首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper discusses the tungsten geochemistry in coal, based on the behavior of this element in 14 Bulgarian deposits. The W contents range from 0.5–4335 ppm in the ash and from 0.01–784 ppm in the coals. In four of the deposits the tungsten content proved to be 16 to 100 times higher than the Clarke value for sedimentary rocks. No correlation has been found between the W concentration and either the age of the coal-bearing strata or the coal rank. The deposits were divided in three groups on the basis of the relationship between tungsten and ash content. The role of sorption ash and terrigenous ash in tungsten binding was evaluated for each group. The correlation between tungsten and organic matter is demonstrated by the increased contents of tungsten in the ash of the low-ash coals, its concentration in the lighter coal fractions, its extraction from the coals by HF and NaOH only, and by model experiments. Sorption ash concentrates tungsten; terrigenous ash is a carrier of tungsten.Of the petrographic constituents of coal, vitrain was found to concentrate the largest amounts of tungsten.In two of the deposits richest in tungsten, there is a very distinct zonality in its vertical distribution — tungsten concentration decreases from the bottom to the top of the coal bed. This zonality might be explained by the diffusion (syngenetic or diagenetic with respect to the coal-forming process) through the coal bed of aqueous solutions enriched in tungsten.The wide range of variation of the tungsten concentrations, the considerable differences in the mean contents and the dispersions between the individual deposits show that tungsten is very sensitive to the differences of the source area.Coal deposits enriched in tungsten may be expected in the following favourable environments: (1) in areas with nitrogen-bearing thermal waters containing increased amounts of tungsten; (2) source areas with tungsten mineralizations; and (3) country rocks consisting of acid granitoids whose Clarke values of tungsten are the highest as compared to the other types of rocks.  相似文献   

2.
One hundred twenty-two samples of Jurassic and Paleogene brown coals and 1254 peat samples from the south-eastern region of the Western-Siberian platform were analyzed for gold by the neutron-activation method. Mean content of Au in Jurassic coals is 30 ± 8 ppb, in Paleogene coals is 10.6 ± 4.8 ppb, and in peat is 6 ± 1.4 ppb. Concentrations of gold as high as 4.4 ppm were found in coal ash and 0.48 ppm in the peat ash. Coal beds with anomalous gold contents were found at Western-Siberian platform for the first time.Negative correlation between gold and ash yield in coals and peat and highest gold concentrations were found in low-ash and ultra-low-ash coals and peat. Primarily this is due to gold's association with organic matter.For the investigation of mode of occurrence of Au in peat the bitumen, water-soluble and high-hydrolyzed substances, humic acids, cellulose and lignin were extracted from it. It was determined that in peat about 95% of gold is combined with organic matter. Forty to sixty percent of Au is contained in humic acids and the same content is in lignin. Bitumens, water-soluble and high-hydrolyzed substances contain no more than 1% of general gold quantity in peat.The conditions of accumulation of high gold concentrations were considered. The authors suggest that Au accumulation in peat and brown coals and the connection between anomalous gold concentrations and organic matter in low-ash coals and peat can explain a biogenic–sorption mechanism of Au accumulation. The sources of formation of Au high concentration were various Au–Sb, Au–Ag Au–As–Sb deposits that are abundant in the Southern and South-Eastern peripheries of the coal basin.  相似文献   

