首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The Mesozoic volcanic rocks of the Serra Geral Formation in the Paraná Basin, South America, and of the Etendeka Group in northwestern Namibia were erupted shortly before the opening of the South Atlantic. The major widespread silicic volcanic units in the Etendeka Group are interpreted as rheoignimbrites (Milner et al., 1992) and are interbedded with tholeiitic basalts and basaltic andesites.The southern portion of the Etendeka Group is subdivided into a basal Awahab Formation which is overlain disconformably by the Tafelberg Formation. Both formations contain silicic and mafic units. Bulk composition, initial 87Sr/86Sr ratios, phenocryst assemblages and mineral compositions are used to correlate silicic units of the Awahab Formation with the basal units of the Palmas silicic volcanic rocks in the southern Paraná Basin. Silicic units of the Tafelberg Formation can similarly be correlated with silicic units in the upper portion of the Palmas succession, which are also disconformable on the units below them. Not all silicic units in these successions are present in both the Etendeka and Paraná areas, but where correlation of individual units is possible, then this is found to be consistent with the overall stratigraphic sequence.Silicic units in the Awahab Formation were erupted from the Messum Igneous Complex in Namibia and their correlation into Brazil indicates that individual eruptive units must have travelled over 340 km from their source. Serial changes in the composition of silicic units in the Awahab Formation and their correlatives indicates that they were erupted from a single magma system from which a total of ˜ 8600 km3 of material was erupted.  相似文献   

2.
Leg 115 of the Ocean Drilling Program recovered basaltic rocks from four sites along the ancient trail of the Réunion hotspot. The age of volcanism, determined from biostratigraphic data at the four sites, increases to the north and records the motion of India away from the Réunion hotspot through Tertiary time. Hotspot activity began with the eruption of the Deccan flood basalt flows at the time of the Cretaceous/Tertiary boundary. The Réunion hotspot has been stationary with respect to other hotspots in the Atlantic and Indian Ocean basins through Tertiary time. The geochemical compositions of the drilled basalts differ according to the relative contributions of magmas from hotspot and MORB mantle sources.  相似文献   

3.
Dark aeolian deposits on Mars are thought to consist of volcanic materials due to their mineral assemblages, which are common to basalts. However, the sediment source is still debated. Basaltic dunes on Earth are promising analogs for providing further insights into the assumed basaltic sand dunes on Mars. In our study we characterize basaltic dunes from the Ka'u Desert in Hawaii using optical microscopes, electron microprobe, and spectral analyses. We compare the spectra of terrestrial and Martian dune sands to determine possible origins of the Martian dark sediments. Our results show that the terrestrial sands consist primarily of medium to coarse sand‐sized volcanic glass and rock fragments as well as olivine, pyroxene, and plagioclase minerals. Grain shapes range from angular to subrounded. The sample composition indicates that the material was derived from phreatomagmatic eruptions partially with additional proportions of rock fragments from local lava flows. Grain shape and size indicate the materials were transported by aeolian processes rather than by fluvial processes. Spectral analyses reveal an initial hydration of all terrestrial samples. A spectral mineralogical correlation between the terrestrial and Martian aeolian sands shows a similarity consistent with an origin from volcanic ash and lava. We suggest that the Martian deposits may contain similar abundances of volcanic glass, which has not yet been distinguished in Martian spectral data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Tertiary volcanic rocks of Carriacou occupy two-thirds of the island. The volcanics include volcaniclastics, lava flows and dome lavas and range in composition from basalts to andesites. Carriacou basalts fall into two petrographic types (a) clinopyroxene-plagioclase-phyric basalts and (b) olivine microphyric basalts; the latter having higher MgO and lower Al2O3 than the clinopyroxene basalts. Both types are unusually rich in mafic minerals compared with Lesser Antilles basalts in general, although similar types have been reported from the nearby island of Grenada. The potash to silica ratios are relatively high and confirm the similarity between Carriacou and Grenada basalts and the differences between these basalts and basalts from other islands of the Lesser Antilles. The basaltic andesites and andesites from Carriacou correspond closely in mineralogical and chemical composition with typical andesites found elsewhere in the Lesser Antilles. The geochemistry of the volcanics shows that the olivine microphyric basalts display tholeiitic affinities whereas the clinopyroxeneplagioclase-phyric basalt, basaltic andesites and andesites are calcalkaline. The compositional gradation in both the geochemistry and mineralogy of these volcanics suggests that fractional crystallization played an important role in the derivation of the various magma.  相似文献   

