首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 433 毫秒
1.
Measurement of samples from 154 sites in the continental sector of the Cameroon Volcanic Line yielded six palaeomagnetic poles, at 243.6°E, 84.6°N, α 95 = 6.8°; 224.3°E, 81.2°N, α 95 = 8.4°; 176.1°E, 82.0°N, α 95 = 8.5°; 164.3°E, 86.4°N, α 95 = 3.4°; 169.4°E, 82.6°N, α 95 = 4.6° and 174.7°E, 72.8°N, α 95 = 9.5°, belonging to rocks which have been dated by the K–Ar method at 0.4–0.9  Ma, 2.6  Ma, 6.5–11  Ma, 12–17  Ma, 20–24  Ma and 28–31  Ma, respectively. The results are in general agreement with other palaeomagnetic poles from Oligocene to Recent formations in Africa.
  The first three poles for rocks formed between 0.4 and 11  Ma are not significantly different from the present geographical pole. Together with other African poles for the same period, this suggests that the African continent has moved very little relative to the pole since 11  Ma. The other three poles for rocks dated between 12 and 31  Ma are significantly different from the present geographical pole, showing a 5° polar deviation from the present pole in the Miocene and 13° in the Middle Oligocene.  相似文献   

2.
Summary. Stable natural remanent magnetization (NRM) in the Jersey Volcanics and in a single rhyolite dyke was probably acquired during the Cambrian before folding of the volcanics in the Cadomian Orogeny. After dip correction, the volcanics yield a palaeomagnetic pole at 323° E, 52° N ( dp = 33°, dm = 35°). In Jersey dolerite dykes three groups of stable NRM directions are recognized, with palaeomagnetic poles at 248° E, 26° N ( dp = 10°, dm = 20°), 339° E, 1° S ( dp = 9°, dm = 12°), and 336° E, 31° S ( dp = 5°, dm = 9°). Comparison with the European apparent polar wander path implies that stable NRM in these groups was acquired respectively during Late Precambrian or early Cambrian, Siluro-Devonian and middle Carboniferous time. The stable NRM of the Jersey lamprophyre dykes yields a palaeomagnetic pole at 322° E, 16° N ( dp = 31°, dm = 38°) and is probably of Silurian or Devonian age.
These palaeomagnetic poles and other new data determined by the author for the Armorican Massif can be fitted to a common apparent polar wander path for Europe, and this implies that the basement of Lower Palaeozoic Europe extended from the Baltic Shield at least as far south as the Armorican Massif. The Hercynian Orogeny in these parts of Europe was therefore probably intracratonic. This polar wander path implies that in early Cambrian time the pole did not move significantly relative to Europe, but that this was followed by a large middle to late Cambrian polar shift which corresponded to rapid drift of Europe across the South Pole.  相似文献   

3.
40Ar/39Ar whole-rock and alkali feldspar ages demonstrate that dioritic to monzonitic dykes from Bøverbru and Lunner belong to the youngest recorded magmatic activity in the Oslo Rift region, southeast Norway. These dykes represent the terminal phase of rift and magmatic activity in the Oslo Graben, at the dawn of the Triassic (246–238 Ma).
  The Bøverbru and Lunner dyke ages are statistically concordant. However, the palaeomagnetic signature of the Bøverbru dyke is complex, and directions from the margins and the interior of the dyke differ in polarity. Therefore, the new Early Triassic palaeomagnetic pole for Baltica (Eurasia) is exclusively based on the less complex Lunner dykes and contacts (palaeomagnetic pole: latitude=52.9°N, longitude=164.4°E, dp / dm =4.5 ° /7.3°). The early Triassic palaeomagnetic pole [mean age: 243±5 Ma (2 σ )] is slightly different from the Upper Carboniferous–Permian (294–274 Ma) and Kiaman-aged poles from the Oslo Rift.  相似文献   

4.
A palaeomagnetic pole position, derived from a precisely dated primary remanence, with minimal uncertainties due to secular variation and structural correction, has been obtained for China's largest dyke swarm, which trends for about 1000 km in a NNW direction across the North China craton. Positive palaeomagnetic contact tests on two dykes signify that the remanent magnetization is primary and formed during initial cooling of the intrusions. The age of one of these dykes, based on U–Pb dating of primary zircon, is 1769.1 ± 2.5 Ma. The mean palaeomagnetic direction for 19 dykes, after structural correction, is D  = 36°, I  = − 5°, k  = 63, α 95 = 4°, yielding a palaeomagnetic pole at Plat=36°N, Plong=247°E, dp  = 2°, dm  = 4° and a palaeolatitude of 2.6°S. Comparison of this pole position with others of similar age from the Canadian Shield allows a continental reconstruction that is compatible with a more or less unchanged configuration of Laurentia, Siberia and the North China craton since about 1800 Ma  相似文献   

