首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The occurrence of earthquake swarms is typically related to magmatic activity in volcanoes, yet swarms are also common in other intracontinental regions such as continental rifts. We present here a summary of geophysical observations that have been made in earthquake swarm areas of the Rio Grande, Kenya, and Eger rifts, focusing on characteristic parameters for the origin and generation of the swarm earthquakes.Our compilation of seismological parameters such as spatial distribution and focal parameters of hypocenters, magnitude statistics, and the location of the swarm centres in the rift environments reveals major similarities. The earthquake swarms take place at shallow depth between 0 and 10 km. The maximum magnitudes are mostly less than 4.5. The b-values, indicating the magnitude frequency relation of the seismicity, are about 0.8. They are hence not deviating from a normal non-volcanic intraplate environment, but are considerably lower than those of volcanic earthquake swarms. Focal mechanism studies give uniform pictures of stress field orientation and faulting style for the swarm areas. In all three rifts, the centres of swarm activity seem to be restricted to rift valley sections that may be influenced by large-scale fracture or shear zones that intersect the rifts. We conclude that these deep-reaching zones of weakness allow intrusions of upper mantle material into crustal layers, where magma-related fluids or fluctuations of the magma bodies themselves cause the generation of earthquake swarms.  相似文献   

2.
The Indian Ocean and the West Pacific Ocean and their ocean-continent connection zones are the core area of "the Belt and Road". Scientific and in-depth recognition to the natural environment, disaster distribution, resources, energy potential of “the Belt and Road” development, is the cut-in point of the current Earth science community to serve urgent national needs. This paper mainly discusses the following key tectonic problems in the West Pacific and North Indian oceans and their ocean-continent connection zones (OCCZs): 1. modern marine geodynamic problems related to the two oceans. Based on the research and development needs to the two oceans and the ocean-continent transition zones, this item includes the following questions. (1) Plate origin, growth, death and evolution in the two oceans, for example, 1) The initial origin and process of the triangle Pacific Plate including causes and difference of the Galapagos and West Shatsky microplates; 2) spatial and temporal process, present status and trends of the plates within the Paleo- or Present-day Pacific Ocean to the evolution of the East Asian Continental Domain; 3) origin and evolution of the Indian Ocean and assembly and dispersal of supercontinents. (2) Latest research progress and problems of mid-oceanic ridges: 1) the ridge-hot spot interaction and ridge accretion, how to think about the relationship between vertical accretion behavior of thousands years or tens of thousands years and lateral spreading of millions years at 0 Ma mid-oceanic ridges; 2) the difference of formation mechanisms between the back-arc basin extension and the normal mid-oceanic ridge spreading; 3) the differentials between ultra-slow dian Ocean and the rapid Pacific spreading, whether there are active and passive spreading, and a push force in the mid-oceanic ridge; 4) mid-oceanic ridge jumping and termination: causes of the intra-oceanic plate reorganization, termination, and spatial jumps; 5) interaction of mantle plume and mid-oceanic ridge. (3) On the intra-oceanic subduction and tectonics: 1) the origin of intra-oceanic arc and subduction, ridge subduction and slab window on continental margins, transform faults and transform-type continental margin; 2) causes of the large igneous provinces, oceanic plateaus and seamount chains. (4) The oceanic core complex and rheology of oceanic crust in the Indian Ocean. (5) Advances on the driving force within oceanic plates, including mantle convection, negative buoyancy, trench suction and mid-oceanic ridge push, is reviewed and discussed. 2. The ocean-continent connection zones near the two oceans, including: (1) Property of continental margin basement: the crusts of the Okinawa Trough, the Okhotsk Sea, and east of New Zealand are the continental crusts or oceanic crusts, and origin of micro-continent within the oceans; (2) the ocean-continent transition and coupling process, revealing from the comparison of the major events between the West Pacific Ocean seamount chains and the continental margins, mantle exhumation and the ocean-continent transition zones, causes of transform fault within back-arc basin, formation and subduction of transform-type continental margin; (3) strike-slip faulting between the West Pacific Ocean and the East Asian Continent and its temporal and spatial range and scale; (4) connection between deep and surface processes within the two ocean and their connection zones, namely the assembly among the Eurasian, Pacific and India-Australia plates and the related effect from the deep mantle, lithosphere, to crust and surface Earth system, and some related issues within the connection zones of the two oceans under the super-convergent background. 3. On the relationship, especially their present relations and evolutionary trends, between the Paleo- or Present-day Pacific plates and the Tethyan Belt, the Eurasian Plate or the plates within the Indian Ocean. At last, this paper makes a perspective of the related marine geology, ocean-continent connection zone and in-depth geology for the two oceans and one zone.  相似文献   

