首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Building seismic vulnerability assessment plays an important role in formulating pre-disaster mitigation strategies for developing countries. The occurrence of high-resolution satellite sensors has greatly motivated it by providing a promising approach to obtain building information. However, this also brings a big challenge to the accurate building extraction and its coherent integration with the assessment model. The main objective of this paper is to investigate how to extract building attributes from high-resolution remote sensing imagery using the object-based image analysis (OBIA) method, so as to accurately and conveniently assess building seismic vulnerability by the combination of in situ field data. A general framework for the assessment of building seismic vulnerability is presented, including (1) the extraction of building information using OBIA, (2) building height estimation, and (3) the support vector machine (SVM)-based building seismic vulnerability assessment. Particularly, an integrated solution is proposed that merges the strengths of multiple spatial contextual relationships and some typical image object measures, under the unified framework to improve building information extraction at different scale levels as well as for different interest objects. With the aid of 35 building samples from two powerful earthquakes in China, the cloud-free WorldView-2 images and some building structure parameters from field survey were used to quantity the grades of building seismic vulnerability in Wuhan Optics Valley, China. The results show that all 48 buildings among the study area have been well detected with an overall accuracy of 80.67 % and the mean error of heights estimated from building shadow is less than 2 m. This indicates that the integrated analysis strategy based on OBIA is suitable for extracting the building information from high-resolution remote sensing imagery. Additionally, the assessment results using SVM show that the building seismic vulnerability is statistically significantly related to structure types and building heights. Both the proposed OBIA method and its integration strategy with SVM are easily implemented and provide readily interpretable assessment results for building seismic vulnerability. This reveals that the proposed method has a great potential to assist urban planners for making local disaster mitigation planning through the prioritization of intervention measures, such as the reinforcement of walls and the dismantlement of endangered houses.  相似文献   

2.
More than ever before, the last decade revealed the immense vulnerability of the world??s cities to natural hazards. Neither the tsunami in the Indian Ocean in 2004, the hurricane Katrina in 2005, the cyclone Nargis in 2008 nor the earthquakes in Sichuan in 2008 or in Haiti 2010 found the people, the city administrations or the national or international organizations well prepared in the advent of anticipated but to a large extent disregarded natural disasters. It is evident that the lack of tailor-made disaster management plans and standard operational procedures are often the crucial point in proper risk reduction approaches. This study presents an approach to transfer knowledge of an extensive multidisciplinary scientific study on risk identification into recommendations for risk reduction strategies. The study has been conducted by means of a combination of experts from different scientific communities coming from civil and coastal engineering, remote sensing, social sciences, evacuation modelling and capacity development. The paper presents the results of this research approach and interweaves key findings with recent experiences from an eyewitness on a previous hazard event. Thus, necessary tsunami hazard and vulnerability information as well as valuable insights into preparedness activities have been derived for initiating updated infrastructural designs and practical recommendations for emergency management as well as strategic spatial planning activities at the local scale. The approach was applied in the context of tsunami early warning and evacuation planning in the coastal city of Padang, Western Sumatra, Republic of Indonesia.  相似文献   

3.
Nagapattinam, in the east coast of India, was severely affected during the deadliest Indian Ocean tsunami of December 26, 2004. The tsunami caused heavy damage to life and property, and the death toll was about 3,378 in Nagapattinam taluk. Certain villages along the coast witnessed large inundation while adjacent villages were protected from the fury of the tsunami waves. This study was carried out to examine the underlying causes for the vulnerability along Nagapattinam coast with the help of field observations, remote sensing, and geographical information system as tools. Coastal areas with high sand dunes have been protected from tsunami, and areas adjacent to backwaters were inundated. Realtime Kinematic Global Positioning System and high-resolution satellite data were used to map the topographic information and maximum extent of inundation. Thematic maps on land use, land cover, and coastal geomorphology were generated using remote sensing and field data. Using field data as the primary source of information, tsunami hazard maps have been generated for Nagapattinam.  相似文献   