5.
207Pb/206Pb single-grain zircon, 40Ar/39Ar single-grain hornblende and biotite, and 40Ar/39Ar bulk-sample muscovite and biotite ages from the Nelshoogte trondhjemite pluton located in eastern Transvaal, South Africa, show that this granitoid had a protracted thermal history spanning 3213±4  Ma to about 3000  Ma. Whole-rock 40Ar/39Ar ages from cross-cutting dolerite dykes indicate that these were intruded at about 1900  Ma. There is no evidence of this or other, later events significantly affecting the argon systematics of the minerals from the pluton dated by the 40Ar/39Ar method.
  The pluton has a well-defined palaeomagnetic pole which is dated at 3179±18 (2 σ ) Ma by 40Ar/39Ar dating of hornblende. This pole (18°N, 310°E, A 95=9°) yields a palaeolatitude of 0°, significantly different from other Archaean poles from the Kaapvaal Craton. The palaeolatitude difference implies that there was significant apparent polar wander during the Archaean. A second, overprinting magnetization seen in the pluton is also seen in the lower-Proterozoic dolerite dykes, and is consistent with other lower-Proterozoic (2150–1950  Ma) poles for southern Africa.  相似文献   

6.
We present new palaeomagnetic and isotopic data from the southern Victoria Land region of the Transantarctic Mountains in East Antarctica that constrain the palaeogeographic position of this region during the Late Cambrian and Early Ordovician. A new pole has been determined from a dioritic intrusion at Killer Ridge (40Ar/39Ar biotite age of 499 ± 3 Ma) and hornblende diorite dykes at Mt. Loke (21°E, 7°S, A 95 = 8°, N = 6 VGPs). The new Killer Ridge/Mt. Loke pole is indistinguishable from Gondwana Late Cambrian and Early Ordovician poles. Previously reported palaeomagnetic poles from southern Victoria Land have new isotopic age constraints that place them in the Late Cambrian rather than the Early Ordovician. Based upon the new palaeomagnetic and isotopic data, new Gondwana Late Cambrian and Early Ordovician mean poles have been calculated.  相似文献   

7.
A palaeomagnetic study of the Elgee Formation red siltstones and shales in the Palaeoproterozoic Kimberley Basin of northwestern Australia has been carried out. All seven sampling sites revealed an extremely stable magnetic remanence carried by haematite. The age of the formation is confined by precise SHRIMP U–Pb ages of early diagenetic xenotime from rocks both above and below it to be 1704 + 7/−14 Ma, but this may represent a minimum age. The youngest detrital zircon grains in the underlying formation provide a maximum age of 1786 ± 14 Ma for the formation. The extreme stability of the remanence, the dissimilarity of the remanent direction from expected younger palaeomagnetic directions, and the lack of regional overprint in the 1790 ± 4 Ma Hart Dolerite just north of the study region support a primary origin for the remanence. A marginally positive fold test also supports a primary origin. The mean direction of D = 92.2°, I = 14.9°, α 95 = 6.4° gives a palaeopole at 4.4°S, 210.0°E with dp = 3.3°, dm = 6.5°. This pole, a previously reported palaeopole from the Hart Dolerite and ca. 1700 Ma overprint poles from the Pilbara Craton all agree with palaeopoles of similar ages from the McArthur Basin of northern Australia. Palaeomagnetic results thus suggest that the North and West Australian cratons were possibly joined together by approximately 1.7 Ga.  相似文献   