5.
Volcanism in the Taupo Volcanic Zone (TVZ) and the Kermadec arc-Havre Trough (KAHT) is related to westward subduction of the Pacific Plate beneath the Indo-Australian Plate. The tectonic setting of the TVZ is continental whereas in KAHT it is oceanic and in these two settings the relative volumes of basalt differ markedly. In TVZ, basalts form a minor proportion (< 1%) of a dominant rhyolite (97%)-andesite association while in KAHT, basalts and basaltic andesites are the major rock types. Neither the convergence rate between the Pacific and Indo-Australian Plates nor the extension rates in the back-arc region or the dip of the Pacific Plate Wadati-Benioff zone differ appreciably between the oceanic and continental segments. The distance between the volcanic front and the axis of the back-arc basin decreases from the Kermadec arc to TVZ and the distance between trench and volcanic front increases from around 200 km in the Kermadec arc to 280 km in TVZ. These factors may prove significant in determining the extent to which arc and backarc volcanism in subduction settings are coupled.All basalts from the Kermadec arc are porphyritic (up to 60% phenocrysts) with assemblages generally dominated by plagioclase but with olivine, clinopyroxene and orthopyroxene. A single dredge sample from the Havre Trough back arc contains olivine and plagioclase microphenocrysts in glassy pillow rind and is mildly alkaline (< 1% normative nepheline) contrasting with the tholeiitic nature of the other basalts. Basalts from the TVZ contain phenocryst assemblages of olivine + plagioclase ± clinopyroxene; orthopyroxene phenocrysts occur only in the most evolved basalts and basaltic andesites from both TVZ and the Kermadec Arc.Sparsely porphyritic primitive compositions (Mg/(Mg+Fe2) > 70) are high in Al2O3 (>16.5%), and project in the olivine volume of the basalt tetrahedron. They contain olivine (Fo87) phenocrysts and plagioclase (> An60) microphenocrysts. These magmas have ratios of CaO/Al2O3, A12O3/TiO2 and CaO/TiO2 in the range of MORB and MORB picrites and can evolve to the low-pressure MORB cotectic by crystallisation of olivine±plagiociase. Such rocks may be the parents of other magmas whose evolutionary pathways are complicated by interaction of crystal fractionation, crystal accumulation and mixing processes and the filtering action of crust of variable density and thickness. The interplay of these processes likely accounts for the scatter of data about the cotectic. More evolved rocks from both TVZ and KAHT contain clinopyroxene and orthopyroxene phenocrysts and their compositions merge with basaltic andesites and andesites. Stepwise least-squares modelling using phenocryst assemblages in proportions observed in the rocks suggest that crystal fractionation and accumulation processes can account for much of the diversity observed in the major-element compositions of all lavas.We conclude that the parental basaltic magmas for volcanism in the TVZ and KAHT segments are similar thereby implying grossly similar source mineralogy. We attribute the diversity to secondary processes influencing liquids as they ascended through complex plumbing systems in the sub arc mantle and cross.  相似文献   