3.
High-resolution shipboard geophysical investigations along the Indian Ocean ridge system are sparse especially over the Carlsberg and Central Indian ridges. In the present study, the shipboard gravity and multibeam bathymetry data acquired over a 750 km long section of the Central Indian Ridge between 3 °S and 11 °S have been analysed to understand the crustal structure and the ridge segmentation pattern. The mantle Bouguer anomalies (MBA) and the residual mantle Bouguer anomalies (RMBA) computed in the study area have shown significant variations along the ridge segments that are separated by transform and non-transform discontinuities. The MBA lows observed over the linear ridge segments bounded by well-defined transform faults are attributed to the thickening of the crust at the middle portions of the ridge segments. The estimates of crustal thickness from the RMBA shows an average of 5.2 km thick crust in the axial part of the ridge segments. The MBA and relative RMBA highs along the two non-transform discontinuities suggests a thinner crust of up to 4.0 km. The most significant MBA and RMBA highs were observed over the Vema transform fault suggesting thin crust of 4 km in the deepest part of the transform fault where bathymetry is more than 6000 m. The identified megamullion structures have relative MBA highs suggesting thinner crust. Besides MBA lows along the ridge axis, significant off-axis MBA lows have been noticed, suggesting off-axis mantle upwelling zones indicative of thickening of the crust. The rift valley morphology varies from the typical V-shaped valley to the shallow valley floor with undulations on the inner valley floor. Segments with shallow rift valley floor have depicted well-defined circular MBA lows with persistent RMBA low, suggesting modulation of the valley floor morphology due to the variations in crustal thickness and the mantle temperature. These are supported by thicker crust and weaker lithospheric mantle.  相似文献   

4.
地震成因综述   总被引:2,自引:0,他引:2  
本文从地质、地球物理、地球化学和能量等方面分析了地震的成因。源于地核地幔的流体携带大量热能,为岩浆起源、地震形成和地热田提供了充足的能量,然而岩石聚集的应变能不足以产生中等以上的地震。大地震(M≥6.0)绝大部分分布在海沟、火山岛弧和大陆裂谷带等拉张性构造带,如环太平洋海沟、东印度洋海沟、大洋中脊、非洲裂谷、地中海-黑海-里海-波斯湾、欧亚大陆中部的伊塞克湖-阿拉湖-乌布苏湖-库苏古尔湖-贝加尔湖裂谷。流体在地球深部物质运动、地壳运动、地震和火山活动中扮演着重要作用。全球到处发育的隐爆角砾岩表明隐爆作用的普遍性。深部流体向上运移、向地表逃逸的过程中发生爆炸,在地球内部产生了不同震级和震源深度的地震。因此,隐爆应该是产生地震的主要机制。地震成因的隐爆模型不仅能够更好地解释不连续、各向异性的非弹性介质中发生的各类地震,譬如中深源震、震群、慢地震和非双力偶性地震等,而且能够更好地诠释全球地震、火山和地热带在空间上的吻合以及隐爆角砾岩型矿藏的形成。  相似文献   

5.
A world-wide correlation between satellite-derived gravity signatures and the relative abundance of teledetected earthquakes over mid-ocean ridges has yielded some unexpected results. Rift valley disappearances along slow-spreading centres and attendant excess volcanism coincide with seismicity gaps, at times related to nearby hotspots, whereas earthquake clusters along virtually aseismic, faster-spreading centres systematically indicate the presence of active propagating ridge tips. Therefore, at the world scale of investigation, seismicity fairly well predicts ridge morphology and 2nd order axial discontinuities. The occurrence of a certain degree of seismicity along the 'ductile' Reykjanes ridge south of the Iceland hotspot is tentatively explained in terms of prevailing shear stresses due to oblique spreading which accumulate on the available brittle volume on the flanks of the ridge rather than on its crest.  相似文献   

