首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
TheEffectofWeakShear-inducedMotiononBrownianCoagulationofAerosolParticlesWinjingsons(C.S.Win)(温景嵩)(Departmentofphysics,Nankai...  相似文献   

2.
SHORT-TERMCLIMATECHANGEANDITSCAUSEANDCLIMATEPREDICTIONINCHINA¥WeiFengying(魏凤英)(InstituteofSynopticandDynamicMeteorology.)Beij...  相似文献   

3.
AnIntroductiontotheNewBook-GEOSTROPHICWAVECIRCULATIONS¥Yong.L.McHallDept.ofEarth,AtmosphericandPlanetarySciences,MITPublished...  相似文献   

4.
ThePresentStatusandFutureofResearchoftheEastAsianMonsoonMaHenian(马鹤年)ChinaMeteorologicalAdministration,Beijing100081DingYihui...  相似文献   

5.
PeculiarTemporalStructureoftheSouthChinaSeaSummerMonsoonBinWang①andRenguangWuDepartmentofMeteorology,UniversityofHawai,USARec...  相似文献   

6.
Monsoons over China   总被引:14,自引:0,他引:14  
MonsoonsoverChina¥byDingYihui(ChineseAcademyofMeteorologicalSciences,Beigug,China)ATMOSPHERICSCIENCESLIBRARY,16Themonsoonover...  相似文献   

7.
AFinite-ModeModelofIdealFluidDynamicsonthe2-SphereWeiMozhengCRCforSouthernHemisphereMeteorologyCSIRODivisionofAtmosphericRese...  相似文献   

8.
AnEconomicalConsistentDisipationOperatorandItsApplicationstotheImprovementofAGCM①WangBin(王斌)andJiZhongzhen(季仲贞)LASG,Institute...  相似文献   

9.
ALow-orderModelofTwo-dimensionalFluidDynamicsontheSurfaceofaSphereMozhengWei(CRCforSouthernHemisphereMeteorology,CSIRODivisio...  相似文献   

10.
RegionalandSynoptic-scaleFeaturesAsociatedwithInactivePeriodsoftheSummerMonsoonoverSouthChina①C.H.SoandJohnnyC.L.ChanDepartme...  相似文献   

11.
Baroclinic instability of a zonal flow with latitudinal structure is examined using a nonlinear quasi-geostrophic, two-level β-plane model. An initially small perturbation with the structure of the linearly most unstable mode is allowed to grow to finite amplitude through nonlinear interaction. Because of latitudinal asymmetries of the basic zonal flow, a spectrum of meridional modes is generated in the perturbation. The time evolution of zonal wind and perturbation meridional structures, and their Fourier meridional mode spectra are examined. The radius of deformation is an important meridional scale in both the zonal flow and perturbation. This is especially true during the barotropic decay phase of the baroclinic wave. Time series of energy conversion terms show there is no energy accumulation.  相似文献   

12.
利用1979—2013年ERA-interim再分析资料,通过均方差分析、功率谱分析、带通滤波及合成分析等统计方法系统地分析了东亚季风区冬季经向风的季节内变化及其可能机理。结果表明,东亚季风区冬季经向风异常在我国华南一带变化显著,振荡周期为10~20 d(准双周振荡)。在准双周尺度上,水平方向上,850 h Pa异常北风主要呈现从高纬向低纬传播的特点,60°N附近异常经向风向东南方向传播,副热带30°N附近弱的异常经向风向东传播,二者在华南汇合,随后分为两支中心,分别向南和向东继续传播,我国华南一带存在基本气流向准双周尺度波动的能量转换,因此异常经向风在华南会显著增强;垂直方向上,对流层上层、中层、下层的经向风呈现强—弱—强的异常中心特征,对流层下层850 h Pa和上层200~300 h Pa均存在经向风大值中心;我国东部上空300 h Pa上,副热带地区波动比850 h Pa更明显,60°N附近波动向东南方向移动,同样在我国东部地区合并,波动辐合导致波动能量增强。  相似文献   

13.
使用ECMWF1980—1986年7a格点资料对大气运动的正压模进行了分析。指出:对流层中大气正压运动流场显示的副热带高压带仅能反映出行星风带的季节性移动;与亚洲夏季风有关且反映季风局地性的则是副热带高压带南侧的东风带上的波状扰动;东风带上的经向风分量存在着纬向传播且传播方向和扰动幅度与印度、东亚季风子系统有关;随着北半球夏季的到来,亚洲季风区大气运动的斜压模有较大的增长且斜压运动动能占气柱内整层平均总动能的绝大部分,而在赤道附近的其他经度上则是正压运动动能的成分明显增长。  相似文献   