8.
Summary. Piper suggested that the Lewisian has rotated 30° anticlockwise since magnetization, whereas the opposite appears more likely. The main magnetization in the Lewisian recognized by Piper and Beckmann was imposed upon cooling after the Laxfordian metamorphism at about 1750 (± 50) Ma. The palaeomagnetic pole corresponding to this magnetization is at 37.6° N, 273.2° E ( dp = 3.7°, dm = 5.2°).
In Greenland, palaeomagnetic poles similar to each other, with a mean pole at 21.6° N, 280.1° E ( K = 52, A 95= 9.4°), have been determined from five widely separated regions in central West Greenland and from Angmags-salik in East Greenland. The magnetization observed in all these regions was established upon cooling after the Nagssugtoqidian metamorphism, again at about 1750 (± 50) Ma.
The Laxfordian and Nagssugtoqidian metamorphisms were equivalent. It is therefore assumed that the two palaeomagnetic poles quoted above were originally identical. Their present difference can be explained by clockwise rotation of north-west Scotland about a local rotation pole since the Lewisian became magnetized, in addition to opening of the Atlantic assuming conventional reconstructions:
(1) assuming the reconstruction of Bullard, Everett & Smith, the local rotation proposed is 39.5° (± 18.1°) about a pole of rotation at 60.3° N, 354.5° E, or
(2) assuming the reconstruction of Le Pichon, Sibuet & Francheteau, the local rotation is 28.0° (±17.7°) about a pole of rotation at 54.1° N, 354.6° E.
These proposals of local clockwise rotation of north-west Scotland accord with that of Storetvedt based on palaeomagnetic results from Devonian rocks on the north-west side of the Great Glen Fault.  相似文献   

9.
About six separately orientated cores were collected at each of 14 sites distributed throughout the arcuate, west-dipping, 6  km thick, Freetown layered igneous complex. Alternating field and thermal demagnetization both isolate a stable component of remanent magnetism which corresponds to a palaeomagnetic south pole from 13 sites (nine reverse, four normal polarity) at 82.9°S, +32.7°E ( α 95 = 5.6°). This is indistinguishable from that reported in 1971 based on alternating field demagnetization of cores from 10 orientated hand samples.
  The difference between the Freetown pole (age: 193 ± 3  Ma) and other mid-Jurassic poles from West Africa could be due to its greater age. The difference between the whole West African Jurassic pole group and the Karoo pole from southern Africa, however, suggests moderate (∼10°) differential rotation of West Africa relative to the Kaapvaal craton.
  A prevalent magnetic foliation fabric coincides generally with the petrological layering, as might be expected, but a ubiquitous magnetic lineation is predominantly down-dip. This is compatible with a down-dip pyroxene lineation reported to be present in some field outcrops, and interpreted in terms of late-stage deformation during the slow crystallization and cooling of the large igneous body. However, a fold test shows that the igneous layering had already achieved its present attitude before the Complex cooled to ∼570 °C (the maximum blocking temperature of the characteristic remanence).  相似文献   

10.
The asymmetry (skewness) of marine magnetic anomaly 32 (72.1–73.3  Ma) on the Pacific plate has been analysed in order to estimate a new palaeomagnetic pole. Apparent effective remanent inclinations of the seafloor magnetization were calculated from skewness estimates of 108 crossings of anomaly 32 distributed over the entire Pacific plate and spanning a great-circle distance of ~12  000  km. The data were inverted to obtain a palaeomagnetic pole at 72.1°N, 26.8°E with a 95 per cent confidence ellipse having a 4.0° major semi-axis oriented 98° clockwise of north and a 1.8° minor semi-axis; the anomalous skewness is 14.2° ± 3.7°. The possible dependence of anomalous skewness on spreading rate was investigated with two empirical models and found to have a negligible effect on our palaeopole analysis over the range of relevant spreading half-rates, ~25 to ~90  mm  yr−1 . The new pole is consistent with the northward motion for the Pacific plate indicated by coeval palaeocolatitude and palaeoequatorial data, but differs significantly from, and lies to the northeast of, coeval seamount poles. We attribute the difference to unmodelled errors in the seamount poles, mainly in the declinations. Comparison with the northward motion inferred from dated volcanoes along the Hawaiian–Emperor seamount chain indicates 13° of southward motion of the Hawaiian hotspot since 73  Ma. When the pole is reconstructed with the Pacific plate relative to the Pacific hotspots, it differs by 14°–18° from the position of the pole relative to the Indo–Atlantic hotspots. This has several possible explanations including bias in one or more of the palaeomagnetic poles, motion between the Pacific and Indo–Atlantic hotspots, and errors in plate reconstructions relative to the hotspots.  相似文献   

