首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The linear thermal expansions of åkermanite (Ca2MgSi2O7) and hardystonite (Ca2ZnSi2O7) have been measured across the normal-incommensurate phase transition for both materials. Least-squares fitting of the high temperature (normal phase) data yields expressions linear in T for the coefficients of instantaneous linear thermal expansion, $$\alpha _1 = \frac{1}{l}\frac{{dl}}{{dT}}$$ for åkermanite: $$\begin{gathered} \alpha _{[100]} = 6.901(2) \times 10^{ - 6} + 1.834(2) \times 10^{ - 8} T \hfill \\ \alpha _{[100]} = - 2.856(1) \times 10^{ - 6} + 11.280(1) \times 10^{ - 8} T \hfill \\ \end{gathered} $$ for hardystonite: $$\begin{gathered} \alpha _{[100]} = 15.562(5) \times 10^{ - 6} - 1.478(3) \times 10^{ - 8} T \hfill \\ \alpha _{[100]} = - 11.115(5) \times 10^{ - 6} + 11.326(3) \times 10^{ - 8} T \hfill \\ \end{gathered} $$ Although there is considerable strain for temperatures within 10° C of the phase transition, suggestive of a high-order phase transition, there appears to be a finite ΔV of transition, and the phase transition is classed as “weakly first order”.  相似文献   

2.
Non-metamict perrierite-(La) discovered in the Dellen pumice quarry, near Mendig, in the Eifel volcanic district, Rheinland-Pfalz, Germany has been approved as a new mineral species (IMA no. 2010-089). The mineral was found in the late assemblage of sanidine, phlogopite, pyrophanite, zirconolite, members of the jacobsite-magnetite series, fluorcalciopyrochlore, and zircon. Perrierite-(La) occurs as isolated prismatic crystals up to 0.5 × 1 mm in size within cavities in sanidinite. The new mineral is black with brown streak; it is brittle, with the Mohs hardness of 6 and distinct cleavage parallel to (001). The calculated density is 4.791 g/cm3. The IR spectrum does not contain absorption bands that correspond to H2O and OH groups. Perrierite-(La) is biaxial (-), α = 1.94(1), β = 2.020(15), γ = 2.040(15), 2V meas = 50(10)°, 2V calc = 51°. The chemical composition (electron microprobe, average of seven point analyses, the Fe2+/Fe3+ ratio determined from the X-ray structural data, wt %) is as follows: 3.26 CaO, 22.92 La2O3, 19.64 Ce2O3, 0.83 Pr2O2, 2.09 Nd2O3, 0.25 MgO, 2.25 MnO, 3.16 FeO, 5.28 Fe2O3, 2.59 Al2O3, 16.13 TiO2, 0.75 Nb2O5, and 20.06 SiO2, total is 99.21. The empirical formula is (La1.70Ce1.45Nd0.15Pr0.06Ca0.70)Σ4.06(Fe 0.53 2+ Mn0.38Mg0.08)Σ0.99(Ti2.44Fe 0.80 3+ Al0.62Nb0.07)Σ3.93Si4.04O22. The simplified formula is (La,Ce,Ca)4(Fe2+,Mn)(Ti,Fe3+,Al)4(Si2O7)2O8. The crystal structure was determined by a single crystal. Perrierite-(La) is monoclinic, space group P21/a, and the unit-cell dimensions are as follows: a =13.668(1), b = 5.6601(6), c = 11.743(1) Å, β = 113.64(1)°; V = 832.2(2) Å3, Z = 2. The strong reflections in the X-ray powder diffraction pattern are [d, Å (I, %) (hkl)]: 5.19 (40) (110), 3.53 (40) ( $\overline 3 $ 11), 2.96 (100) ( $\overline 3 $ 13, 311), 2.80 (50) (020), 2.14 (50) ( $\overline 4 $ 22, $\overline 3 $ 15, 313), 1.947 (50) (024, 223), 1.657 (40) ( $\overline 4 $ 07, $\overline 4 $ 33, 331). The holotype specimen of perrierite-(La) is deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, Russia, with the registration number 4059/1.  相似文献   