4.
High-resolution space-borne remote sensing data are investigated for their potential to extract relevant parameters for a vulnerability analysis of buildings in European countries. For an evaluation of large earthquake scenarios, the number of parameters in models for vulnerability is reduced to a minimum of relevant information such as the type of building (age, material, number of storeys) and the geological and spatial context. Building-related parameters can be derived from remote sensing data either directly (e.g. height) or indirectly based on the recognition of the urban structure type in which the buildings are located. With the potential of a fully- or semi-automatic inventory of the buildings and their parameters, high-resolution satellite data and techniques for their processing are a useful supporting tool for the assessment of vulnerability.  相似文献   

5.
ABSTRACT

The concept of seismic vulnerability is a yard-stick of damage estimation from a probable earthquake considering physical cum social dimension and enables a basis for decision-makers to develop preparedness and mitigation strategies. We aim at vulnerability assessment of the typical urban system of capital city Shillong situated on hilly terrain. High-resolution satellite imagery of Shillong facilitates analysis of building footprints, communication network, and open ground. Different building typologies are identified taking into account the building’s structural configuration assessed through a rapid visual survey of more than 15% of total residential households. Slope map demarcates the landslide-prone area through discrete elevation modelling. A methodology incorporating several parameters e.g. building typology, slope angle, shear wave velocity characteristics, geomorphology, and the number of occupants in correlation with a physical measurement of vulnerability is presented and is applied to estimate the dimension of vulnerability. Additionally, MASW survey indicates lithology up to 30?m deep along with the existence of stiff soil and rocks at different depths whereas resonant frequency is identified to be in the range of 6–8?Hz through H/V ratio. Integrating all, it is observed that more than 60% of Shillong city falls under moderate to higher vulnerability and the rest is less vulnerable.  相似文献   

6.
7.
Earthquakes and tsunamis along Morocco’s coasts have been reported since historical times. The threat posed by tsunamis must be included in coastal risk studies. This study focuses on the tsunami impact and vulnerability assessment of the Casablanca harbour and surrounding area using a combination of tsunami inundation numerical modelling, field survey data and geographic information system. The tsunami scenario used here is compatible with the 1755 Lisbon event that we considered to be the worst case tsunami scenario. Hydrodynamic modelling was performed with an adapted version of the Cornell Multigrid Coupled Tsunami Model from Cornell University. The simulation covers the eastern domain of the Azores-Gibraltar fracture zone corresponding to the largest tsunamigenic area in the North Atlantic. The proposed vulnerability model attempts to provide an insight into the tsunami vulnerability of building stock. Results in the form of a vulnerability map will be useful for decision makers and local authorities in preventing the community resiliency for tsunami hazards.  相似文献   

8.
9.
The Cascadia margin is capable of generating large magnitude seismic-tsunami. We use a 1:500 year tsunami hazard flood layer produced during a probabilistic tsunami hazard assessment as the input to a pilot study of the vulnerability of residential and commercial buildings in Seaside, OR, USA. We map building exposure, apply the Papathoma Tsunami Vulnerability Assessment Model to calculate building vulnerability and estimate probable maximum loss (PML) associated with a 1:500 year tsunami flood. Almost US$0.5 billion worth of buildings would be inundated, 95% of single story residential and 23% of commercial buildings would be destroyed with PML’s exceeding US$0.5 billion worth of buildings would be inundated, 95% of single story residential and 23% of commercial buildings would be destroyed with PML’s exceeding US116 million. These figures only represent a tiny fraction of the total values of exposed assets and loss that would be associated with a Cascadia tsunami impacting the NW Pacific coast. Not withstanding the various issues associated with our approach, this study represents the first time that PML’s have ever been calculated for a Cascadia type tsunami, and these results have serious implications for tsunami disaster risk management in the region. This method has the potential to be rolled out across the United States and elsewhere for estimating building vulnerability and loss to tsunami.  相似文献   

10.
Proceeding from gaining a knowledge of the structural settings in this area, the authors applied remotesensing techniques and selected multi-temporal image processing to extract information of buried structures inthe Beijing plain area. Good results have been achieved. Through an integrated analysis of remote-sensing, geo-logical, seismic and aeromagnetic data, it is pointed out that there exist two sets of buried fractures of differingtrends and orders-the northeast set and the northwest set. forming a rhombic framework in the images. Thetwo sets of fractures have still been active since the Quaternary. which is of practical signifcance for geologicalstudy, earthquake prevention and planning of urban construction in the area. The results demonstrate that theselection of multi-temporal processing of remote sensing images and the integrated analytic method are impor-tant in the study of buried structures.  相似文献   

11.

