首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到1条相似文献,搜索用时 15 毫秒
1.
This paper reports a classical molecular dynamics study of the potential of mean forces (PMFs), association constants, microstructures K+–Cl? ion pair in supercritical fluids. The constrained MD method is used to derive the PMFs of K+–Cl? ion pair from 673 to 1273 K in low-density water (0.10–0.60 g/cm3). The PMF results show that the contact ion-pair (CIP) state is the one most energetically favored for a K+–Cl? ion pair. The association constants of the K+–Cl? ion pair are calculated from the PMFs, indicating that the K+–Cl? ion pair is thermodynamically stable. It gets more stable as T increases or water density decreases. The microstructures of the K+–Cl? ion pair in the CIP and solvent-shared ion-pair states are characterized in detail. Moreover, we explore the structures and stabilities of the KCl–Au(I)/Cu(I) complexes by using quantum mechanical calculations. The results reveal that these complexes can remain stable for T up to 1273 K, which indicates that KCl may act as a ligand complexing ore-forming metals in hydrothermal fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号