6.
The Tjörnes Fracture Zone separates Iceland's North Volcanic Zone from Kolbeinsey-Ridge (Greenland-Sea). Seismicity mainly occurs in swarms, often 100 and more per day, with similar waveforms and frequently offshore.We analysed three earthquake swarms between June and September 2004, recorded by 35 stations, i.e. the permanent Icelandic SIL network and a temporary setup of land and ocean-bottom-seismometers, and 5 swarms of the years 1994-1997 only using the sparser SIL network. Events occurring in the same swarm often show similar waveforms at the same station. We cross-correlated these time series by using a new approach of three component cross-correlation in order to relocate the hypocenters relative within the swarms and to precisely determine the direction and velocity of migration. Our method delivered good relocations with small spatial and temporal errors. This allows the interpretation and characterisation of the observed earthquake swarms. We try to classify observed migration velocities by comparing them to typical fluid- and crack-propagation velocities and determine focal-mechanisms and orientation of the best fitting plane through the hypocenter distribution.We separate the investigated events into two types of earthquake swarms, supposedly dike-induced and hydrothermally- or gas-induced swarms, by pointing out typical characteristics of both types and by comparing them to similar events of other volcanic regions. Based on different migration velocities, we will discuss possible mechanisms and their triggers of all single clusters within a swarm. Hypothetic models will be established, trying to explain the processes during the swarm episodes and to derive possible pre-eruptive patterns from the character of seismicity.  相似文献   

7.
The middle part of the Central Indian Ridge (MCIR) between 8°S and 18°S is representative of mid-ocean ridges in the Indian Ocean but has not previously been systematically surveyed. Here we present results from the first high-resolution mapping survey over both on- and off-axis sections of the MCIR including multibeam bathymetry, magnetics, hydrocasting, and seabed sampling. The 700-km-long MCIR consists of six first-order segments that are offset by > 30 km along well-developed transform faults. Three of the first-order segments are further divided into seven second-order segments with < 30 km offset along non-transform discontinuities. We have recognized for the first time 11 prominent ocean core complexes (OCCs). These occur at nearly all segment ends, corresponding to an occurrence every 60 km of the surveyed ridge. Seafloor spreading model studies using magnetic reversals show that the MCIR is a slow-spreading ridge with average full opening rates ranging from 33.7 to 45.1 mm/yr, increasing from north to south. The highly curved and intermittent axial ridge geometry, rugged flank fabric, variation in the depth and width of the middle valley, and the frequent occurrences of ocean core complexes and non-transform discontinuities demonstrate that asymmetric accretionary processes are dominant along the ridge. The spreading rate symmetry combined with morphotectonic features, reveal that the MCIR segments developed mainly via tectonic extension with little magmatism. Segments with asymmetric accretion controlled by tectonic extension makes up ~ 96% of the MCIR, whereas symmetric accretion controlled by robust magmatism make up < 4%. Hydrothermal plumes with high methane concentrations occur frequently over the OCCs. This finding indicates that abundant OCCs exposed by detachment faults lead to extensive hydrothermal circulation at off-axis areas and that detachment faults are the primary fluid path for hydrothermal fluid circulation at off-axis regions. Serpentinization of mantle-derived rock at OCCs may be one of the major sources of heat and methane in off-axis areas.  相似文献   