6.
The origin, formation and evolution of volcanic sands are less well known than the formation of the much more common quartz‐rich sand sheets. Combining active volcanism and a cold climate, Iceland is covered for about 21% of its surface by sandy areas. The sands were analyzed in detail at two sites and results reveal their diverse origins. The first site is Dyngjusandur, located north of Vatnajökull, and the second site is the Lambahraun area, located south of Langjökull. At both sites, the sand origin is determined from field observations (wind directions from ventifacts), chemical and mineralogical analyses of rocks and sands. At Dyngjusandur, the sand is dominated by glass grains, a situation typical of sand plains in Iceland. Hyaloclastite ridges presently buried beneath Vatnajökull are the dominant source of the sand, and only large size plagioclase crystals (0.5 cm) in sands seem to be derived from the lava flows. Hyaloclastite ridges were crushed by glaciers and mechanically eroded sediments were washed out by melt‐water onto flood plains. The sand chemical composition is spatially homogeneous and similar to the average composition of neighboring sub‐aerial lava flows, reflecting efficient mixing of distinct sources below the glacier. The presence of sand north of Dyngjujökull can be taken as a way to explore the average chemical composition of non‐exposed volcanic material beneath the glacier. In the case of Lambahraun, prevailing winds indicate several potential sources of sand at the north of the sand sheet. Comparison of chemical and mineralogical analyses of sands and rock samples helped to refine the exact origin. In contrast with the first site, the sand is dominated by crystals and is chemically consistent with a mixture of material derived from the lava flows of Eldborgir and Skersli shield volcanoes. Analysis of the contact between the lava flows and the glacier reveals that basaltic sand grains formed as the result of recent advances of the glacier abrading the rocks. The direct interaction of glacial and fluvio‐glacial activity with basaltic plains appears to be necessary to produce a large amount of sands in a relatively short period of time (<4000 years). This site appears to be an excellent natural laboratory for further studies concerning the sand evolution and physical sorting processes in basaltic material, which have important implications for understanding aeolian processes on Mars. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Geochemical data and mapping from a Karoo flood basalt crater complex reveals new information about the ascent and eruption of magma batches during the earliest phases of flood basalt volcanism. Flood basalt eruptions at Sterkspruit, South Africa began with emplacement of thin lava flows before abruptly switching to explosive phreatomagmatic and magmatic activity that formed a nest of craters, spatter and tuff rings and cones that collectively comprise a crater complex >40 km2 filled by 9–18 km3 of volcaniclastic debris. Rising magma flux rates combined with reduced access of magma to external water led to effusion of thick Karoo flood basalts, burying the crater-complex beneath the >1.5 km-thick Lesotho lava pile. Geochemical data is consistent with flood basalt effusion from local dikes, and some lava flows likely shared or re-occupied vent sites active during explosive eruptions at Sterkspruit. Flood basalt magmas involved in Sterkspruit eruptions were chemically heterogenous. This study documents the rapid (perhaps simultaneous) eruption of three chemically distinct basaltic magmas which cannot be simply related to one another from one vent site within the Sterkspruit crater complex. Stratigraphic and map relationships indicate that eruption of the same three magma types took place from closely spaced vents over a short time during formation of the bulk of the crater-complex. Two magma types recognized there have not been recognized in the Karoo province before. The variable composition of flood basalts at Sterkspruit argues that magma batches in flood basalt fields may be small (0.5–1 km3) and not simply related to one another. This implies in turn that heterogeneities in the magma source region may be close to each other in time and space, and that eruptions of chemically distinct magmas may take place over short intervals of space and time without significant hybridisation in flood basalt fields.  相似文献   

8.
Recent studies of the Sylhet Traps (? Jurassic) and the overlying Cretaceous-Tertiary sedimentary cover in the southern part of the Khasi Hills, Shillong Plateau in Assam have led to a reconstruction of the tectonic history of the area since Jurassic times; a clear picture regarding the nature of volcanism has also emerged. The history begins with effusion of tholeiitic basalts, apparently through E-W fissures developed in the peneplaned crystalline basement. One of these fractures became a fault (the Raibah fault) along which the northern non-volcanic block moved up relative to the southern block experiencing volcanism. The fault was active during and after the volcanism till Upper Cretaceous times. The sequence of eruption was as follows: (1) tholeiitic basalts, (2) minor alkali basalts (nepheline tephrite), (3) tholeiitic basalts, (4) localised explosive effusion of minor rhyolites and acid tuffs, and (5) tholeiitic basalts. Neither feeder dykes nor volcanic vents have been noted in the Sylhet Traps. There are no agglomerates among the basic flows; the fragmental rocks are actually flow breccias. The formation of the various structures such as flow breccias, layering and flow folds in many of the basalt flows are thought to have been controlled by the angle of slope and the rate of flow. Thus, the Sylhet Trap flood basalts are characterised by quiet effusion through linear fissures. The effusion was followed by a dyke phase, intruding also along E-W fractures, expecially in the monoclinally bent southern portion; the subsequent tectonic history of the area is also characterised by relative uplift and downsinking of different basement blocks. It is concluded that in the Shillong Plateau uparching of the basement led to fracturing, effusion of basalts apparently along some zones of fissuring along which differential vertical movement of basement blocks was taking place. In the light of the foregoing conclusions, available data on the tectonics of the Rajmahal and the Deccan Traps are examined; both these flood basalt provinces have suffered broadly similar tectonic histories as the Sylhet Traps. The various features of flood basalts, viz., large extent, huge thickness, subaerial nature, a post-volcanic dyke phase are interpreted as a consequence of fusion of the Upper Mantle, development of tensional fractures eruptions apparently along fractures between adjoining basement blocks undergoing differential uplift.  相似文献   

