首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Arctic Ocean, the northernmost parts of the earth, covers the total surface area of 14.79 million square kilometers and amounts to only about 4% of global ocean surface area. Although its surface area is the smallest in the four major oceans, the Arct…  相似文献   

2.
Wang  Kaijia  Cheng  Xiao  Chen  Zhuoqi  Hui  Fengming  Liu  Yan  Tian  Ying 《中国科学:地球科学(英文版)》2020,63(3):405-411
The Jakobshavn Glacier(JG)in Greenland is one of the most active glaciers in the world.It was close to balance before 1997 but this was followed by a sudden transition to rapid thinning.The reason for the change remains unclear.In this study,The NASA Pre-IceBridge ice thickness data are collected to monitor the melting of JG front.The surface elevation decreased by around 90 m from 1995 to 2002 on the floating front.A distributed energy balance model is developed to estimate the energy balance of JG front in the past 30 years(1986-2016).The results indicate that multi-year average energy fluxes absorbed by the floating front of JG from the ocean were about 500 Wm^-2 from 1986 to 2016.This is approximately two times of the energy fluxes from atmosphere during the same period.The energy fluxes from the ocean increased from 200 to 600 Wm^-2during the period from 1990 to 1998 while energy fluxes from the atmosphere remained stable at about 250 Wm^-2.These results demonstrate that ocean contributes more to the melting of the JG front,and suggest that bottom surface melting must have a profound influence on marine-terminating glacier dynamics.  相似文献   

3.
A streamfunction EOF method is applied to a time series of hydrographic sections in the Southern Ocean south of Australia to study water mass variations. Results show that there are large thermohaline variations north of the Subantarctic Front (SAF) at 300–1500 dbar level, indicating upwelling and downwelling of the Antarctic Intermediate Water (AAIW) along isopycnal surfaces. Based on the latest altimeter product, Absolute Dynamic Topography, a mechanism due to frontal wave propagation is proposed to explain this phenomenon, and an index for frontal waves is defined. When the frontal wave is in positive (negative) phase, the SAF flows northeastward (southeastward) with the fresh AAIW downwelling (upwelling). Such mesoscale processes greatly enhance cross-frontal exchanges of water masses. Spectral analysis shows that frontal waves in the Southern Ocean south of Australia are dominated by a period of about 130 days with a phase speed of 4 cm/s and a wavelength of 450 km.  相似文献   

4.
Ocean acidification caused by oceanic uptake of anthropogenic carbon dioxide(CO_2) tends to suppress the calcification of some marine organisms. This reduced calcification then enhances surface ocean alkalinity and increases oceanic CO_2 uptake, a process that is termed calcification feedback. On the other hand, decreased calcification also reduces the export flux of calcium carbonate(Ca CO_3), potentially reducing Ca CO_3-bound organic carbon export flux and CO_2 uptake, a process that is termed ballast feedback. In this study, we incorporate a range of different parameterizations of the links between organic carbon export, calcification, and ocean acidification into an Earth system model, in order to quantify the long-term effects on oceanic CO_2 uptake that result from calcification and ballast feedbacks. We utilize an intensive CO_2 emission scenario to drive the model in which an estimated fossil fuel resource of 5000 Pg C is burnt out over the course of just a few centuries. Simulated results show that, in the absence of both calcification and ballast feedbacks, by year 3500, accumulated oceanic CO_2 uptake is2041 Pg C. Inclusion of calcification feedback alone increases the simulated uptake by 629 Pg C(31%), while the inclusion of both calcification and ballast feedbacks increase simulated uptake by 449–498 Pg C(22–24%), depending on the parameter values used in the ballast feedback scheme. These results indicate that ballast effect counteracts calcification effect in oceanic CO_2 uptake. Ballast effect causes more organic carbon to accumulate and decompose in the upper ocean, which in turn leads to decreased oxygen concentration in the upper ocean and increased oxygen at depths. By year 2600, the inclusion of ballast effect would decrease oxygen concentration by 11% at depth of ca. 200 m in tropics. Our study highlights the potentially critical effects of interactions between ocean acidification, marine organism calcification, and Ca CO3-bound organic carbon export on the ocean carbon and oxygen cycles.  相似文献   