3.
The review presented covers: (a) historical introduction; (b) some analytical comments; (c) some peculiarities of the As geochemistry in environment; (d) an estimation of coal Clarke value of As; (e) some coals enriched in As; (f) mode of As occurrence in coal; (g) factors influencing the As distribution in coal matter and coal bed; (h) genetic topics; (i) some topics related to environmental impact of As by the coal combustion.The World average As content in coals (coal Clarke of As) for the bituminous coals and lignites are, respectively, 9.0±0.8 and 7.4±1.4 ppm. On an ash basis, these contents are higher: 50±5 and 49±8 ppm, respectively. Therefore, As is a very coalphile element: it has strong affinity to coal matter — organic and (or) inorganic but obligatory authigenic. The coalphile affinity of As is like that for Ge or S.There is strong regional variability of As distribution due to geologic variability of the individual coal basins. For example, bituminous coals in Eastern Germany, Czech Republic and SE China are enriched in As, whereas the coals in South Africa or Australia are very depleted compared to coal Clarke of As. In general, some relationship exists between As content and its mode of occurrence in coals. Typically, at high As content, sulphide sites dominate (pyrite and other more rare sulphides), whereas at low As content, Asorg dominates, both being authigenic. A contribution of the terrigenic As (in silicates) is usually minor and of the biogenic Asbio (derived from coal-forming plants) is poorly known.Both organic and inorganic As can exist not only as chemically bound form but also in the sorbed (acid leacheable) arsenate form. With increasing coal rank, sorbed exchangeable arsenate content decreases, with a minimum in the coking coals (German data: the Ruhr coals).Relations of As content in coal to ash yield (or its partitioning in sink–float fractions) and to coal petrographic composition are usually complicated. In most cases, these relations are controlled by main site (form) of As — Aspyr or Asorg. If Aspyr dominates, an As accumulation in heavy fractions (or in high-ash coals) is observed, and if Asorg dominates, it is enriched in medium-density fractions (or low- and medium-ash coals). Arsenic is in part accumulated in the inertinite vs. vitrinite (Asorg ?).There are four genetic types of As accumulation on coal: two epigenetic and two syngenetic: (1) Chinese type—hydrothermal As enrichment, sometimes similar to known Carlin type of As-bearing telethermal gold deposits; (2) Dakota type—hypergene enrichment from ground waters draining As-bearing tufa host rocks; (3) Bulgarian type—As enrichment resulting from As-bearing waters entered coal-forming peat bogs from sulphide deposit aureoles; (4) Turkish type—volcanic input of As in coal-forming peat bog as exhalations, brines and volcanic ash.During coal combustion at power plants, most of the initial As in coal volatilizes into the gaseous phase. At the widely used combustion of pulverized coal, most of Asorg, Aspyr and “shielded” As-bearing micromineral phases escape into gaseous and particulate phase and only minor part of Asclay remains in bottom ash. The dominant fraction of escaping As is in fly ash. Because 97–99% of the fly ash is collected by electrostatic precipitators, the atmospheric emission of As (solid phase and gaseous) is usually assumed as rather minor (10–30% from initial As in coal). However, fly ash disposal creates some difficult environmental problems because it is potentially toxic in natural waters and soils. The As leaching rate from ash disposal is greatly controlled by the ash chemistry. In natural environment, As can be readily leached from acid (SiO2-rich) bituminous coal ashes but can be very difficult from alkali (CaO-rich) lignite ashes.If the Aspyr form dominates, conventional coal cleaning may be an efficient tool for the removing As from coal. However, organic-bound or micromineral arsenic (“shielded” grains of As-bearing sulphides) are not removed by this procedure.Some considerations show that “toxicity threshold” of As content in coal (permissible concentration for industrial utility) may be in the range 100–300 ppm As. However, for different coals (with different proportions of As-forms), and for different combustion procedures, this “threshold” varies.  相似文献   

4.
《Organic Geochemistry》1987,11(2):83-89
Rare earth element and yttrium abundances in vitrain, xylain, liptain, fusain and whole coal samples from Bulgarian coal deposits have been studied. Vitrain, xylain, and liptain are depleted, while fusain is enriched in REE and Y as compared to the whole coal samples from which they were selected. Chondrite-normalized patterns show relative enrichment of light (LREE) against heavy (HREE) rare earth elements, negative Eu anomaly, and positive Lu anomaly. The shale-normalized patterns of the lithotypes reveal an increase from LREE to HREE, while those of the whole coal samples and mineral interlayers are less fractionated. The petrographic composition of the coals is of secondary importance for the concentration of the REE and Y. The main factors are the source area and the input of dissolved REE and Y into the coal depositional sites.  相似文献   