9.
Magmatism in Kachchh, in the northwestern Deccan continental flood basalt province, is represented not only by typical tholeiitic flows and dikes, but also plug-like bodies, in Mesozoic sandstone, of alkali basalt, basanite, melanephelinite and nephelinite, containing mantle nodules. They form the base of the local Deccan stratigraphy and their volcanological context was poorly understood. Based on new and published field, petrographic and geochemical data, we identify this suite as an eroded monogenetic volcanic field. The plugs are shallow-level intrusions (necks, sills, dikes, sheets, laccoliths); one of them is known to have fed a lava flow. We have found local peperites reflecting mingling between magmas and soft sediment, and the remains of a pyroclastic vent composed of non-bedded lapilli tuff breccia, injected by mafic alkalic dikes. The lapilli tuff matrix contains basaltic fragments, glass shards, and detrital quartz and microcline, with secondary zeolites, and there are abundant lithic blocks of mafic alkalic rocks. We interpret this deposit as a maar-diatreme, formed due to phreatomagmatic explosions and associated wall rock fragmentation and collapse. This is one of few known hydrovolcanic vents in the Deccan Traps. The central Kachchh monogenetic volcanic field has >30 individual structures exposed over an area of ∼1,800 km2 and possibly many more if compositionally identical igneous intrusions in northern Kachchh are proven by future dating work to be contemporaneous. The central Kachchh monogenetic volcanic field implies low-degree mantle melting and limited, periodic magma supply. Regional directed extension was absent or at best insignificant during its formation, in contrast to the contemporaneous significant directed extension and vigorous mantle melting under the main area of the Deccan flood basalts. The central Kachchh field demonstrates regional-scale volcanological, compositional, and tectonic variability within flood basalt provinces, and adds the Deccan Traps to the list of such provinces containing monogenetic- and/or hydrovolcanism, namely the Karoo-Ferrar and Emeishan flood basalts, and plateau basalts in Saudi Arabia, Libya, and Patagonia.  相似文献   

10.
天池火山东北侧造盾玄武岩可划分出8个流动单元,熔岩流的流动距离主要集中在30~50km,熔岩流宽度以5km左右为主。通过由野外调查获得的天池火山东北侧不同熔岩流单元的地表坡度、熔岩流厚度等,结合温度、密度与黏度等物理参数,按照熔岩流速度公式恢复的头道组和早白山组0.5m厚晶体含量5%的玄武岩熔岩流流速集中在0~1m/s之间。晶体含量为30%、厚度为0.5m的晚白山组和老房子小山组玄武岩熔岩流的流动速度集中在0~0.12m/s之间。厚度增大至2m左右,晶体含量不变的头道组和早白山组的玄武岩熔岩流流动速度可加快至11m/s。天池火山2m厚的碱性熔岩流在12h内达到或接近了它的最远距离,而各组内2m厚拉斑玄武岩熔岩流在20h内接近了最远距离。0.5m厚的熔岩流在10d内接近最大距离。50km是预计的熔岩流长度,在未来制定减灾措施时,可将此长度作为重要依据之一。天池火山熔岩流灾害主要表现为熔岩流动时对房屋建筑、农田、道路、林地、电站的毁坏,火灾及大量的人口伤亡  相似文献   