8.
The accretion of oceanic crust under conditions of oblique spreading is considered. It is shown that deviation of the normal to the strike of mid-ocean ridge from the extension direction results in the formation of echeloned basins and ranges in the rift valley, which are separated by normal and strike-slip faults oriented at an angle to the axis of the mid-ocean ridge. The orientation of spreading ranges is determined by initial breakup and divergence of plates, whereas the within-rift structural elements are local and shallow-seated; they are formed only in the tectonically mobile rift zone. As a rule, the mid-ocean ridges with oblique spreading are not displaced along transform fracture zones, and stresses are relaxed in accommodation zones without rupture of continuity of within-rift structural elements. The structural elements related to oblique spreading can be formed in both rift and megafault zones. At the initial breakup and divergence of continental or oceanic plates with increased crust thickness, the appearance of an extension component along with shear in megafault zones gives rise to the formation of embryonic accretionary structural elements. As opening and extension increase, oblique spreading zones are formed. Various destructive and accretionary structural elements (nearly parallel extension troughs; basin and range systems oriented obliquely relative to the strike of the fault zone and the extension axis; rhomb-shaped extension basins, etc.) can coexist in different segments of the fault zone and replace one another over time. The Andrew Bain Megafault Zone in the South Atlantic started to develop as a strike-slip fault zone that separated the African and Antarctic plates. Under extension in the oceanic domain, this zone was transformed into a system of strike-slip faults divided by accretionary structures. It is suggested that the De Geer Megafault Zone in the North Atlantic, which separated Greenland and Eurasia at the initial stage of extension that followed strike-slip offset, evolved in the same way.  相似文献   

9.
The walls of the Knipovich Ridge are complicated by normal and reverse faults revealed by a high-frequency profilograph. The map of their spatial distribution shows that the faults are grouped into domains a few tens of kilometers in size and are a result of superposition of several inequivalent geodynamic factors: the shear zone oriented parallel to the Hornsunn Fault and superposed on the typical dynamics of the midocean ridge with offsets along transform fracture zones and rifting along short segments of the Mid-Atlantic Ridge (MAR). According to the anomalous magnetic field, the Knipovich Ridge as a segment of the MAR has formed since the Oligocene including several segments with normal direction of spreading separated by a multitransform system of fracture zones. In the Quaternary, the boundary of plate interaction along the tension crack has been straightened to form the contemporary Knipovich Ridge, which crosses the previously existing magmatic spreading substrate and sedimentary cover at an angle of about 45° relative to the direction of accretion. The sedimentary cover along the walls of the Knipovich is Paleogene in age and has subsided into the rift valley to a depth of 500–1000 m along the normal faults.  相似文献   

10.
斜向扩张是超慢速扩张洋中脊独特的构造特征,其地形分段特征明显区别于经典的快速-慢速端元洋中脊模型,是理解超慢速扩张洋中脊地质过程的重要切入点。基于西南印度洋中脊Indomed-Gallieni和Shaka-DuToit段多波束地形数据,分析了不同斜向扩张角度(α)洋中脊的地形分段样式。其中,46.5°~47.5°E(α=5°)、16°~25°E(α=10°)和48.5°~52°E(α=15°)为近正向扩张段,发育雁列式叠置的中央火山脊;47.5°~48.5°E(α=50°)和16°~25°E(α=60°)为斜向扩张段,仅在洋脊段中部形成中央火山脊。利用有限差分+颗粒法(FD+MIC)数值模拟技术研究了洋中脊应变分布特征对不同α值的响应,结合地形分析,认为斜向扩张角度和温度异常分布共同控制了洋中脊地形分段样式。近正向扩张洋中脊(α<20°)在温度异常处形成地壳伸展应变的集中区,有利于岩浆汇聚,发育雁列式叠置的中央火山脊,其位置随温度异常分布的变化而改变;斜向扩张洋中脊(α>20°)地壳伸展应变集中区的位置受斜向扩张几何样式控制,在洋脊段中部发育中央火山脊,对温度异常不敏感,形成位置长期固定的岩浆活动中心。  相似文献   

11.
We have compared the Haicheng foreshock sequence with several earthquake swarms which occurred in its neighborhood. The spatial distribution of the earthquakes is relatively concentrated. For the most part, the events occurred within a few kilometers of each other. The focal mechanisms are comparatively stable. However, there are several swarms in which the variations of focal mechanisms are quite obvious after the occurrence of the largest event of the sequence, which would allow it to be recognized as a swarm. However, there are also swarms whose focal mechanisms are no less stable throughout the sequence compared to the Haicheng foreshock sequence. This feature could thus not be used to identify a foreshock sequence. The temporal distributions of foreshocks and swarms are quite similar in some cases. This is again not a definite criterion for identifying foreshocks, but is worthy of further study. Thus, no definite criterion for identifying foreshock sequences has been found. However, some earthquake swarms may be recognized in their later stage.Finally, we introduced a magnitude sequence with gaps which can be used to see whether a large event is still forthcoming. This method (in conjunction with other methods) could be used in areas prone to large earthquakes, immediately before a large event, to improve the probability of predicting the occurrence of a large event. We also report that the temporal distribution of all the sequences showed a 12-hour recurrence pattern that corresponded with the earth tides, indicating that tidal forces might be influencing foreshocks and earthquake swarm occurrence.  相似文献   