5.
The effect of petrographic composition on the methane sorption capacity has been determined for a suite of coals and organic-rich shales. Subbituminous and bituminous coals were separated into bright and dull lithotypes by hand-picking. The methane sorption capacities range between 0.5 and 23.9 cm3/g at a pressure of 6 MPa. The low volatile bituminous Canmore coal and the anthracite sample have the highest capacities with the “natural coke” having the lowest. For low-rank coals there is no significant difference between bright and dull samples except for one coal with the dull sample having a greater sorption capacity than its bright equivalent. For higher-rank coals, the bright samples have a greater methane capacity than the dull samples and the difference between sample pairs increases with rank. The boghead coal samples have the highest sorption capacities in the liptinite-rich coals suite and are higher than subbituminous to medium volatile bituminous samples. Pore size distribution indicates that methane is held as solution gas in liptinite-rich coals and by physical sorption in micropores in liptinite-poor coals. These contrasting processes illustrate that liptinite-rich samples need to be independently assessed. The positive relationship between reactive inertinite content and methane sorption capacity occurs within the subbituminous to medium volatile bituminous coals because the reactive inertinite is structurally similar to vitrinite and have a higher microporosity than non-reactive inertinite. Reactivity of inertinite should be assessed in CBM studies of dull coals to provide a better understanding of petrographic composition effects on methane capacity.  相似文献   

6.
Palaeobotanical studies of the brown coal deposits of the Latrobe Valley have contributed significantly towards an understanding of the age of the deposits, existing climatic conditions and detailed depositional environments. This paper re-assesses some past reconstructions for the Early to Mid Miocene coals using recent information on plant distributions and their bioclimatic significance and on a marine incursion model for coal lithotype formation.The brown coal flora is composed overwhelmingly of rainforest taxa that presently cover a range of different environments within the Australasian region. The application of a bioclimatic prediction model to these taxa allows the construction of consistent and quantitative estimates of climates during coal-forming phases. It is considered that rainfall in the area was more than twice the 850 mm received today, with significant seasonal variation. The mean annual temperature estimate of about 19°C, indicating a mesothermal or subtropical environment, is some 2–5C higher than present and higher than previous estimates. It does, however, correspond with sea-surface temperature estimates for the Southern Ocean at this time.The original model of lithotype formation, which suggests that lithotypes conform to a successional sequence from open water in the lightest coloured lithotypes to raised bog in the darkest lithotypes, is considered to be inconsistent with the evidence for lightening upwards sequences within the coals, a central feature of the proposed marine incursion model of coal formation. The two models are reconciled to some degree by a reinterpretation of the palaeobotanical data and by the postulation of climatic rather than autogenic successional control over lithotype formation.  相似文献   

7.
Jurassic coals, coaly shales, shales and claystones from the Eastern Pontides in NE Turkey have been investigated using microscopical, petrophysical and detailed organic geochemical methods in order to determine their catagenetic stage, to reveal the composition of the organic matter and to discuss the depositional environment. The Liassic–Dogger period in the Eastern Pontides was characterised by the presence of a rift system which resulted in rock units of very variable lithology and facies. Coal seams, ranging from a few centimetres to several decimetres and intercalated with shales, claystones and sandstones occur within the basal part (the Aggi Formation) as well as in the uppermost part (the Hamurkesen Formation) of the rift deposits. All coal seams investigated are at a catagenetic maturation stage corresponding to subbituminous B up to low volatile bituminous ranks. They represent a depositional environment of short-lived swamp areas with intense aerobic reworking of the higher plant detritus by heterotrophic bacteria, but with possible anaerobic microenvironments at deeper levels. At least some coal seams were influenced temporarily by marine ingressions. Most samples are impure humic coals with highly variable chemical compositions as indicated by the broad range of their hydrogen contents. This variation in hydrogen content is partly attributed to variable contributions of algal material. On the other side, considering several analytical results, the hydrogen variation is primarily due to bacterial reworking that affected the composition of the organic matter to variable extent and resulted especially in an enrichment of bacterial lipids. Bacterial reworking by an active microbial community within the upper layer of the peat swamp is inferred from elevated concentrations of iso-alkanes even exceeding those of the corresponding n-alkanes in several samples which, to the best of our knowledge, have not been observed with coals before.  相似文献   

8.
The mineral matter in the eight reference North American coal samples of the Argonne Premium Coal series has been investigated on a quantitative basis using X-ray diffraction (XRD) techniques. X-ray diffraction data obtained from electronic low-temperature (oxygen–plasma) ash (LTA) residues, from ashes produced by heating the coals in air at 370°C, and also from the raw coals themselves, were evaluated using an interactive data processing system ( ™) based on Rietveld interpretation methods. The results from the three types of material (LTA, 370°C ash and raw coal) were compared for each sample. This allowed the components present in the raw coals in crystalline form to be recognised separately from mineral artifacts produced, particularly in the low-rank coals, from interaction of organically associated elements (Ca, S, etc.) during the two ashing processes.After the allowance for the production of any artifacts, the quantitative mineral assemblages identified from XRD of the raw coals were found to be consistent, even for coals having a relatively low ash percentage (around 5%), with the results obtained from the respective mineral concentrates prepared by the ashing methods. The effects of heating the coal to 370°C could also be distinguished, relative to the raw coal or the LTA, through changes in components such as pyrite and the clay minerals.Although some areas of uncertainty exist, particularly with magnesium in the low-rank coals, the calculated chemical compositions of the coal ash derived from the mineral mixtures identified for each coal were also found to be consistent with the results of direct chemical analysis of the respective coal ash materials.  相似文献   