11.
Least-squares collocation technique was used to process regional gravity data of the SE South American lithospheric plate in order to map intermediate (10–2000 km) wavelength geoid anomalies. The area between 35–10° S and 60–25° W includes the Paraná CFB Province, the Southern São Francisco Craton and its marginal fold/thrust belts, the Brazilian continental margin and oceanic basins. The main features in the geoid anomaly map are: (a) Paraná CFB Province is characterized by a 1000 km long and 500 km wide, NE-trending, 9 m-amplitude negative anomaly which correlates with the distribution of sediments and basalts within the Paraná basin. (b) A circular (600–800 km in diameter) positive, 8 m-amplitude geoid anomaly is located in the southern S. Francisco craton and extends into the northeastern border of the Paraná CFB Province. This anomaly partially correlates with Alto Paranaíba Igneous Province (APIP), where alkalic volcanism and tholeiitic dikes of ages younger than 80 Ma are found and where a low-velocity zone in the mantle has been mapped using seismic tomography. This positive geoid anomaly extends towards the continental margin at latitude 21° S and joins a linear sequence of short wavelength positive geoid anomalies associated with Vitoria–Trindade seamounts. (c) A NE-trending, 1000 km long and 800 km wide, 4 m-amplitude, positive geoid anomaly, which is located along the southeastern coast of Brazil, from latitude 24 to 35° S. The northern part of this anomaly correlates with the Ponta Grossa Arch and Florianopolis dyke swarm provinces. The age of this intrusive volcanism is 130–120 Ma. (d) A circular positive anomaly with 9 m of amplitude, located over the Rio Grande and Uruguay shields and offshore Pelotas basin. Few alkaline intrusives with ages between 65 and 80 Ma are found in the region and apatite fission track ages in basement rocks indicates cooling at around 30 Ma. A semi-quantitative analysis of the observed geoid anomalies using isostatic considerations suggests that the mechanism which generated Paraná CFB Province did not change, in a significant manner, the lithospheric thermal structure, since the same geoid pattern observed within this province continues northward over the Neoproterozoic fold/thrust belts systems separating the São Francisco and Amazon cratons. Therefore, this observation favours Anderson’s idea of rapid basaltic outpouring through a pull-apart mechanism along a major suture zone. A thermal component may still be present in the Southern São Francisco Craton and in the Rio Grande Shield and contiguous continental margins, sites of Tertiary thermal and magmatic reactivations.  相似文献   

12.
内蒙古贝力克玄武岩台地火山地质及成因探讨   总被引:4,自引:0,他引:4       下载免费PDF全文
根据火山地质特征,内蒙古锡林郭勒地区的新生代玄武岩可以划分为阿巴嘎玄武岩、贝力克玄武岩和达里诺尔玄武岩,呈NW-SE向展布.贝力克玄武岩以面积小、没有火山锥体、岩性较为单一(绝大多数为拉斑玄武岩)及不含慢源包体的熔岩台地而显著区别于另两种玄武岩.贝力克玄武岩以发育4级高低错落有致、大小不一的熔岩台地为特征,各级熔岩台地...  相似文献   

13.
Forty-six new K-Ar age determinations are presented on whole rock samples and mineral separates from volcanic and subvolcanic rocks of Gran Canaria. The main subaerial shield building basaltic volcanism with estimated volume of about 1000 km3 was confined to the interval about 13.7 m.y. to 13.5 m.y. ago in the middle Miocene. Substantial volume (~100 km3) of silicic volcanics (trachyte and peralkaline rhyolite) were erupted with no detectable time break following the basaltic volcanism, essentially contemporaneous with formation of a large collapse caldera at 13.4±0.3 m.y. ago. Trachytic to phonolitic volcanism continued intermittently in the waning states of activity until about 9 m.y. ago. Following a long hiatus there was resurgence of volcanism with eruption of about 100 km3 of basanitic to hauyne phonolitic rocks of the Roque Nublo Group between about 4.4 m.y. and 3.4 m.y. ago in the Pliocene. After a hiatus of less than 1.0 m.y., olivine nephelinite magmas were erupted and this activity continued intermittently until relatively recent times, the younger eruptives being mainly basanitic in composition. The volume of volcanic products in this phase probably does not exceed 10 km3. Thus the volume of all the resurgent volcanism comprises less than 10 percent of the subaerially exposed part of Gran Canaria. The results show that the subaerial main shield building phase of volcanism in Gran Canaria, consisting of mildly alkali to transitional basalts, occurred over a time interval that was less than 0.5 m.y. Magmatic evolution on Gran Canaria appears to be similar to that found on other basaltic volcanoes in oceanic regions. Thus volcanoes in the Hawaiian, Marquesas and Society Islands all were built by basaltic lavas in similar short-lived episodes of volcanism. In some Hawaiian volcanoes, a resurgent phase of volcanism of strongly undersaturated basalts of small volume is recognized following a long hiatus, again similar to that found on Gran Canaria. The relatively large volume of silicic lavas erupted in Gran Canaria immediately following the main basaltic shield building phase is, however, not matched in the Pacific volcanoes mentioned.  相似文献   