14.
高空急流区内纬向基本气流加速与EP通量的关系   总被引:15,自引:5,他引:10  
冉令坤  高守亭  雷霆 《大气科学》2005,29(3):409-416
采用多时间尺度方法, 并假设纬向基本气流是正压的, 在不引入剩余环流的情况下, 推导出纬向基本气流局地变化与一种新形式Eliassen-Palm通量之间的关系, 这种Eliassen-Palm通量关系在形式上比较简单, 而且物理意义明确, 适合诊断分析高空急流区内纬向基本气流的加速与减速.理论分析表明, 正压纬向基本气流的局地变化由新形式Eliassen-Palm通量散度决定.作者利用该Eliassen-Palm通量关系对2002年12月一次寒潮过程中200 hPa等压面上纬向基本气流的发展演变进行了诊断分析.诊断结果表明, 在200 hPa纬向基本气流急流区内, 新形式Eliassen-Palm通量散度是影响纬向基本气流发展演变的重要因子, 并且纬向基本气流的加速与减速主要是由新形式Eliassen-Palm通量中扰动动量的经向输送造成的.  相似文献   

15.
By using the NCEP/NCAR reanalysis data from 1958 to 1997, we first looked into the atmospheric flow conditions in the one month immediately prior to the onset of the South China Sea summer monsoon (SCSSM) each year. A monthly-averaged zonal basic flow of 40-yr composite was then calculated. The stability of Rossby wave in the basic flow was studied based on the spherical barotropic vorticity equation. Furthermore, the spectral function expansion method was adopted to define and compute the evolvement of a developing wave packet. The results indicate that there exists barotropic instability of spherical Rossby wave in the climatically-averaged flow field before the SCSSM onset. The instability is triggered by the westerly jet stream in the Southern Hemisphere, and the strongest instable perturbation lies to the south of the westerly jet stream. The peak of the developing spherical Rossby wave packet propagates from mid and high latitudes to low latitudes, though not crossing the equator, spurring the cumulus convection in the tropical zones. The eruption of the cumulus convection and its spread to monsoon regions help to speed up the adjustment of the general circulation and the SCSSM onset. It is concluded that elements that contribute to the SCSSM onset are on global scale, albeit the onset itself looks like a local phenomenon.  相似文献   

16.
Properties and Stability of a Meso-Scale Line-Form Disturbance   总被引:1,自引:0,他引:1  
By using the 3D dynamic equations for small- and meso-scale disturbances, an investigation is performed on the heterotropic instability (including symmetric instability and traversal-type instability) of a zonal line-like disturbance moving at any angle with respect to basic flow, arriving at the following results: (1) with linear shear available, the heterotropic instability of the disturbance will occur only when flow shearing happens in the direction of the line-like disturbance movement or in the direction perpendicular to the disturbance movement, with the heterotropic instability showing the instability of the internal inertial gravity wave; (2) in the presence of second-order non-linear shear, the disturbance of the heterotropic instability includes internal inertial gravity and vortex Rossby waves. For the zonal line-form disturbance under study, the vortex Rossby wave has its source in the second-order shear of meridional basic wind speed in the flow and propagates unidirectionally with respect to the meridional basic flow. As a mesoscale heterotropic instable disturbance, the vortex Rossby wave has its origin from the second shear of the flow in the direction perpendicular to the line-form disturbance and is independent of the condition in the direction parallel to the flow; (3) for general zonal line-like disturbances, if the second-order shear happens in the meridional wind speed, i.e., the second shear of the flow in the direction perpendicular to the line-form disturbance, then the heterotropic instability of the disturbance is likely to be the instability of a mixed Rossby–internal inertial gravity wave; (4) the symmetric instability is actually the instability of the internal inertial gravity wave. The second-order shear in the flow represents an instable factor for a symmetric-type disturbance; (5) the instability of a traversal-type disturbance is the instability of the internal inertial gravity wave when the basic flow is constant or only linearly sheared. With a second or nonlinear vertical shear of the basic flow taken into account, the instability of a traversal-type disturbance may be the instability of a mixed vortex Rossby – gravity wave.  相似文献   