9.
Data on Rb and Cs concentrations in typical (in terms of Ge content) and Ge-bearing coals, as well as host sedimentary rocks and underlying granites, are reported. It is shown that all Miocene deposits within ore zone are strongly enriched in these elements relative to Ge-barren areas of the deposit. The relative Cs accumulation is several times higher relative to Rb, because Ge-bearing sediments are characterized by anomalously low Rb/Cs ratio (up to 0.9). The average Cs concentration in coals (30.3 ppm) is more than one order of magnitude higher than the typical content in such rocks, while the maximal contents (57.2 ppm) exceed all known highest Cs contents found in solid fuel. Differences in Rb and Cs accumulation were found in the following sequence: coals (Ad < 50%)–coaly siltsones (50% < Ad < 75%)–coal-free and low-coaly silty sandstones and mudstones (Ad > 75%). The Rb content in this sequence increases, while the Cs content reaches maximum (up to 118.1 ppm) in the coaly siltstones. The anomalous Rb and Cs accumulation in Ge-bearing sediments is related to the circulation of volcanogenic thermal solutions, which are enriched in Ge, Rb, and Cs. It is suggested that Rb is mainly sorbed by clayey particles, whereas Cs is concentrated in the organic matter as well. This work presents the first data on high contents and distribution of Rb and Cs in Ge-bearing coals of the Pavlovka deposit. The data obtained make its possible to consider Rb and Cs as new associated elements of Ge mineralization, although their occurrence mode differs from that of Ge.  相似文献   

10.
Chromium contents obtained from 20 coal and 5 associated rock samples collected from the basal part of the Eocene Chuckanut Formation, in Skagit and Whatcom counties, northwest Washington, range between 30 and 300 ppm (mean 120 ppm whole-coal basis). The lenticular coals, ranging in rank from subbituminous to anthracite, and with an ash content of 12–46%, crop out along the western flank of the Cascade Range. Results of X-ray diffraction analysis of low-temperature ash show that the mineral matter in the coal samples consists predominantly of quartz and clay (kaolinite, illite and chlorite group). However, accessory minerals, isolated from the coal samples and analyzed by X-ray diffraction, scanning electron microscope and optical methods, contain angular fragments and euhedral crystals of the spinel group (chromite, magnetite and trevorite ), kaolinite-serpentine group (antigorite and chrysotile), chlorite group, amphibole group and pyroxene group minerals (augite, diopside and enstatite), all of which are commonly enriched in chromium.Although associated primarily with the inorganic fraction of the coal, concentrations of chromium in the samples show no statistically significant correlation with ash content. Localized concentrations of chromium in the coal are the result of natural contamination from the alteration of detrital chromium-bearing mineral grains introduced into the peat-forming mires from nearby Jurassic ophiolite bodies. The coals formed in the early Eocene, in rapidly subsiding small basins that developed during the uplift and erosion of the pre-Tertiary ophiolite terrain. Scattered bodies of source rock, random distribution of chromium-bearing minerals within the coal and sample heterogeneity account for the variation in Cr contents of the samples.  相似文献   

11.
The content and distribution of In in 168 samples from 7 coal deposits in Bulgaria were studied, using a spectrochemical method with a detection limit of 0.002 ppm. Indium is present in all samples, its content varying from 0.002 to 0.167 ppm in the coal and from 0.005 to 0.57 ppm in the ash. The mean contents for individual deposits do not differ statistically, and for all the deposits the In concentration (ppm) can be expressed generally by the equation In = 0.00068 A (A is the coal ash content in %).Of the petrographic constituents of coal, vitrain, xylene and liptain are enriched in In. In is associated with both the organic and with the inorganic matter of the coal. Inorganic matter and clay minerals in particular, act only as carriers of Indium. In contrast, organic matter concentrates In only to a small degree relative to other trace elements.  相似文献   