14.
Continental flood basalts are usually regarded as a single tectonomagmatic entity but frequently quoted examples exhibit a variety of tectonic settings. In one well-studied, classic, flood basalt province, the Mesozoic Karoo province of southern Africa, magmatism occurred in the following tectonic settings: (a) continental rifting leading to ocean-floor spreading in the South Atlantic Ocean (Etendeka suite of Namibia); (b) stretched continental lithosphere and rifting not leading directly to ocean-floor formation (Lebombo suite of southeastern Africa); and (c) an a-tectonic, within-plate, continental setting characterized by an absence of faulting or warping (Lesotho highlands and Karoo dolerites of South Africa). By means of spidergrams of the elements Rb, Ba, Th, Nb, K, La, Ce, Sr, Nd, P, Hf, Zr, Sm, Ti, Tb, Y, V, Ni and Cr, uncontaminated tholeiites from (c) above [i.e. the Lesotho-type continental flood basalts (LTCFB)] are compared with mid-ocean ridge basalts (MORB), ocean-island tholeiites (OIT), and tholeiites and calc-alkali basalts from subduction environments. The comparison reveals the LTCFBs are geochemically distinct. The differences are reflected in relative enrichments or depletions of the more incompatible elements (Rb-Ce) to less incompatible elements (Ce-Y), i.e. the overall slope of the spidergrams, and in anomalous enrichments or depletions of one or more of the elements Th, K, Nb, Sr, Ti, Hf, and Zr. The distinctive geochemical character of the Lesotho LTCFBs is interpreted in terms of a lithospheric mantle source for the basalts. This is supported by isotopic data. There are no major geochemical differences between Lesotho CFBs and basalts of the rift-related Etendeka and Lebombo suites, although the latter are somewhat enriched in Rb, Ba and K. However, unlike the Lesotho basalts, the Lebombo and Etendeka basalts are associated with voluminous silicic volcanics or intrusive centres and late-stage dolerites having MORB/OIT (i.e. asthenospheric) geochemical characteristics. The flood basalt/silicic magmatism/late-stage dyke swarm association is characteristic of several rift or thinned lithosphere environments (e.g., Ethiopia, Skye, eastern Greenland) but in many of these the flood basalts have ocean-island basalt (OIT) geochemical characteristics. The Lesotho-type CFB geochemistry is exhibited by the Grande Ronde Basalt of the Columbia River Group (a possible subduction-related flood basalt province) and the basic rocks associated with Mesozoic rifting in the North and South Atlantic. Basalt geochemistry alone is unhelpful in determining the tectonic setting of CFBs although the rift-related environments may be identified by the petrology and geochemistry of the whole igneous suite. A two-source model is proposed for the mantle-derived basic rocks in rift-related CFB provinces. Early enriched basalts are derived from the lithosphere and, following pronounced lithospheric attenuation or rifting, later MORB-like melts are emplaced from the rising asthenosphere. The presence of both Lesotho- and OIT-type geochemical patterns in rift-related CFBs suggests that the lithosphere exhibits different styles of enrichment.  相似文献   