11.
Summary. In addition to a component (A) of recent origin, two NRM components are distinguished in the Cambro-Ordovician redbeds of the Armorican Massif. In most sites other than those from northern Brittany the oldest (C) is probably Silurian or early Devonian, and is mainly carried by specularite with high blocking temperatures. This component was variably overprinted by a Devonian or early Carboniferous component (B3) which was probably acquired as a viscous PTRM on uplift after burial, and is carried by hematite pigment with intermediate to high blocking temperatures. In the red succession of Plourivo-Bréhec (northern Brittany) declination scatter of two intermediate to high blocking temperature components (B1 and B2) is consistent with clockwise rotation of the bulk of Europe during the late Carboniferous, implied independently by published European Carboniferous palaeomagnetic data.
Stable NRM in the Erquy Spilite Series yields a palaeomagnetic pole at 344° E, 35° N ( dp = 21°, dm = 22°), and was probably acquired during remagnetization following Late Precambrian or early Cambrian folding. This is consistent with a middle to late Cambrian age of remagnetization estimated by comparison with other poles of known age.
A palaeomagnetic pole position at 332° E, 34° S ( dp = 4°, dm = 7°) determined for the Hercynian Trégastel-Ploumanac'h complex is consistent with other middle to late Carboniferous poles from elsewhere in Europe.  相似文献   

12.
Summary. Three principal directions of magnetization are recognized in the central part of the Lewisian metamorphic terrain of north-west Scotland. The first ('A') magnetization is a high blocking temperature component residing in magnetite and imposed during post-Laxfordian uplift and cooling. Fifty sites yield an overall mean D = 285.9°, I = 54.9° and palaeomagnetic pole at 273.2° E, 37.6° N ( dp = 3.7°, dm = 5.2°); this magnetization was probably acquired at crustal depths of 6–10 km and is linked to K—Ar uplift ages averaging 1650–1625 Ma. The second ('B') magnetizations are defined by E—W directions and also reside in high blocking temperature components; they are, however, dipolar, have some properties distinct from the 'A' magnetizations, and are correlated with late stages in the history of the complex at 1400–1200 Ma. The third ('C') NE directed magnetizations reside predominantly in low blocking temperature components in pyrrhotite and possibly maghemite, and were probably acquired at a late stage of the regional uplift; they do not correlate with post-1450 Ma magnetizations from the Laurentian Shield and probably relate to the as yet undefined interval 1600–1450 Ma. The collective palaeomagnetic data and certain geologic data suggest that the Lewisian foreland should be rotated by 30° clockwise about a local axis of rotation on the conventional reconstruction of the North Atlantic continents; this rotation is associated with Lower Palaeozoic trans-current movements and may be related to a fourth ('D') magnetization of viscous origin.
A collective assessment of 1850–1600 Ma palaeomagnetic data for the Laurentian Shield defines a large apw loop; there is widespread agreement between data from the constituent structural provinces of the Shield although different metamorphic regions define complementary segments of the loop related to uplift over different intervals of time.  相似文献   

13.
Upper Jurassic red sandstones and red siltstones were collected from 67 layers at 12 localities in the Penglaizhen formation. This formation is in the north of Bazhong county (31.8°N, 106.7°E) in the Sichuan basin, which is located in the northern part of the Yangtze craton. Thermal demagnetization isolated a high-temperature magnetic component with a maximum unblocking temperature of about 690 °C from 45 layers. The primary nature of the magnetization acquisition is ascertained through the presence of magnetostratigraphic sequences with normal and reversed polarities, as well as positive fold and reversal tests at the 95 per cent confidence level. The tilt-corrected mean direction of 36 layers is D = 20.0°, I = 28.8° with α 95 = 5.8°. A Late Jurassic palaeomagentic pole at 64.7°N, 236.0°E with A 95 = 7.0° is calculated from the palaeomagnetic directions of 11 localities. This pole position agrees with the two other Late Jurassic poles from the northern part of the Yangtze craton. A characteristic Late Jurassic pole is calculated from the three poles (68.6°N, 236.0°E with A 95 = 8.0°) for the northern part of the Yangtze craton. This pole position is significantly different from that for the southern part of the Yangtze craton. This suggests that the southern part of the Yangtze craton was subjected to southward extrusion by 1700 ± 1000  km with respect to the northern part. Intracraton deformation occurred within the Yangtze craton.  相似文献   

14.
Summary. From nine Upper Cretaceous—Lower Tertiary (85 ± 5–66 ± 5 Ma) volcanic hills in Central Argentina (33°S, 65°W), 26 hand samples were collected yielding a palaeomagnetic pole at 45°E 70°s ( A 95 = 12.1°; k = 13.6; N = 12) after AC cleaning. Three sites show normal and nine reversed polarity. This pole is close to the pole for the late Cretaceous (69 Ma) Andacolo Series.  相似文献   