12.
印度尼西亚是我国最大的煤炭进口国,本文应用电感耦合等离子体质谱、原子荧光光谱、直接测汞仪等技术分析了上海口岸31批进口印度尼西亚煤炭中的12种微量元素,结合数理统计方法研究该类煤炭中微量元素的赋存形态。结果表明,进口印尼煤炭中含有高汞煤、三级含砷煤,As、Hg的平均富集系数大于1,其迁移风险值得关注;Be、Cu、Mo、Cd、Sn、Pb含量均低于中国煤和世界煤炭的平均水平,体现出印尼煤炭低灰分的品质特征。12种微量元素和相关项目(灰分和全硫)可划分为3类:第一类归纳为黏土矿物吸附类,包括As、Be、Cr、Co、Ni、Cu、Mo、Cd、Sn、Pb、灰分;第二类归纳为硫铁矿类,包括Hg、全硫;第三类归纳为碳酸盐矿物类,包括Ba。本文研究结果对于指导进口煤炭开发、利用过程中的环境评价和洁净化处理具有一定的参考价值。  相似文献   

13.
煤和分散有机质(煤系泥岩或页岩)对煤成油田的贡献大小一直没有获得统一认识,这导致煤是否具有生排油能力直到现在仍然争论不休。选择了两个典型侏罗系煤和一个煤系泥岩样品,分别进行了限定体系热解生烃模拟,结果表明热解特征较差的泥岩(H/C 0.77,IH 146mg/g)却比中等富氢煤(H/C 0.82,IH 260mg/g)的生油量高出2.7倍,是一般煤(H/C 0.75,IH 199mg/g)生油潜力的6倍。这暗示着在煤成油评价中,不能简单把煤和煤系分散有机质对等进行评价,不然会低估煤系相对分散有机质的贡献而过高估计了煤的作用。热解模拟结果与吐哈盆地台北凹陷煤系岩石中有机质含量对比结果表明,该凹陷煤成油更可能来自于煤系泥岩而不是煤本身。此外,通过分析发现煤中液态烃稳定性较差,一般在低熟阶段就开始裂解生气,因此,被国内外学者普遍采纳的,IH(或S1)随成熟度变化的趋势不能作为判断煤排油门限的有效参考。  相似文献   

14.
Rare earth elements (La, Ce, Sm, Eu, Tb, Yb, and Lu) in a columnar section of the coal of the Pirin deposit, Bulgaria, have been determined by neutron activation analyses.The REE content in the coals is lower than the average REE content of shales from North America, Europe, and the Soviet Union. The REE abundances increase with the increasing ash content of the coals. The bottom of the seam is slightly enriched in REE, the trend being more pronounced in HREE (Tb, Yb, Lu). The REE content depends on the thickness of the coal layers: the thin coal layers are enriched in REE as compared to the thick ones.The chondrite-normalized distribution patterns are very uniform. They are characterized by a negative Eu anomaly whose mean value is 0.30 (varying in the individual samples from 0.21 to 0.49) and a positive Lu anomaly. It is supposed that the Eu anomaly is inherited from the source rocks.The shale-normalized distribution patterns show a distinct relative enrichment in HREE and a negative Eu anomaly. The relative enrichment in HREE is a specific feature of the REE geochemistry in the Pirin deposit. The LREE/HREE ratio is lower than that of composite shale; it increases with the increasing ash content of the coals and from the bottom to the top of the coal bed.REE are bound predominantly to the aluminosilicates of the mineral matter in the coals. All REE are positively correlated to the ash, Si, Al, Fe, and Na.The source of REE in coals is mainly the suspended terrigenous material. The specific enrichment of REE in the ash of low-ash coals is a result of the interaction between the dissolved REE and the products of disintegration and decay of organic substances, mainly the humic acids.  相似文献   