15.
Petrographic and geochemical data are given for some basaltic rocks from the Koynaghat, Ambaghat and Panvel sections of the western Deccan volcanic province. This study confirms geochemical features established earlier for the Deccan basalts but brings out minor additional characters. Mineralogical and major-element compositions of the basaltic flows from the Koyna and Panvel sections indicate tholeiitic affinity; the Ambaghat flows exhibit a slight affinity towards alkali basalt. Rare earth element (REE) distribution patterns and trace-element abundances suggest minor fractionation of olivine and plagioclase during the evolution of the flows. The general similarity of chemical and mineralogical features over a wide area and the lack of conspicuous inter-element relationships suggest that the flows reflect the combined effects of partial melting, minor mineral fractionation and selective crustal contamination.  相似文献   

16.
The numerous Miocene-Recent alkaline volcanic outcrops in the Antarctic Peninsula form a substantial volcanic province, the least well-known part of a major belt of alkaline volcanism that extends between South America and New Zealand. The outcrops consists mainly of aa and pahoehoe lavas and hyaloclastites which locally contain accidental nodules of spinel lherzolite and other mantle-derived lithologies. The province is predominantly basaltic with two major differentiation lineages: (1) a sodic series of olivine and alkali basalt, hawaiite, mugearite, trachy-phonolite and trachyte; and (2) a relatively potassic, highly undersaturated series of basanite, tephrite and phono-tephrite. All the lavas show varying effects of fractionation by crystallization of olivine and clinopyroxene, joined by plagioclase in the hawaiites to trachytes. Fractional crystallization can probably explain most of the chemical variation observed within each outcrop, but variable partial melting is necessary to account for the differences in incompatible element enrichment between the two series, and between the individual outcrops. The degree of partial melting may not have exceeded 3%, as is the case for many other alkaline magmas.The volcanism is an intraplate phenomenon but there is no correlation in timing between the cessation of subduction and the inception of alkaline volcanism. The activity cannot be related to the passage of the coupled Pacific-Antarctic plate over a stationary mantle hot-spot. Although the precise causal relationship with tectonic setting is unknown, regional extension was a prerequisite for giving the magmas rapid access to the surface.  相似文献   

17.
Jeju Island, the largest Quaternary volcanic island in Korea, has formed mostly since the early Pleistocene, but its latest chronology of volcanism and sedimentation is still poorly constrained. Here we report optically stimulated luminescence (OSL) ages for two hydromagmatic volcanoes on the southwestern coast of Jeju Island, i.e., the Songaksan and Suwolbong tuff rings. The basaltic tuffs of these volcanoes contain abundant quartz sands from underlying marine sedimentary sequences. Two samples collected from the middle part of the Songaksan Tuff yielded highly reproducible quartz single-aliquot regenerative-dose (SAR) OSL ages of 7.0±0.3 ka, providing the first direct age estimate of Holocene volcanism in Jeju Island. The quartz OSL age estimate of 5.1±0.3 ka for the younger reworked basaltic tuff (the Hamori Formation) is comparable with previous radiocarbon and U-series disequilibrium dating of fossil mollusk shells. Two samples from the Suwolbong Tuff show quartz OSL age estimates of 18.3±0.7 and 18.6±0.9 ka, which are identical within error ranges and younger than the quartz OSL age estimate of 23.2±1.0 ka for the underlying Gosan Formation. This study confirms that volcanism and attendant sedimentation were active in Jeju Island until very recently.  相似文献   

18.
The Palaeogene Faroe Islands Basalt Group (FIBG) comprises three eruptive sequences or formations, all emplaced into a subaerial environment during the development of the extensive continental flood basalt province that stretches from East Greenland through the Faroe Islands and into the Faroe-Shetland Basin. The Beinisvørð Formation, having a tabular-classic facies architecture, is composed of a sequence of simple flows each comprising a single sheet lobe. The Beinisvørð Formation is overlain by the distinctly contrasting Malinstindur Formation that has a compound-braided facies architecture. The Enni Formation occurs at the top of the sequence and consists of a mixture of simple and compound flows with tabular-classic and compound-braided facies architectures, respectively. Surface and internal characteristics of the sheet lobes of the Beinisvørð and Enni formations indicate emplacement through inflation, which is more obvious for the tube-fed compound flows of the Malinstindur and Enni formations. The difference between the simple and compound flow sequences of the FIBG is, most likely, linked to the manner in which the lava was supplied during the eruption and the eruptive style of the volcanic system. The sheet lobes were erupted over laterally extensive areas from fissure systems which had a continuous supply of lava, which contrasts with the tube-fed compound flows which were erupted in a gradual, piecemeal manner from point-sourced, low shield volcanoes with limited areal extents.  相似文献   

