical central-eastern Pacific and East Indian Ocean(EIO)and the SST gradient(SSTG)between the southwestern Pacific and the western Pacific warm pool.During 2015,the EIO SSTA was extremely warm and the anomalous anticyclone in the western WNP was enhanced,resulting in fewer TCs than normal.In 1982,the EIO SSTA and spring SSTG showed negative anomalies,followed by an increased anomalous cyclone in the western WNP and equatorial vertical wind shear.This intensified the conversion of eddy kinetic energy from large-scale flows,favorable for the westward shift of TC genesis.Consequently,anomalous TC activities during the super El Ni?o years resulted mainly from combined SSTA impacts of different key areas over the Indian-Pacific basin.  相似文献   

18.
The climate variability induced by the El Ni?o-Southern Oscillation(ENSO) cycle drives significant changes in the physical state of the tropical Western Pacific,which has important impacts on the upper ocean carbon cycle.During 2015-2016,a super El Ni?o event occurred in the equatorial Pacific.Suspended particulate matter(SPM) data and related environmental observations in the tropical Western Pacific were obtained during two cruses in Dec.2014 and 2015,which coincided with the early and peak stages of this super El Ni?o event.Compared with the marine environments in the tropical Western Pacific in Dec.2014,an obviously enhanced upwelling occurred in the Mindanao Dome region;the nitrate concentration in the euphotic zone almo st tripled;and the size,mass concentration,and volume concentration of SPM obviously increased in Dec.2015.The enhanced upwelling in the Mindanao Dome region carried cold but eutrophic water upward from the deep ocean to shallow depths,even into the euphotic zone,which disrupted the previously N-limited conditions and induced a remarkable increase in phytoplankton blooms in the euphotic zone.The se results reveal the mechanism of how nutrient-limited ecosystems in the tropical Western Pacific respond to super El Ni?o events.In the context of the ENSO cycle,if predicted changes in biogenic particles occur,the proportion of carbon storage in the tropical Western Pacific is estimated to be increased by more than 52%,ultimately affecting the regional and possibly even global carbon cycle.This paper highlights the prospect for long-term prediction of the impact of a super El Ni?o event on the global carbon cycle and has profound implications for understanding El Ni?o events.  相似文献   

19.
In this paper, the influence of El Ni?o event on the Madden-Julian Oscillation(MJO) over the equatorial Pacific is studied by using reanalysis data and relevant numerical simulation results. It is clearly shown that El Ni?o can reduce the intensity of MJO. The kinetic energy of MJO over the equatorial Pacific is stronger before the occurrence of the El Ni?o event, but it is reduced rapidly after El Ni?o event outbreak, and the weakened MJO even can continue to the next summer. The convection over the central-western Pacific is weakened in El Ni?o winter. The positive anomalous OLR over the central-western Pacific has opposite variation in El Ni?o winter comparing to the non-ENSO cases. The vertical structure of MJO also affected by El Ni?o event, so the opposite direction features of the geopotential height and the zonal wind in upper and lower level troposphere for the MJO are not remarkable in the El Ni?o winter and tend to be barotropic features. El Ni?o event also has an influence on the eastward propa- gation of the MJO too. During El Ni?o winter, the eastward propagation of the MJO is not so regular and unanimous and there exists some eastward propagation, which is faster than that in non-ENSO case. Dynamic analyses suggest that positive SSTA(El Ni?o case) affects the atmospheric thickness over the equatorial Pacific and then the excited atmospheric wave-CISK mode is weakened, so that the intensity of MJO is reduced; the combining of the barotropic unstable mode in the atmosphere excited by external forcing(SSTA) and the original MJO may be an important reason for the MJO vertical structure tending to be barotropic during the El Ni?o.  相似文献   

20.
Based on the Had ISST1 and NCEP datasets,we investigated the influences of the central Pacific El Ni?o event(CP-EL)and eastern Pacific El Ni?o event(EP-EL)on the Sea Surface Temperature(SST)anomalies of the Tropical Indian Ocean.Considering the remote ef fect of Indian Ocean warming,we also discussed the anticyclone anomalies over the Northwest Pacific,which is very important for the South China precipitation and East Asian climate.Results show that during the El Ni?o developing year of EP-EL,cold SST anomalies appear and intensify in the east of tropical Indian Ocean.At the end of that autumn,all the cold SST anomaly events lead to the Indian Ocean Dipole(IOD)events.Basin uniform warm SST anomalies exist in the Indian Ocean in the whole summer of EL decaying year for both CP-and EP-ELs.However,considering the statistical significance,more significant warm SST anomalies only appear in the North Indian Ocean among the June and August of EP-EL decaying year.For further research,EP-EL accompany with Indian Ocean Basin Warming(EPI-EL)and CP El Ni?o accompany with Indian Ocean Basin Warming(CPI-EL)events are classified.With the remote ef fects of Indian Ocean SST anomalies,the EPI-and CPI-ELs contribute quite differently to the Northwest Pacific.For the EPI-EL developing year,large-scale warm SST anomalies arise in the North Indian Ocean in May,and persist to the autumn of the El Ni?o decaying year.However,for the CPI-EL,weak warm SST anomalies in the North Indian Ocean maintain to the El Ni?o decaying spring.Because of these different SST anomalies in the North Indian Ocean,distinct zonal SST gradient,atmospheric anticyclone and precipitation anomalies emerge over the Northwest Pacific in the El Ni?o decaying years.Specifically,the large-scale North Indian Ocean warm SST anomalies during the EPI-EL decaying years,can persist to summer and force anomalous updrafts and rainfall over the North Indian Ocean.The atmospheric heating caused by this precipitation anomaly emulates atmospheric Kelvin waves accompanied by low level easterly anomalies over the Northwest Pacific.As a result,a zonal SST gradient with a warm anomaly in the west and a cold anomaly in the east of Northwest Pacific is generated locally.Furthermore,the atmospheric anticyclone and precipitation anomalies over the Northwest Pacific are strengthened again in the decaying summer of EPI-EL.Af fected by the local WindEvaporation-SST(WES)positive feedback,the suppressed East Asian summer rainfall then persists to the late autumn during EPI-EL decaying year,which is much longer than that of CPI-EL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号