15.
Twenty-eight samples of peat, peaty lignites and lignites (of both matrix and xylite-rich lithotypes) and subbituminous coals have been physically activated by pyrolysis. The results show that the surface area of the activated coal samples increases substantially and the higher the carbon content of the samples the higher the surface area.The adsorption capacity of the activated coals for NO, SO2, C3H6 and a mixture of light hydrocarbons (CH4, C2H6, C3H8 and C4H10) at various temperatures was measured on selected samples. The result shows a positive correlation between the surface area and the gas adsorption. In contrast, the gas adsorption is inversely correlated with the temperature. The maximum recorded adsorption values are: NO = 8.22 × 10− 5 mol/g at 35 °C; SO2 = 38.65 × 10− 5 mol/g at 60 °C; C3H6 = 38.9 × 10− 5 mol/g at 35 °C; and light hydrocarbons = 19.24 × 10− 5 mol/g at 35 °C. Adsorption of C3H6 cannot be correlated with either NO or SO2. However, there is a significant positive correlation between NO and SO2 adsorptions. The long chain hydrocarbons are preferentially adsorbed on activated lignites as compared to the short chain hydrocarbons.The results also suggest a positive correlation between surface area and the content of telohuminite maceral sub-group above the level of 45%.  相似文献   

16.
The intermontane basin of Ptolemais is part of a major tectonic trench, located in NW Greece and includes around 65% of Greek coal reserves. The Upper Xylite Layer (UXL) is a distinct lignite layer, being 3–6 m thick and outcropping in the upper part of the Pliocene Lignite-bearing Sequence at the Notio Field and Tomeas Eksi Mines of Ptolemais. Compared with the xylite-rich lithotypes, the matrix lithotypes within UXL contain more ash. Micropetrographic studies suggest that the Upper Xylite Layer is rich in huminite (>90%). Textinite dominates in the xylite-rich lithotypes, while attrinite dominates in the matrix lithotypes. The liptinite content is <10%, while inertinite rarely occurs. Palaeobotanical determination revealed that the xylite-rich coal originated from Coniferous vegetation, specifically from Glyptostrobus europaeus. The occurrence of G. europaeus as a coal-forming element is significant because, though this kind of vegetation was common in many Greek coals of Miocene age, this is the first time it has been recorded from the Pliocene. This study suggests that the Upper Xylite Layer is autochthonous. According to coal-facies diagrammes, peat accumulated under pure telmatic conditions in a relatively wet forest fen. Both herbaceous and arboreal vegetation contributed to peat formation.  相似文献   

17.
This study provides coal quality, petrological, palynological and geochemical (Rock Eval) data on Permian coal seams and associated shales and mudstones of the Karoo Supergroup of the Songwe-Kiwira Coalfield, Tanzania. The coal seams, which have a cumulative thickness of 6.80 m, occur in the shale–coal–sandstone facies of the Mchuchuma Formation of Artinskian to Kungurian(?) age.Coal quality data (calorific values, volatile matter contents) and vitrinite reflectances indicate high volatile C bituminous to high volatile A bituminous coals, having relatively high ash yields (22–49 wt.%) and highly variable sulphur contents (0.17–9.2 wt.%). They could be used to fuel small-scale power generation units thereby providing electricity to nearby towns and villages. Also, the coals could be used as a substitute for wood, which is becoming increasingly scarce. In rural Tanzania, charcoal is still the main energy source for cooking, and wood is used extensively in brick kilns and for making roofing tiles.Petrological analysis indicated that the coals are dominated by dull to banded dull lithotypes, with seams at the base of the Mchuchuma Formation enriched in inertinite macerals (up to 83 vol.%), whereas up-section vitrinite contents increase. Palynological analyses indicated that the assemblage in the lower Mchuchuma Formation (Scheuringipollenites assemblage) is dominated by trilete spores, whereas in the remainder of the section, non-taeniate disaccates dominate (Scheuringipollenites–Protohaploxypinus assemblage). Facies critical macerals suggest for most seams a marsh/wet forest swamp depositional setting, which is consistent with the palynological data.Rock Eval analyses indicate type II/III kerogen, with Tmax (°C) values ranging from 426 to 440, corresponding to the early stage of hydrocarbon generation. Thermal Alteration Indices (2 to 2+) and vitrinite reflectance levels (0.60–0.83 Ro (%) support the Rock Eval maturity assessment, and despite the predominance of terrestrial-derived organic matter, there is evidence of oil generation and expulsion in the form of cavity and fracture filling exsudatinite.  相似文献   