12.
Sequential cumulative moment release data of macroearthquakes (Mw≥4.3) of seventeen seismic zones (A to Q) belonging to NE-Himalaya, Burmese-Andaman arc and West- Sunda arc are analysed by Hurst analysis, a non-parametric statistical procedure to identify clustering of low and high values in a time series. The moment release in a zone occurs in alternate positive, negative and positive sloping segments forming a wave like pattern with intervening small horizontal segment. The negative sloping segments indicate decelerated moment release pattern or temporal slackening of elastic strain release with high b–value (>0.95). The horizontal segment indicates temporal clustering of moderate magnitude events/seismic moments with moderate b-values (0.8–0.95). The positive segment is characterised by accelerated moment release within a short span of time indicating temporal clustering of larger magnitude earthquakes/seismic moments and exhibit lowest b–value (<0.7). All zones attest moderate to high Hurst K values, range 0.7-0.86. The pattern in Hurst plots, specially a reversal of trend after prolong negative slope is used for earthquake prognostication in the seismic zones. Our analysis shows that most of the zones register a notable reversal of Hurst clustering trend after a prolonged negative slope which is accompanied by a major earthquake near its end. However, South Burma region (Zone-I) and Tripura fold belt and Bangladesh Plain (Zone-K) do not show any moderate or large shock around the end of the negative sloping trend in Hurst plot. Hence, these two zones can be considered more prone to produce moderate to larger earthquakes in future.  相似文献   

13.
《Gondwana Research》2010,17(3-4):512-526
The spatial distribution of deep slow earthquake activity along the strike of the subducting Philippine Sea Plate in southwest Japan is investigated. These events usually occur simultaneously between the megathrust seismogenic zone and the deeper free-slip zone on the plate interface at depths of about 30 km. Deep low-frequency tremors are weak prolonged vibrations with dominant frequencies of 1.5–5 Hz, whereas low-frequency earthquakes correspond to isolated pulses included within the tremors. Deep very-low-frequency earthquakes have long-period (20 s) seismic signals, and short-term slow-slip events are crustal deformations lasting for several days. Slow earthquake activity is not spatially homogeneous but is separated into segments some of which are bounded by gaps in activity. The spatial distribution of each phase of slow earthquake activity is usually coincident, although there are some inconsistencies. Very-low-frequency earthquakes occur mainly at edges of segments. Low-frequency earthquakes corresponding to tremors of relatively large amplitude are concentrated at spots where tremors are densely distributed within segments. The separation of segments by gaps suggests large differences in stick-slip and stable sliding caused by frictional properties of the plate interface. Within each segment, variations in the spatial distribution of slow earthquakes reflected inhomogeneities corresponding to the characteristic scales of events.  相似文献   

14.
At trenches a few earthquake swarms of low magnitude have been observed before the medium size earthquake swarms. The first swarm was designated as precursory swarm and the second as mainshocks. Seismicity fluctuations before six such mainshocks events of medium size earthquakes of magnitudes ranging from 5.3 to 6.1 occurring in the east belt of Taiwan region have been discussed. A precursory gap between the precursory swarm and mainshock events has been observed. The duration of the gaps increases with magnitudes of the mainshocks suggesting a causal relationship between the two. Regression equations between the largest magnitude in the precursory swarms, the largest mainshock magnitude and the precusory gaps have been given.  相似文献   