5.
The characteristics of the upper ocean response to tropical cyclone wind(TCW) forcing in the northwestern Pacific were investigated using satellite and Argo data, as well as an ocean general circulation model. In particular, a case study was carried out on typhoon Rammasun, which passed through our study area during May 6–13, 2008. It is found that the local response right under the TCW forcing is characterized by a quick deepening of the surface mixed layer, a strong latent heat loss to the atmosphere, and an intense upwelling near the center of typhoon, leading to a cooling of the oceanic surface layer that persists as a cold wake along the typhoon track. More interestingly, the upper ocean response exhibits a four-layer thermal structure, including a cooling layer near the surface and a warming layer right below, accompanied by another pair of cooling/warming layers in the thermocline. The formation of the surface cooling/warming layers can be readily explained by the strong vertical mixing induced by TCW forcing, while the thermal response in the thermocline is probably a result of the cyclone-driven upwelling and the associated advective processes.  相似文献   

6.
From May to June 2014, the geochemical characteristics of dissolved barium(Ba) in sea water and its influx from the Kuroshio into the East China Sea(ECS) were studied by investigation of the Kuroshio mainstream east of Taiwan Island and the adjacent ECS. This allowed for the scope and extent of the Kuroshio incursion to be quantitatively described for the first time by using Ba as a tracer. The concentration of Ba in the Kuroshio mainstream increased gradually downward from the surface in the range 4.91–19.2 μg L.1. In the surface layer of the ECS, the Ba concentration was highest in coastal water and gradually decreased seaward, while it was higher in coastal and offshore water but lowest in middle shelf for bottom layer. The influx of Ba from Kuroshio into the ECS during May to October was calculated to be 2.19×108 kg by a water exchange model, in which the subsurface layer had the largest portion. The distribution of Ba indicated that Kuroshio upwelled in the sea area northeast of Taiwan Island. The north-flowing water in the Taiwan Strait restrained the incursion of Kuroshio surface water onto the ECS shelf, while Kuroshio subsurface water gradually affected the bottom of the ECS from outside. The results of end member calculation, using Ba as a parameter, showed that the Kuroshio surface water had little impact on the ECS, while the Kuroshio subsurface water formed an intrusion current by climbing northwest along the bottom of the middle shelf from the sea area northeast of Taiwan Island into the Qiantang Estuary, of which the volume of Kuroshio water was nearly 65%. Kuroshio water was the predominant part of the water on the outer shelf bottom and its proportion in areas deeper than the 100 m isobath could reach more than 95%. In the DH9 section(north of Taiwan Island), Kuroshio subsurface water intruded westward along the bottom from the shelf edge and then rose upward(in lower proportion). Kuroshio water accounted for 95% of the ocean volume could reach as far as 122°E. Ba was able to provide detailed tracing of the Kuroshio incursion into the ECS owing to its geochemical characteristics and became an effective tracer for revealing quantitative interactions between the Kuroshio and the ECS.  相似文献   

7.
This study investigates the roles of different physical processes in the oceanic response to tropical cyclones(TCs) in the Pacific, using an ocean general circulation model with several numerical experiments. A case study is focused on Typhoon Rammasun, which passed through the northwestern tropical Pacific in May 2008. TC-induced wind stress fields are extracted using a locally-weighted regression(Loess) method from a six-hourly Cross-Calibrated Multi-Platform satellite scatterometer wind product. By comparing model experiments with TC wind forcing being explicitly included or not, the effects of TC on the ocean are isolated in a clean way. The local oceanic response is characterized by a cooling in the surface layer that persists along the typhoon track as a cold wake, and a deepening of the mixed layer(ML). The TC-induced wind can affect the ocean through the momentum effects, the ML processes(the stirring effect on the ML depth), and heat flux(via wind speed), repectively.Analyses of numerical experiments with these different underlying processes explicitly represented or not indicate that vertical mixing and upwelling are dominant processes responsible for surface cooling, while the surface heat flux also plays a nonnegligible role. Specifically, vertical mixing, upwelling and surface heat flux account for respectively ~53%, ~31% and ~16% of the sea surface temperature cooling. However, for the ML response, the vertical mixing and surface heat flux are dominant processes for the ML deepening, while the contribution from upwelling process is negligible. This study provides new insights into how TC-indcued wind forcing affects the ocean by isolating each different individual process in a clear way, which differs from previous direct heat budget analyses.  相似文献   