18.
The stratigraphic and regional variation of petrographic and chemical properties within the coals of the Upper Carboniferous Tradewater Formation and surrounding rocks in the Western Kentucky coal field were analyzed with the intent of constructing a depositional model for the occurrence of these low sulfur coals. Cores were megascopically described, and coal samples were analyzed for maceral, ash, and sulfur contents. These data were then analyzed to determine regional variation within the study area, as well as vertical variation within single coal columns.Sedimentological data from core logs indicate that the majority of the Tradewater rocks consist of irregularly distributed, coarsening-upward, fine-grained detrital material that was deposited in shallow bodies of water. Fossiliferous shales and limestones indicate a marine influence. Less common coarse-grained, fining-upward sequences appear to represent deposits of meandering or braided channels.Like the detrital rocks, the coal seams are irregularly distributed and exhibit substantial variation in petrographic and chemical properties which reflect changes in the Eh and pH of the coal swamp waters. These individual swamps were relatively limited in extent and probably occupied a low-lying coastal area. The relatively high vitrinite content of most of the coals suggests a reasonable degree of preservation of decaying plant materials. The study of benched samples from surface mines suggests a distinct dichotomy between swamps that were in more or less continuous contact with sulfate-rich marine or brackish water and those in which peat accumulated in a dominantly fresh-water setting. Most of the latter show a pattern of upward increasing sulfur content and decreasing vitrinite content, indicating increasing influences of oxygenated water that would encourage microbial action and which would degrade the peat and increase the tendency for sulfide precipitation. The high sulfur coals do not display this variability. The high rates of lateral variability encountered in the data suggest that future study should concentrate on smaller areas where variation can be completely documented.  相似文献   

19.
The development of three Tertiary deltaic complexes has resulted in the deposition of up to 10 km of sandstones and shales comprising the sources and reservoirs for crude oils that occur onshore, near-offshore and, with future exploration efforts, those likely to be encountered in deepwater reservoirs north of the Brunei coastline. We examined a series of offshore oils and onshore rock samples in Brunei Darussalam (a) to delineate oil family groups and their source rock characteristics, and (b) to assess the source potential of the sedimentary sequence with respect to lithology and depositional setting. Twelve offshore oils and 53 shales, coaly shales and coals were examined. The oils contain indicators of allochthonous (e.g. bicadinanes, oleananes) and autochthonous (e.g. cholestanes and methylcholestanes) components in the source organic matter. Predictable geographic variations of this mixed input are clearly evident in the sample set (e.g. allochthonous input appears to increase in offshore Brunei to the northeast). Although this molecular source signature is relatively clear, migration of these oils from deep (and unidentified) source rocks has resulted in extensive migration-contamination with respect to the tetracyclic and pentacyclic hydrocarbons. This contamination has resulted in strong correlations between certain molecular maturity indicators and the present-day temperature of the reservoirs. Liquid hydrocarbon source rock potential is present in the tidal and coastal embayment facies, and is greatest in the Miocene coals. Neither the shales nor coaly shales contain significant oil generative potential. The thermal immaturity of the sample set precludes valid oil–source rock correlations without conducting artificial maturation experiments on the coals.  相似文献   

20.
A suite of samples from the Funan Mine, N.E. China, has allowed a comparison to be made between hydrocarbon-rich coals and coaly shales. These are immature coals and the known geological history suggests that they have experienced only a mild geothermal history. Analyses of the di- and sesquiterpenoid components show that compounds based on the kaurane skeleton are absent unlike Australian brown coals; and the diterpenes isopimarane, pimarane and 16α (H)-phyllocladane relate to a different community of higher plants such as Pinaceae and Taxodiaceae from those recognized in Australian brown coals. A consideration of geochimical parameters and biomarker composition leads to the conclusion that the geolipid concentrations in the sample suite are environmentally determined. It is concluded, therefore, that 22R-17β (H),21β (H)-bishomohopanoic acid and the 22R-17α (H),21β (H)-homohopane, both predominant components in their respective classes, are derived from different sources. Labdanic acids have been identified in these coals. They are likely to be derived from resin constituents of the coal and not from microbial biomass. They could potentially be developed as a maturation parameter. Cis and trans isomers of a triaromatic hydrocarbon based on the oleanane skeleton which has been previously identified in Victorian brown coal are present in the Funan coals. The more oxidizing the environment the less advanced is the isomerization of cis to trans and again the environment of deposition is the controlling factor. This study emphasizes the importance of understanding pathways of early diagenesis for the interpretation of data derived from more mature samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号