19.
Forty new K-Ar and 40Ar/39Ar isotopic ages from the northern Main Ethiopian Rift (MER)–southern Afar transition zone provide insights into the volcano-tectonic evolution of this portion of the East African Rift system. The earliest evidence of volcanic activity in this region is manifest as 24–23 Ma pre-rift flood basalts. Transition zone flood basalt activity renewed at approximately 10 Ma, and preceded the initiation of modern rift margin development. Bimodal basalt–rhyolite volcanism in the southern Afar rift floor began at approximately 7 Ma and continued into Recent times. In contrast, post-subsidence volcanic activity in the northern MER is dominated by Mio-Pliocene silicic products from centers now covered by Quaternary volcanic and sedimentary lithologies. Unlike other parts of the MER, Mio-Pliocene silicic volcanism in the MER–Afar transition zone is closely associated with fissural basaltic products. The presence of Pliocene age ignimbrites on the plateaus bounding the northern MER, whose sources are found in the present rift, indicates that subsidence of this region was gradual, and that it attained its present physiography with steep escarpments only in the Plio-Pleistocene. Large 7–5 Ma silicic centers along the southern Afar and northeastern MER margins apparently formed along an E–W-oriented regional structural feature parallel to the already established southern escarpment of the Afar. The Addis Ababa rift embayment and the growth of 4.5–3 Ma silicic centers in the Addis Ababa area are attributed to the formation of a major cross-rift structure and its intersection with the same regional E–W structural trend. This study illustrates the episodic nature of rift development and volcanic activity in the MER–Afar transition zone, and the link between this activity and regional structural and tectonic features.  相似文献   

20.
The Santa Rosa–Calico volcanic field (SC) of northern Nevada is a complex, multi-vent mid-Miocene eruptive complex that formed in response to regional lithospheric extension and flood basalt volcanism. Santa Rosa–Calico volcanism initiated at ∼16.7 Ma, concurrent with regional Steens–Columbia River flood basalt activity and is characterized by a complete compositional spectrum of basalt through high-silica rhyolite. To better understand the relationships between upwelling mafic magmatism, coeval extension, and magmatic system development on the Oregon Plateau we have conducted the first comprehensive study of Santa Rosa–Calico silicic volcanism. Detailed stratigraphic-based field sampling and mapping illustrate that silicic activity in this volcanic field was primarily focused along its eastern and western margins. At least five texturally distinct silicic units are found in the western Santa Rosa–Calico volcanic field, including abundant lava flows, near vent deposits, and shallow intrusive bodies. Similar physical features are found in the eastern portion of the volcanic field where four physically distinct units are present. The western and eastern Santa Rosa–Calico units are characterized by abundant macro- and microscopic disequilibrium textures, reflecting a complex petrogenetic history. Additionally, unlike other mid-Miocene Oregon Plateau volcanic fields (e.g. McDermitt), the Santa Rosa–Calico volcanic field is characterized by a paucity of caldera-forming volcanism. Only the Cold Springs tuff, which crops out across the central portion of the volcanic field, was caldera-derived. Major and trace element geochemical variations are present within and between eastern and western Santa Rosa–Calico silicic units and these chemical differences, coupled with the observed disequilibrium textures, illustrate the action of open-system petrogenetic processes and melt derivation from heterogeneous source materials. The processes and styles of Santa Rosa–Calico silicic magmatism are linked to three primary factors, local focusing of and thermal and material contributions from the regional flood basalt event, lithospheric extension within the northern portion of the Northern Nevada rift, and interaction of mid-Miocene silicic magmas with pre-Santa Rosa–Calico lithosphere. Similar processes and styles of mid-Miocene silicic volcanism likely occurred across the Oregon Plateau in regions characterized by both focused lithospheric extension and localized mafic magmatism. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This paper constitutes part of a special issue dedicated to Bill Bonnichsen on the petrogenesis and volcanology of anorogenic rhyolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号