8.
The intraseasonal variability(ISV) of sea level anomalies(SLAs) along the southern coast of Java and its interannual modulation were studied based on a gridded SLA product produced from the Archiving, Validation, and Interpretation of Satellite Oceanography dataset. This ISV is induced by the propagation of intraseasonal Kelvin waves derived from the central equatorial Indian Ocean(EIO). Wavelet analysis and empirical mode decomposition of intraseasonal SLAs along the southern coast of Java showed interannual variability, with weaker ISV events during El Ni years and positive Indian Ocean Dipole(IOD) years than during normal years. This interannual modulation of the ISV is influenced by the El Ni-Southern Oscillation teleconnection via the Walker Circulation and eastern Indian Ocean upwelling connected to IOD events. The anomalously weaker Walker Circulation during El Ni events generates anomalous surface easterlies over the central-eastern tropical Indian Ocean that produce upwelling Kelvin waves in the EIO and offshore water transport along the southern coasts of Sumatra and Java, resulting in negative SLAs along the southern coast of Java. These negative SLAs damp the positive SLAs induced by the eastward propagation of downwelling Kelvin waves from the central EIO during the following March–May of El Ni years. Similar features of SLAs and sea surface wind anomalies also occur during positive IOD years. Consequently, the sea level ISV along the southern coast of Java is weaker in El Ni and positive IOD years.  相似文献   

9.
Successive waveforms of the vertical component recorded by 888 broadband seismic stations in the China Seismography Network from January,2010 to June,2011 are used to investigate the temporal and spatial distribution of ambient noise intensity,and the images of ambient noise intensity at the period of 10 s in the Chinese Mainland are obtained. The temporal variation of ambient noise intensity shows some seasonal and periodic characteristics. The maximum ambient noise intensity occurred from January,2011 to March,2011. The spatial distribution images of ambient noise intensity show obvious zoning features,which doesnt correlate with surface geology,suggesting that the noise field is stronger than the site factors. The strength in southeastern coastal areas reaches its maximum and generally decreases toward to inland areas,and arrives at the minimum in the Qinghai-Tibetan Plateau. The zonal intensity distribution is probably correlated with ocean tides from the Philippine Ocean and the Pacific Ocean. It also shows that the influence from the Indian Ocean seems small. However, the ambient noise intensity increases to a certain degree in the Xinjiang area,indicating that the main source of ambient noise in the western area of the Chinese Mainland is not derived from the East and South China Sea,but rather from the deep interior of the Eurasian continent. The ambient noise intensity obtained in this study can supply reference for seismology research based on ambient noise correlation. Moreover,it can supply basic data for attenuation research based on ambient noise, and thus help achieve the object of retrieving the attenuation of Rayleigh waves from ambient noise.  相似文献   

10.
The classical Ekman theory tells us that the ocean surface current turns to the right(left) side of wind direction with 45° in the north(south) hemisphere,but the observation and research results show that the surface current deflexion angle is smaller than 45° in the Arctic and high latitude areas while larger than 45° in the low latitude areas.In order to explain these phenomena,a series of idealized numerical experiments are designed to investigate the influence of vertical viscosity coefficients with different vertical distribution characteristics on the classical and steady Ekman spiral structure.Results show that when the vertical viscosity coefficient decreases with water depth,the surface current deflexion angle is larger than 45°,whereas the angle is smaller than 45° when the vertical viscosity coefficient increases with water depth.So the different observed surface current deflexion angles in low latitude sea areas and the Arctic regions should be attributed to the different vertical distribution characteristics of vertical viscosity coefficients in the upper ocean.The flatness of the Ekman spiral is not equal to one and does not show regular behaviors for the numerical experiments with different distribution of vertical viscosity.However,the magnitudes and directions of volume transport of Ekman spirals are almost the same as the results of classical Ekman theory,i.e.,vertical viscosity coefficient distributions have no effect on the magnitudes and directions of volume transport.  相似文献   