Assessment of seismic vulnerability of urban areas provides fundamental information for activities of planning and management of emergencies. The main difficulty encountered when extending vulnerability evaluations to urban contexts is the definition of a framework of assessment appropriate for the specific characteristics of the site and providing reliable results with a reasonable duration of surveys and post-processing of data. The paper proposes a new procedure merging different typologies of information recognized on the territories investigated and for this reason called “hybrid.” Knowledge of historical events influencing urban evolution and analysis of recurrent building technologies are used to evaluate the vulnerability indexes of buildings and building stocks. On the other hand, a vulnerability model is calibrated by means of experimental and numerical investigations on prototype buildings representative of the most recurrent typologies. In the final framework, the vulnerability index, calculated through simplified assessment forms, is linked to the seismic intensity expressed by the peak ground acceleration and associated with an index of damage expressing the economical loss. The procedure has been tested on the urban center of Lampedusa island (Italy) providing as the output vulnerability index maps, vulnerability curves, critical PGA maps, and estimation of the economical damage associated with different earthquake scenarios. The application of the procedure can be suitably repeated for medium-to-small urban areas, typically recurring in the Mediterranean by carrying out each time a recalibration of the vulnerability model.

  相似文献   

12.
The east coast of Rio de Janeiro State, Brazil, shows a worrying overlap between areas with intrinsic groundwater vulnerability and the most significant urban expansion zones. It experienced a rapid population growth in recent years, mainly due to the tourism industry, resulting in a significant pressure on drinking groundwater resources. In this regard, development and use of techniques to control and protect areas susceptible to contamination is crucial. The elaboration of aquifer vulnerability maps is thus extremely helpful to support water resources management. The aim of the work is to present the methodological approach in the use of Geoprocessing techniques to obtain a suitable groundwater vulnerability model in Rio de Janeiro east coast. Considering the existing problems and the current land use and characteristics of the study region, it is clear that the most vulnerable areas (that is, “extreme” and “very high” vulnerability areas), coincide with the most significant zones of urban occupation, corresponding to 11% of the total study area, demanding adoption of urgent measures in the near future. Geoprocessing tools and remote sensing for characterization of Rio de Janeiro’s east coast aquifer vulnerability gave good results, representing a satisfactory method for management actions at low cost.  相似文献   

13.
Within the framework of recent research projects, basic tools for GIS-based seismic risk assessment technologies were developed and applied to the building stock and regional particularities of German earthquake regions. Two study areas are investigated, being comparable by the level of seismic hazard and the hazard-consistent scenario events (related to mean return periods of 475, 2475 and 10000 years). Significant differences exist with respect to the number of inhabitants, the grade and extent of urbanisation, the quality and quantity of building inventory: the case study of Schmölln in Eastern Thuringia seems to be representative for the majority of smaller towns in Germany, the case study of Cologne (Köln) stands for larger cities. Due to the similarities of hazard and scenario intensities, the considerable differences do not only require proper decisions concerning the appropriate methods and acceptable efforts, they enable conclusions about future research strategies and needs for disaster reduction management. Not least important, results can sharpen the focus of public interest. Seismic risk maps are prepared for different scenario intensities recognising the scatter and uncertainties of site-dependent ground motion and also of the applied vulnerability functions. The paper illustrates the impact of model assumptions and the step-wise refinements of input variables like site conditions, building stock or vulnerability functions on the distribution of expected building damage within the study areas. Furthermore, and in contrast to common research strategies, results support the conclusion that in the case of stronger earthquakes the damage will be of higher concentration within smaller cities like Schmölln due to the site-amplification potential and/or the increased vulnerability of the building stock. The extent of damage will be pronounced by the large number of masonry buildings for which lower vulnerability classes have to be assigned. Due to the effect of deep sedimentary layers and the composition of building types, the urban centre of Cologne will be less affected by an earthquake of comparable intensity.  相似文献   