15.
Continental red sandstone and siltstone rocks of the Dewey Lake (Quartermaster) Formation at Maroon Cliffs, near Carlsbad, New Mexico, are characterized by two components of magnetization with partially overlapping laboratory unblocking temperature spectra. Both magnetizations display high coercivities (>100 mT), probably residing in haematite. A north-directed magnetization with steep positive inclination unblocks between 100 and 650 °C, isolating a predominantly northwest-directed magnetization, with shallow inclination, of near uniform normal polarity and maximum unblocking temperatures of 680 °C.
We collected samples from 24 palaeomagnetic sites (i.e. individual beds) from a ~60 m thick section of flat-lying strata disconformably overlying carbonate and evaporite rocks of the Rustler Formation. The upper member of the Rustler Formation contains a Late Permian (early Changxingian) marine invertebrate and conodont fauna. Of the sampled sites, four yield only steep magnetizations, interpreted to be recent overprints. Eight sites did not yield well-grouped site means and were excluded from the final calculations. The formation mean (dec = 337.7°, inc = 9.2°; k = 31.6, α 95 = 7.8°, N = 12 sites) defines a palaeomagnetic pole located at 55.2°N, 117.5°E, in good agreement with other Late Permian North American cratonic poles.
Correlation of the short polarity sequence of this section of Dewey Lake strata is unambiguous. Compared with the polarity stratigraphy of marine sections in Asia, and supported by isotopic age determinations on a widespread bentonite bed in Dewey Lake strata in west Texas (approximately 251 Ma) and fossil data for the underlying Rustler Formation, the magnetostratigraphy is consistent with deposition of the Dewey Lake Formation during the latest Changxingian (Late Permian) stage.  相似文献   

16.
A palaeomagnetic study of 115 samples (328 specimens) from 22 sites of the Mid- to Upper Cretaceous Bagh Group underlying the Deccan Traps in the Man valley (22°  20'N, 75°  5'E) of the Narmada Basin is reported. A characteristic magnetization of dominantly reverse polarity has been isolated from the entire rock succession, whose depositional age is constrained within the Cretaceous Normal Superchron. Only a few samples in the uppermost strata have yielded either normal or mixed polarity directions. The overall mean of reverse magnetization is D m=144°, I m=47° ( α 95=2.8°, k =152, N =18 sites) with the corresponding S-pole position 28.7°S, 111.2°E ( A 95=3.1°) and a palaeolatitude of 28°S±3°. The characteristic remanence is carried dominantly by magnetite. Similar magnetizations of reverse polarity are also exhibited by Deccan basalt samples and a mafic dyke in the study area. This pole position falls near the Late Cretaceous segment of the Indian APWP and is concordant with poles reported from the Deccan basalt flows and dated DSDP cores (75–65  Ma) of the Indian Ocean. It is therefore concluded that the Bagh Group in the eastern part of the Narmada Basin has been pervasively remagnetized by the igneous activity of Deccan basalt effusion. This overprinted palaeomagnetic signature in the Bagh Group indicates a counter-clockwise rotation by 13°±3° and a latitudinal drift northwards by 3°±3° of the Indian subcontinent during Deccan volcanism.  相似文献   

17.
New palaeomagnetic data from the Lower and Middle Cambrian sedimentary rocks of northern Siberia are presented. During stepwise thermal demagnetization the stable characteristic remanence (ChRM) directions have been isolated for three Cambrian formations. Both polarities have been observed, and mean ChRM directions (for normal polarity) are: Kessyusa Formation (Lower Cambrian) D = 145°, I = -40°, N = 12, α95= 12.8°; pole position: φ= 38°S, A = 165°E; Erkeket Formation (Lower Cambrian, stratigraphically highly) D = 152°, I = - 47°, N = 23, α95= 6.8°; pole position: φ= 45°S, A = 159°E; Yunkyulyabit-Yuryakh Formation (Middle Cambrian) D = 166°, I = - 33°, N = 38, α95= 4.6°; pole position: φ= 36°S, L = 140°E. These poles are in good agreement with the apparent polar wander path based on the bulk of existing Cambrian palaeomagnetic data from the Siberian platform. In Cambrian times, the Siberian platform probably occupied southerly latitudes stretching from about 35° to 0°, and was oriented 'reversely' with respect to its present position. Siberia moved northwards during the Cambrian by about 10° of latitude. This movement was accompanied by anticlockwise rotation of about 30°. The magnetostratigraphic results show the predominance of reversed polarity in the Early Cambrian and an approximately equal occurrence of both polarities in the part of the Middle Cambrian studied. These results are in good agreement with the palaeomagnetic polarity timescale for the Cambrian of the Siberian platform constructed previously by Khramov et al. (1987).  相似文献   