11.
The impacts of opening the Drake Passage(DP) on the oceanic general circulation are examined.When the DP is open,wind stress at mid-and high latitudes gives rise to a wind-driven gyre,which induces a meridional heat exchange between mid-and high latitudes in the Southern Ocean.After the opening of the DP,the Antarctic Circumpolar Current(ACC) forms and its associated strong temperature front blocks the heat transport from mid-latitudes to high latitudes.A simple box model is formulated,in which the effects of the wind stress(for the case of DP closed) and the thermal front(for the case of DP open) on the variability of Antarctic Bottom Water(AABW) and North Atlantic Deep Water(NADW) are explored.The sensitivity experiments demonstrate that:(1) When the DP is closed,the enhancement of the wind-driven gyre leads to the decline of AABW formation in the Southern Ocean and the increase of NADW formation in the North Atlantic.As a result,water in high latitudes of the Southern Ocean becomes warmer,so does the bottom water of global ocean.(2) When the DP is open,there is no formation of AABW until the intensity of thermal front along ACC exceeds a threshold value(it is 4.03℃ in our model).Before the formation of AABW,temperature in most of the oceans is higher than that after the formation of AABW,which usually leads to the cooling of high latitudes of the Southern Hemisphere and the bottom water in global ocean.When the strength of the thermal front is lower than the critical value,there is no AABW formation,and temperature in most of the oceans is slightly higher.These results demonstrate that during the opening of the DP,changes in wind stress and the formation of the thermal front in the Southern Ocean can substantially affect the formation of AABW and NADW,thus changing the state of meridional overturning circulation in the global ocean.  相似文献   

12.
It is revealed in frictional experiments on medium-scale samples that period doubling bifurcation of stress drop for stick-slip occurs due to macroscopic heterogeneity of the sliding surface under conditions for typical stick-slip.The observed data show that the period doubling bifurcation of stress drop results from the alternate occurrence of strain release along the whole fault and along part of fault.This implies that complicated nonlinear behavior corresponds to clear physical implication in some cases.  相似文献   

13.
Based on Argo sea surface salinity(SSS) and the related precipitation(P), evaporation(E), and sea surface height data sets, the climatological annual mean and low-frequency variability in SSS in the global ocean and their relationship with ocean circulation and climate change were analyzed. Meanwhile, together with previous studies, a brief retrospect and prospect of seawater salinity were given in this work. Freshwater flux(E-P) dominated the mean pattern of SSS, while the dynamics of ocean circulation modulated the spatial structure and low-frequency variability in SSS in most regions. Under global warming, the trend in SSS indicated the intensification of the global hydrological cycle, and featured a decreasing trend at low and high latitudes and an increasing trend in subtropical regions. In the most recent two decades, global warming has slowed down, which is called the"global warming hiatus". The trend in SSS during this phase, which was different to that under global warming, mainly indicated the response of the ocean surface to the decadal and multi-decadal variability in the climate system, referring to the intensification of the Walker Circulation. The significant contrast of SSS trends between the western Pacific and the southeastern Indian Ocean suggested the importance of oceanic dynamics in the cross-basin interaction in recent decades. Ocean Rossby waves and the Indonesian Throughflow contributed to the freshening trend in SSS in the southeastern Indian Ocean, while the increasing trend in the southeastern Pacific and the decreasing trend in the northern Atlantic implied a long-term linear trend under global warming. In the future, higher resolution SSS data observed by satellites, together with Argo observations, will help to extend our knowledge on the dynamics of mesoscale eddies, regional oceanography, and climate change.  相似文献   