14.
Assessment of seismic vulnerability of urban areas provides fundamental information for activities of planning and management of emergencies. The main difficulty encountered when extending vulnerability evaluations to urban contexts is the definition of a framework of assessment appropriate for the specific characteristics of the site and providing reliable results with a reasonable duration of surveys and post-processing of data. The paper proposes a new procedure merging different typologies of information recognized on the territories investigated and for this reason called “hybrid.” Knowledge of historical events influencing urban evolution and analysis of recurrent building technologies are used to evaluate the vulnerability indexes of buildings and building stocks. On the other hand, a vulnerability model is calibrated by means of experimental and numerical investigations on prototype buildings representative of the most recurrent typologies. In the final framework, the vulnerability index, calculated through simplified assessment forms, is linked to the seismic intensity expressed by the peak ground acceleration and associated with an index of damage expressing the economical loss. The procedure has been tested on the urban center of Lampedusa island (Italy) providing as the output vulnerability index maps, vulnerability curves, critical PGA maps, and estimation of the economical damage associated with different earthquake scenarios. The application of the procedure can be suitably repeated for medium-to-small urban areas, typically recurring in the Mediterranean by carrying out each time a recalibration of the vulnerability model.  相似文献   

15.
The 2004 tsunami that struck the Sumatra coast gave a warning sign to Malaysia that it is no longer regarded as safe from a future tsunami attack. Since the event, the Malaysian Government has formulated its plan of action by developing an integrated tsunami vulnerability assessment technique to determine the vulnerability levels of each sector along the 520-km-long coastline of the north-west coast of Peninsular Malaysia. The scope of assessment is focused on the vulnerability of the physical characteristics of the coastal area, and the vulnerability of the built environment in the area that includes building structures and infrastructures. The assessment was conducted in three distinct stages which stretched across from a macro-scale assessment to several local-scale and finally a micro-scale assessment. On a macro-scale assessment, Tsunami Impact Classification Maps were constructed based on the results of the tsunami propagation modelling of the various tsunami source scenarios. At this stage, highly impacted areas were selected for an assessment of the local hazards in the form of local flood maps based on the inundation modelling output. Tsunami heights and flood depths obtained from these maps were then used to produce the Tsunami Physical Vulnerability Index (PVI) maps. These maps recognize sectors within the selected areas that are highly vulnerable to a maximum tsunami run-up and flood event. The final stage is the development of the Structural Vulnerability Index (SVI) maps, which may qualitatively and quantitatively capture the physical and economic resources that are in the tsunami inundation zone during the worst-case scenario event. The results of the assessment in the form of GIS-based Tsunami-prone Vulnerability Index (PVI and SVI) maps are able to differentiate between the various levels of vulnerability, based on the tsunami height and inundation, the various levels of impact severity towards existing building structures, property and land use, and also indicate the resources and human settlements within the study area. Most importantly, the maps could help planners to establish a zoning scheme for potential coastline development based on its sensitivity to tsunami. As a result, some recommendations on evacuation routes and tsunami shelters in the potentially affected areas were also proposed to the Government as a tool for relief agencies to plan for safe evacuation.  相似文献   

16.
The study area is 56-km coastal zone of Chennai district of the Tamil Nadu state, southeast coast of India. The coastline, which includes tourist resorts, ports, hotels, fishing villages, and towns, has experienced threats from many disasters such as storms, cyclones, floods, tsunami, and erosion. This was one of the worst affected area during 2004 Indian Ocean tsunami and during 2008 Nisha cyclone. The present study aims to develop a Coastal Vulnerability Index for the Chennai coast using eight relative risk variables to know the high and low vulnerable areas, areas of inundation due to future SLR, and land loss due to coastal erosion. Both conventional and remotely sensed data were used and analyzed with the aid of the remote sensing and geographic information system tools. Zones of vulnerability to coastal natural hazards of different magnitude (high, medium, and low) are identified and shown on a map. Coastal regional elevation, near-shore bathymetry, and socio-economic conditions have been considered as additional important variables. This study revealed that 11.01?km of the coastline has low vulnerability, 16.66?km has medium vulnerability, and 27.79?km is highly vulnerable in the study area, showing the majority of coastline is prone to erosion. The map prepared for the Chennai coast can be used by the state and district administration involved in the disaster mitigation and management plan and also as a tool in planning a new facility and for insurance purpose.  相似文献   