15.
Northeastern Brazil is, within the present knowledge of historical and instrumental seismicity, one the most seismic active areas in intraplate South America. Seismic activity in the region has occurred mainly around the Potiguar basin. This seismicity includes earthquake swarms characterized by instrumentally-recorded events ≤ 5.2 mb and paleoseismic events ≥ 7.0. Our study concentrates in the João Câmara (JC) epicentral area, where an earthquake swarm composed of more than 40,000 aftershocks occurred mainly from 1986 to 1990 along the Samambaia fault; 14 of which had mb > 4.0 and two of which had 5.1 and 5.0 mb. We describe and compare this aftershock sequence with the present-day stress field and the tectonic fabric in an attempt to understand fault geometry and local control of seismogenic faulting. Earthquake data indicate that seismicity decreased steadily from 1986 to 1998. We selected 2,746 epicenters, which provided a high-quality and precise dataset. It indicates that the fault trends 37° azimuth, dips 76°–80° to NW, and forms an alignment  27 km long that cuts across the NNE–SSW-trending ductile Precambrian fabric. The depth of these events ranged from  1 km to  9 km. The fault forms an echelon array of three main left-bend segments: one in the northern and two in the southern part of the fault. A low-seismicity zone, which marks a contractional bend, occurs between the northern and southern segments. Focal mechanisms indicate that the area is under an E–W-oriented compression, which led to strike–slip shear along the Samambaia fault with a small normal component. The fault is at 53° to the maximum compression and is severely misoriented for reactivation under the present-day stress field. The seismicity, however, spatially coincides with a brittle fabric composed of quartz veins and silicified-fault zones. We conclude that the Samambaia fault is a discontinuous and reactivated structure marked at the surface by a well-defined brittle fabric, which is associated with silica-rich fluids.  相似文献   

16.
Bogdan Enescu  Kiyoshi Ito   《Tectonophysics》2005,409(1-4):147-157
By using the double-difference relocation technique, we have determined the fine structure of seismicity during the 1998 Hida Mountain earthquake swarm. The distribution of seismic activity defines two main directions (N–S and E–W) that probably correspond to the regional stress pattern. The detailed structure of seismicity reveals intense spatio-temporal clustering and earthquake lineations. Each cluster of events contains a mainshock and subsequent aftershock activity that decays according to the Omori law. The seismicity and the b-value temporal and spatial patterns reflect the evolution of the static stress changes during the earthquake swarm. About 80% of the swarm's best-relocated events occur in regions of increased ΔCFF. The smaller value of b found in the northern part of the swarm region and a larger b-value observed to the south, for the same period of time, could be well explained by the static stress changes caused by the larger events of the sequence. We argue that the state of stress in the crust is the main factor that controls the variation of b-value.  相似文献   

17.
On the north coast of Iceland, the rift zone in North Iceland is shifted about 120 km to the west where it meets with, and joins, the mid-ocean Kolbeinsey ridge. This shift occurs along the Tjörnes fracture zone, an 80-km-wide zone of high seismicity, which is an oblique (non-perpendicular) transform fault. There are two main seismic lineaments within the Tjörnes fracture zone, one of which continues on land as a 25-km-long WNW-trending strike-slip fault. This fault, referred to as the Husavik fault, meets with, and joins, north-trending normal faults of the Theistareykir fissure swarm in the axial rift zone. The most clear-cut of these junctions occurs in a basaltic pahoehoe lava flow, of Holocene age, where the Husavik fault joins a large normal fault called Gudfinnugja. At this junction, the Husavik fault strikes N55°W, whereas Gudfinnugja strikes N5°E, so that they meet at an angle of 60°. The direction of the spreading vector in North Iceland is about N73°W, which is neither parallel with the strike of the Husavik fault nor perpendicular to the strike of the Gudfinnugja fault. During rifting episodes there is thus a slight opening on the Husavik fault as well as a considerable dextral strike-slip movement along the Gudfinnugja fault. Consequently, in the Holocene lava flow, there are tension fractures, collapse structures and pressure ridges along the Husavik fault, and pressure ridges and dextral pull-apart structures subparallel with the Gudfinnugja fault. The 60° angle between the Husavik strike-slip fault and the Gudfinnugja normal fault is the same as the angle between the Tjörnes fracture zone transform fault and the adjacent axial rift zones of North Iceland and the Kolbeinsey ridge. The junction between the faults of Husavik and Gudfinnugja may thus be viewed as a smaller-scale analogy to the junction between this transform fault and the nearby ridge segments. Using the results of photoelastic and finite-element studies, a model is provided for the tectonic development of these junctions. The model is based on an analogy between two offset cuts (mode I fractures) loaded in tension and segments of the axial rift zones (or parts thereof in the case of the Husavik fault). The results indicate that the Tjörnes fracture zone in general and the Husavik fault in particular, developed along zones of maximum shear stress. Furthermore, the model suggests that, as the ridge-segments propagate towards a zero-underlapping configuration, the angle between them and the associated major strike-slip faults gradually increases. This conclusion is supported by the trends of the main seismic lineaments of the Tjörnes fracture zone.  相似文献   