14.
AMSR-E and MODIS are two EOS (Earth Observing System) instruments on board the Aqua satellite. A regression analysis between the brightness of all AMSR-E bands and the MODIS land surface tem-perature product indicated that the 89 GHz vertical polarization is the best single band to retrieve land surface temperature. According to simulation analysis with AIEM,the difference of different frequen-cies can eliminate the influence of water in soil and atmosphere,and also the surface roughness partly. The analysis results indicate that the radiation mechanism of surface covered snow is different from others. In order to retrieve land surface temperature more accurately,the land surface should be at least classified into three types:water covered surface,snow covered surface,and non-water and non-snow covered land surface. In order to improve the practicality and accuracy of the algorithm,we built different equations for different ranges of temperature. The average land surface temperature er-ror is about 2―3℃ relative to the MODIS LST product.  相似文献   

15.
Earthquake surface rupture is the result of transformation from crustal elastic strain accumulation to permanent tectonic deformation. The surface rupture zone produced by the 2001 Kunlunshan earth- quake (Mw7.8) on the Kusaihu segment of the Kunlun fault extends over 426 km. It consists of three relatively independent surface rupture sections: the western strike-slip section, the middle transten- sional section and the eastern strike-slip section. Hence this implies that the Kunlunshan earthquake is composed of three earthquake rupturing events, i.e. the Mw=6.8, Mw=6.2 and Mw≤7.8 events, respec- tively. The Mw≤7.8 earthquake, along the eastern section, is the main shock of the Kunlunshan earth- quake, further decomposed into four rupturing subevents. Field measurements indicate that the width of a single surface break on different sections ranges from several meters to 15 m, with a maximum value of less than 30 m. The width of the surface rupture zone that consists of en echelon breaks de- pends on its geometric structures, especially the stepover width of the secondary surface rupture zones in en echelon, displaying a basic feature of deformation localization. Consistency between the Quaternary geologic slip rate, the GPS-monitored strain rate and the localization of the surface rup- tures of the 2001 Kunlunshan earthquake may indicate that the tectonic deformation between the Ba- yan Har block and Qilian-Qaidam block in the northern Tibetan Plateau is characterized by strike-slip faulting along the limited width of the Kunlun fault, while the blocks themselves on both sides of the Kunlun fault are characterized by block motion. The localization of earthquake surface rupture zone is of great significance to determine the width of the fault-surface-rupture hazard zone, along which direct destruction will be caused by co-seismic surface rupturing along a strike-slip fault, that should be considered before the major engineering project, residental buildings and life line construction.  相似文献   

16.
The Neo-Tethys Ocean was an eastward-gaping triangular oceanic embayment between Laurasia to the north and Gondwana to the south.The Neo-Tethys Ocean was initiated from the Early Permian with mircoblocks rifted from the northern margin of Gondwana.As the microblocks drifted northwards,the Neo-Tethys Ocean was expanded.Most of these microblocks collided with the Eurasia continent in the Late Triassic,leading to the final closure of the Paleo-Tethys Ocean,followed by oceanic subduction of the Neo-Tethys oceanic slab beneath the newly formed southern margin of the Eurasia continent.As the splitting of Gondwana continued,African-Arabian,Indian and Australian continents were separated from Gondwana and moved northwards at different rates.Collision of these blocks with the Eurasia continent occurred at different time during the Cenozoic,resulting in the closure of the Neo-Tethys Ocean and building of the most significant Alps-Zagros-Himalaya orogenic belt on Earth.The tectonic evolution of the Neo-Tethys Ocean shows different characteristics from west to east:Multi-oceanic basins expansion,bidirectional subduction and microblocks collision dominate in the Mediterranean region;northward oceanic subduction and diachronous continental collision along the Zagros suture occur in the Middle East;the Tibet and Southeast Asia are characterized by multi-block riftings from Gondwana and multi-stage collisions with the Eurasia continent.The negative buoyancy of subducting oceanic slabs can be considered as the main engine for northward drifting of Gondwana-derived blocks and subduction of the Neo-Tethys Ocean.Meanwhile,mantle convection and counterclockwise rotation of Gondwana-derived blocks and the Gondwana continent around an Euler pole in West Africa in non-free boundary conditions also controlled the evolution of the Neo-Tethys Ocean.  相似文献   