17.
Estimation of seismic losses is a fundamental step in risk mitigation in urban regions. Structural damage patterns depend on the regional seismic properties and the local building vulnerability. In this study, a framework for seismic damage estimation is proposed where the local building fragilities are modeled based on a set of simulated ground motions in the region of interest. For this purpose, first, ground motion records are simulated for a set of scenario events using stochastic finite-fault methodology. Then, existing building stock is classified into specific building types represented with equivalent single-degree-of-freedom models. The response statistics of these models are evaluated through nonlinear time history analysis with the simulated ground motions. Fragility curves for the classified structural types are derived and discussed. The study area is Erzincan (Turkey), which is located on a pull-apart basin underlain by soft sediments in the conjunction of three active faults as right-lateral North Anatolian Fault, left-lateral North East Anatolian Fault, and left-lateral Ovacik Fault. Erzincan city center experienced devastating earthquakes in the past including the December 27, 1939 (Ms = 8.0) and the March 13, 1992 (Mw?=?6.6) events. The application of the proposed method is performed to estimate the spatial distribution of the damage after the 1992 event. The estimated results are compared against the corresponding observed damage levels yielding a reasonable match in between. After the validation exercise, a potential scenario event of Mw?=?7.0 is simulated in the study region. The corresponding damage distribution indicates a significant risk within the urban area.  相似文献   

18.
The 2004 tsunami devastated large areas in the southern part of Thailand. This paper takes a particular look at the circumstances of vulnerability and the process of recovery in the area of Khao Lak and its surrounding villages, which constitute a booming tourist hotspot at the centre of a region that is still dominated by agriculture. A quantitative vulnerability model was developed, integrating a quantitative household survey and remote sensing data. This model describes and specifies the circumstances of vulnerability and the factors leading to a recovery of the area. Indirect effects on the livelihood of households in particular, such as the disruption of infrastructure or the loss of income, show a negative effect on the recovery time. External help received by the households even shows an extending influence on the duration of their recovery period.  相似文献   

19.
Algeria is a country with a high seismic activity. During the last decade, many destructive earthquakes occurred, particularly in the northern part, causing enormous losses in human lives, buildings, and equipments. In order to reduce this risk in the capital and avoid serious damages to the strategic existing buildings, the government decided to invest in seismic upgrade, strengthening, and retrofitting of these buildings. To do so, seismic vulnerability study of this category of buildings has been considered. Structural analysis is performed based on a site investigation (inspection of the building, collecting data, materials characteristics, general conditions of the building, etc.) and existing drawings (architectural plans, structural design, etc.). The aim of these seismic vulnerability studies is to develop guidelines and a methodology for rehabilitation of existing buildings. This paper presents the methodology followed in our study and summarizes the vulnerability assessment and strengthening of one of the strategic buildings according to the new Algerian Seismic Design Code RPA 99/version 2003. As a direct application of this methodology, both static equivalent method and nonlinear dynamic analysis are performed and presented in this paper.  相似文献   

20.
Mountain hazards: reducing vulnerability by adapted building design   总被引:4,自引:0,他引:4  
Despite the long tradition of technical mitigation on a catchment scale in European mountain regions, losses due to mountain hazards are still considerably high in number and monetary loss. Therefore, the concept of technical mitigation had been supplemented by land-use planning and, more recently, local structural protection. Local structural protection includes measures directly implemented at or adjacent to endangered objects, and has proven to be particularly cost-effective with respect to integral risk management strategies. However, the effect of local structural protection in reducing the vulnerability of elements at risk, and the associated consequences with respect to a reduction of structural vulnerability have not been quantified so far. Moreover, there is a particular gap in quantifying the expenditures necessary for local structural protection measures. Therefore, a prototype of residential building adapted to mountain hazards is presented in this study. This prototype is equipped with various constructional elements to resist the incurring impact forces, i.e., of fluvial sediment transport and of snow avalanches. According to possible design loads emerging from these hazard processes, the constructive design necessary is presented, and the amount of additional costs required for such an adaptation is presented. By comparing these costs with quantitative loss data it is shown that adapted building design is particularly effective to reduce the consequences of low-magnitude, high-frequency events in mountain regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号