17.
东亚-太平洋型季节内演变和维持机理研究   总被引:1,自引:1,他引:0  
利用850hPa的纬向风异常建立一个逐候东亚-太平洋(East Asian Pacific,EAP)型指数,研究其季节内演变特征,发现东亚-太平洋型经向波列是东亚夏季风季节内变化的主要模态.其演变过程为:扰动首先出现在北太平洋中部,并通过正压不稳定过程从基本气流中获得能量而发展,在高层罗斯贝波能量向南频散,激发热带对流异常和赤道罗斯贝波,并相互锁相,因赤道罗斯贝波受β效应影响而共同向西移动.热带对流和环流异常在菲律宾附近达到最强,此时在东亚沿岸出现经向三极型波列,此后中低纬度异常继续向西北方向移动,使降水异常在长江流域能维持较长时间.东亚-太平洋型在东亚发展和维持有以下原因:首先,菲律宾暖水上空的对流和低层环流之间存在正反馈;其次,由于海陆热力差异导致暖大陆和冷海洋之间存在特殊的纬向温度梯度和北风垂直切变,东亚-太平洋型在经向上有向北倾斜的斜压结构,能通过斜压能量转换从平均有效位能中获得能量,同时,也能从经向温度梯度的平均有效位能中获得能量.  相似文献   

18.
夏季东亚西风急流扰动异常与副热带高压关系研究   总被引:7,自引:1,他引:7       下载免费PDF全文
利用1979—2003年NCEP/NCAR月平均再分析资料, 探讨夏季 (6—8月) 200 hPa东亚西风急流扰动异常与南亚高压和西太平洋副热带高压的关系。研究指出:夏季200 hPa东亚西风急流扰动动能加强 (减弱), 东亚西风急流位置偏南 (偏北)、强度偏强 (偏弱); 东亚西风急流扰动动能强弱不仅与北半球西风急流强弱和沿急流的定常扰动有关, 而且还与东亚地区高、中、低纬南北向的扰动波列有关, 亚洲地区是北半球中纬度环球带状波列异常最大的区域。夏季200 hPa东亚西风急流扰动动能加强 (减弱), 南亚高压的特征为位置偏东 (偏西)、强度加强 (减弱); 西太平洋副热带高压的特征为位置偏南 (偏北)。东亚环流特别是500 hPa西太平洋副热带高压对东亚西风带扰动异常的响应由高空东亚西风急流南侧的散度场及其对流层中下层热带和副热带地区的垂直速度距平场变化完成。  相似文献   

19.
从含非绝热项的准地转运动方程组出发,分析了青藏高原大尺度热力作用下非绝热Rossby波的一些性质,从理论上证明当背景西风气流为正压时,冬季高原冷却作用有利于Rossby波的经向传播,夏季高原大尺度热力作用不利于波动的经向传播。非绝热Rossby波的频率方程说明冬季高原的热力作用是中纬季节内振荡的重要激发机制。同时,在背景西风气流为纯斜压条件下,求解了高原热力作用下非绝热Rossby波的频率,并由频率方程说明冬季高原热力作用有利于波动向不稳定方向发展,而夏季高原的大尺度热力作用对波动稳定性的影响存在临界值。  相似文献   

20.
The effect of barotropic shear on baroclinic instability has been investigated using both a linear quasi-geostrophic β-plane channel model and a multilevel primitive equation model on the sphere when a nonmodal disturbance is used as the initial perturbation condition. The analysis of the initial value problem has demonstrated the existence of a rapid transient growth phase of the most unstable mode. The inclusion of a linear barotropic shear reduces initial rapid transient growth, although at intermediate times the transient growth rates of the sheared cases can be larger than in the unsheared case owing to downgradient eddy momentum fluxes. Certain disturbances can amplify by factors of 4.5–60 times (for the L2 norm), or 3–30 times (for the perturbation amplitude maximum), as large as disturbances based on the linear normal modes. However, linear horizontal shear always reduces the amplification factors. The mechanism is that the shear confines the disturbance meriodionally and therefore limits the energy conversion from the zonal available potential energy to eddy energy. The effect of barotropic shear on the transient growth is not changed much in the presence of either thermal damping or Ekman pumping. Nonmodal integrations of baroclinic wave lifecycles show that the energy level reached by eddies is not very sensitive to the structure of the initial disturbance if the amplitude of the initial disturbance is small. Although in some cases the eddy kinetic energy level reached by the wave integrated from nonmodal disturbance can be 25–150% larger than the normal mode integrations, barotropic shear, characterized by large shear vorticity with small horizontal curvature, always reduces the eddy kinetic energy level reached by the wave, confirming the results of normal mode studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号