17.
Using a three-dimensional nonhydrostatic mesoscale numerical model (MM5), the evolution and structures of baroclinic waves with and without surface drag in case of dry and moist atmosphere are simulated, with special emphases on the effects of surface drag on the low-level frontal structure and frontogenesis. There are two different effects of surface drag on the low-level frontogenesis in the dry case. On one hand, the surface drag weakens the low-level frontogenesis and less inclined to develop the baroclinic wave due to the dissipation. But on the other hand, the surface drag induces a strong ageostrophic flow, which prolongs the low-level frontogenesis and finally leads to the enhancement of cold front. Compared with the no surface drag case, the surface drag increases the frontal slope espe- cially in the boundary layer, where the front is almost vertical to the surface, and then enhances the prefrontal vertical motion. All these conclusions expanded the analytical theory of Tan and Wu (1990). In the moist atmosphere, the influence of surface drag on frontal rainbands is also obvious. The surface drag weakens the convection, and reduces the energy dissipation near the surface when the initial relative humidity is relatively weak. At this time, the confluence induced post-frontal updrafts moves across the cold front and reinforces the prefrontal convection, which is beneficial to the maintenance of the rainband in cold sector. Given the enhancement of relative humidity, the moist convection domi- nates the low-level frontogenesis while the retardation of surface drag on energy dissipation is not obvious, therefore the effects of surface drag on the low-level frontogenesis and precipitation are re- duced.  相似文献   

18.
The atmospheric vertical structure and changed characteristics of boundary layer parameters, as well as their relations with sea ice and temperature changes in the center of Arctic Ocean(80°–88°N) are presented by adopting GPS sounding data obtained by the 4th–6th Arctic expeditions of China and NCEP(National Centre for Environmental Prediction) reanalysis data. Obvious differences are observed regarding the tropopause, boundary layer height, temperature inversion, and vertical structure of wind speed and direction in the center Arctic Ocean in the summer of 2012, 2010, and 2014. These differences can be explained by the relations between temperature and changes in sea ice extent in September from 1979 to 2014. In September 2012, the Arctic sea ice extent decreased by 44% an with obvious warming process. In September 2010 and 2014, it decreased by 22.6% and 17% with an obvious cooling process, respectively. A comparison of the two processes shows that sea ice change has a significant influence on the structure of the atmospheric boundary layer. In the recent 30 years, the temperature changes of 1000 and 850 h Pa in the center of the Arctic Ocean have displayed an obvious warming trend and negative correlation with sea ice extent. These changes indicate that the continuous reduction of Arctic sea ice will continue the warming of the troposphere middle layer.  相似文献   

19.
20.
Application of altimetry data assimilation on mesoscale eddies simulation   总被引:3,自引:0,他引:3  
Mesoscale eddy plays an important role in the ocean circulation. In order to improve the simulation accuracy of the mesoscale eddies, a three-dimensional variation (3DVAR) data assimilation system called Ocean Variational Analysis System (OVALS) is coupled with a POM model to simulate the mesoscale eddies in the Northwest Pacific Ocean. In this system, the sea surface height anomaly (SSHA) data by satellite altimeters are assimilated and translated into pseudo temperature and salinity (T-S) profile data. Then, these profile data are taken as observation data to be assimilated again and produce the three-dimensional analysis T-S field. According to the characteristics of mesoscale eddy, the most appropriate assimilation parameters are set up and testified in this system. A ten years mesoscale eddies simulation and comparison experiment is made, which includes two schemes: assimilation and non-assimilation. The results of comparison between two schemes and the observation show that the simulation accuracy of the assimilation scheme is much better than that of non-assimilation, which verified that the altimetry data assimilation method can improve the simulation accuracy of the mesoscale dramatically and indicates that it is possible to use this system on the forecast of mesoscale eddies in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号