18.
The Southwest Indian mid-ocean ridge (SWIR) is an ultraslow spreading ridge. Based on the submarine bathymetric data, we develop a new division principle on submarine morphotectonics and subdivide the SWIR into the seven-order tectonic geomorphologic units. Taking its submarine morphotectonics in the middle segment and adjacent seafloors of the mid-ocean ridge between Discovery II and Gallieni transform faults as a sample, this paper systematically analyzes its tectonic evolution, segmentation, segmentation and propagation mechanism, the formation of the central rift valley, the ridge-plume interactions, and the ocean ridge jumping. The results showed that the mid-ocean ridges can be divided into four three-order morphotectonics units (i.e., one-order segments of mid-ocean ridge), from west to east, which are separated by the Andrew Bain, the Prince Edwards, the Discovery II, and the Gallieni transform faults, respectively, corresponding to ridge landforms associated with a strongly hotspot-affected ridge, a weakly hotspot-affected ridge, and a normal ultraslow spreading ridge. Each segment can be further subdivided into three or four secondary segments. This paper focuses only on the segmentation and division from fourth-order to seventh-order morphotectonics units between the Discovery II and the Gallieni transform faults (i.e., the fourth-order morphotectonics unit of mid-ocean ridges can be subdivided into other three secondary units). Here the seventh-order morphotectonics unit consists of segments of laterally-aligned rifts (shear zone), en echelon rifts, and other transverse-faulting structures. The mid-ocean ridge segment experienced three oceanic ridge jumping at about 80 Ma, 60 Ma and 40 Ma, respectively, which were affected by the Marion and Crozet hotspots, or the Madagascar Plateau, etc. The oceanic processes of the SWIR are related to the Gondwana breakup, and its tectonic processes has been analyzed in detail as the periodic pull-apart extension, domino-style half-graben, graben subsidence, oceanic core complex, etc. in axial mid-oceanic ridge since 20 Ma. ©, 2015, Science Press. All right reserved.  相似文献   

19.
The morphostructure of the segment between the Cardno and St. Helen transform fracture zones is studied in the rift zone of the South Atlantic slow-spreading mid-oceanic ridge (SAMOR). It was found that it is atypical of similar ridges because of the absence of an evolved rift valley. The rift zone in the transverse section is a cupola with flat slopes, whose surface is divided by volcanic massifs, plateau-like valleys, and unclear ridges and valleys. The entire morphostructure (a cupola-like regional pedestal and the listed relief forms of the second order) indicates its volcanic origin, and the rift zone in this segment is a volcanic high-land. This conclusion is supported by seismic and magnetic data. Because other (not all) SAMOR segments contain the rift valley, the results of this study indicate alternation of the tectonic and magmatic morphostructures along the entire rift zone and identification of its scales is the most important task of the morphostructural study of the SAMOR rift zone. Determination of geodynamic regimes on the basis of the results of morphostructural studies of the rift zone will arise from the solution of this task.  相似文献   

20.
The earthquake events of Himalaya of magnitude ≥5.0 from the time window 1905–2000 are statistically analysed. The inter-event time between earthquakes shows Hurst phenomena of temporal clustering which are spatially located in five distinct domains along the Himalayan fold-thrust belt. Out of these, two domains, one around Uttaranchal-Nepal border and the other around Nepal-Sikkim border reveal maximum number of temporal clusters and thus considered as seismically most potential zones of the Himalaya. Both these zones are located at the interface of the orthogonally disposed major tectonic discontinuities of the Peninsular Shield and Himalayan fold-thrust belt. Such zones are geologically most favourable locales for strain accumulation during later-tectonic movement. Statistical analysis points towards a probability of recurrence of seismic events in near future in these two zones. However, validity of such statistical results can be ascertained by detailed geological and geophysical modelling of the terrain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号