18.
Rocks from the Massif de la Serre in the French Jura (latitude: 47.3°N longitude: 5.6°E) belonging to an ignimbritic assemblage dominated by vitrophyric rhyolites, and whose age of formation is probably Permian (Autunian to Saxonian) have been studied by applying thermal and alternating field demagnetization. the characteristic magnetization has a mean direction derived from 89 samples of D= 170°, I = - 16°, k = 26.2°, α95= 3° and a corresponding north palaeopole at 41°N, 172°E, A 95= 5°. the pole, which is very close to the Permian European poles, can thus be considered as a new contribution. Some samples are found to carry a unique normal polarity magnetization, others carry both normal and reverse polarities. It therefore seems that, similar to Permian series in the USSR, these west European rocks have registered a normal event in the Kiaman interval. From a structural point of view, we may conclude that during the Alpine tectonic phases the Massif de la Serre has not been subjected to substantial rotation.  相似文献   

19.
Summary. We present palaeomagnetic results from the Durgapipal and Rudraprayag formations, which are basic volcanic formations in the Lesser Himalayas of Uttar Pradesh State. NRM measurements and AF demagnetization stability tests were made on specimens cored from oriented block samples collected at representative sites. Mean stable remanent magnetic directions were used for calculating the Virtual Geomagnetic Pole (VGP) positions; where necessary tectonic corrections were applied.
The virtual geomagnetic north poles were found to be located at:
  • (a). 

    Durgapipal (Permian): λ p = 10° S, Lp = 42° W;

  • (b). 

    Rudraprayag (Silurian-Devonian): λ p = 30° S, Lp = 12° W.


A new, continuous Phanerozoic apparent polar wandering curve for the Indian subcontinent has been plotted from the available palaeomagnetic data and the VGP positions reported in this paper. As a result, the gap in the Indian palaeomagnetic data from the Lower Carboniferous to the Cambrian has been partially filled. The locations of the pole positions for the two formations on the Phanerozoic polar wandering curve for the Indian subcontinent, have been found to coincide with the stratigraphic ages assigned to them on the basis of rather limited geological and palaeontological evidence.
The Cambrian and Permian poles for the Salt Range in the NW Himalayas and the Permian pole for the Kumaon Himalayas are grouped along with the pole positions of contemporaneous formations of the Peninsular Shield. The palaeomagnetic data thus suggests that the two formations are autochthonous in nature.  相似文献   

20.
Palaeomagnetic investigation of Lower Ordovician limestone in the vicinity of St. Petersburg yields a pole position at latitude 34.7°N, longitude 59.1°E ( dp / dm =5.7°/6.4°). A probable primary remanence origin is supported by the presence of a field reversal. The limestone carries one other remanent magnetization component associated with a Mesozoic remagnetization event.
An apparent polar wander path is compiled for Baltica including the new result, ranging in age from Vendian to Cretaceous. Ages of the published Lower to mid-Palaeozoic palaeomagnetic pole positions are adjusted in accordance with the timescale of Tucker & McKerrow (1995). The new Arenig result is the oldest of a series of Ordovician and Silurian palaeomagnetic pole positions from limestones in the Baltic region. There are no data to constrain apparent polar wander for the Tremadoc, Cambrian and latest Vendian. If the Fen Complex results, previously taken to be Vendian in age ( c . 565 Ma), are reinterpreted as Permian remagnetizations, an Early Ordovician–Cambrian–Vendian cusp in the polar wander path for Baltica is eliminated. The apparent polar wander curve might then traverse directly from poles for Vendian dykes on the Kola peninsula ( c . 580 Ma) towards our new Arenig pole ( c . 480 Ma). The consequence of this change in terms of the motion of Baltica in Cambrian times is to reduce significantly a rotational component of movement.
The new Arenig pole extends knowledge of Ordovician apparent polar wander an increment back in time and confirms the palaeolatitude and orientation of Baltica in some published palaeogeographies. Exclusion of the Fen Complex result places Baltica in mid- to high southerly latitudes at the dawn of the Palaeozoic, consistent with faunal and sedimentological evidence but at variance with some earlier palaeomagnetic reconstructions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号