3.
The enthalpy of formation of andradite (Ca3Fe2Si3O12) has been estimated as-5,769.700 (±5) kJ/mol from a consideration of the calorimetric data on entropy (316.4 J/mol K) and of the experimental phaseequilibrium data on the reactions: 1 $$\begin{gathered} 9/2 CaFeSi_2 O_6 + O_2 = 3/2 Ca_3 Fe_2 Si_3 O_{12} + 1/2 Fe_3 O_4 + 9/2 SiO_2 (a) \hfill \\ Hedenbergite andradite magnetite quartz \hfill \\ \end{gathered} $$ 1 $$\begin{gathered} 4 CaFeSi_2 O_6 + 2 CaSiO_3 + O_2 = 2 Ca_3 Fe_2 Si_3 O_{12} + 4 SiO_2 (b) \hfill \\ Hedenbergite wollastonite andradite quartz \hfill \\ \end{gathered} $$ 1 $$\begin{gathered} 18 CaSiO_3 + 4 Fe_3 O_4 + O_2 = 6Ca_3 Fe_2 Si_3 O_{12} (c) \hfill \\ Wollastonite magnetite andradite \hfill \\ \end{gathered} $$ 1 $$\begin{gathered} Ca_3 Fe_2 Si_3 O_{12} = 3 CaSiO_3 + Fe_2 O_3 . (d) \hfill \\ Andradite pseudowollastonite hematite \hfill \\ \end{gathered} $$ and $$log f_{O_2 } = E + A + B/T + D(P - 1)/T + C log f_{O_2 } .$$ Oxygen-barometric scales are presented as follows: $$\begin{gathered} E = 12.51; D = 0.078; \hfill \\ A = 3 log X_{Ad} - 4.5 log X_{Hd} ; C = 0; \hfill \\ B = - 27,576 - 1,007(1 - X_{Ad} )^2 - 1,476(1 - X_{Hd} )^2 . \hfill \\ \end{gathered} $$ For the assemblage andradite (Ad)-hedenbergite (Hd)-magnetite-quartz: $$\begin{gathered} E = 13.98; D = 0.0081; \hfill \\ A = 4 log(X_{Ad} / X_{Hd} ); C = 0; \hfill \\ B = - 29,161 - 1,342.8(1 - X_{Ad} )^2 - 1,312(1 - X_{Hd} )^2 . \hfill \\ \end{gathered} $$ For the assemblage andradite-hedenbergite-wollastonite-quartz: 1 $$\begin{gathered} E = 13.98;{\text{ }}D = 0.0081; \hfill \\ A = 4\log (X_{Ad} /X_{Hd} );{\text{ C = 0;}} \hfill \\ B = - 29,161 - 1,342.8(1 - X_{Ad} )^2 - 1,312(1 - X_{Hd} )^2 . \hfill \\ \end{gathered} $$ For the assemblage andradite-hedenbergite-calcitequartz: 1 $$\begin{gathered} E = - 1.69;{\text{ }}D = - 0.199; \hfill \\ A = 4\log (X_{Ad} /X_{Hd} );{\text{ C = 2;}} \hfill \\ B = - 20,441 - 1,342.8(1 - X_{Ad} )^2 - 1,312(1 - X_{Hd} )^2 . \hfill \\ \end{gathered} $$ For the assemblage andradite-hedenbergite-wollastonite-calcite: 1 $$\begin{gathered} E = - 17.36;{\text{ }}D = - 0.403; \hfill \\ A = 4\log (X_{Ad} /X_{Hd} );{\text{ C = 4;}} \hfill \\ B = - 11,720 - 1,342.8(1 - X_{Ad} )^2 - 1,312(1 - X_{Hd} )^2 \hfill \\ \end{gathered} $$ The oxygen fugacity of formation of those skarns where andradite and hedenbergite assemblage is typical can be calculated by using the above equations. The oxygen fugacity of formation of this kind of skarn ranges between carbon dioxide/graphite and hematite/magnetite buffers. It increases from the inside zones to the outside zones, and appears to decrease with the ore-types in the order Cu, Pb?Zn, Fe, Mo, W(Sn) ore deposits.  相似文献   

4.
Equilibrium alumina contents of orthopyroxene coexisting with spinel and forsterite in the system MgO-Al2O3-SiO2 have been reversed at 15 different P-T conditions, in the range 1,030–1,600° C and 10–28 kbar. The present data and three reversals of Danckwerth and Newton (1978) have been modeled assuming an ideal pyroxene solid solution with components Mg2Si2O6 (En) and MgAl2SiO6 (MgTs), to yield the following equilibrium condition (J, bar, K): $$\begin{gathered} RT{\text{ln(}}X_{{\text{MgTs}}} {\text{/}}X_{{\text{En}}} {\text{) + 29,190}} - {\text{13}}{\text{.42 }}T + 0.18{\text{ }}T + 0.18{\text{ }}T^{1.5} \hfill \\ + \int\limits_1^P {\Delta V_{T,P}^{\text{0}} dP = 0,} \hfill \\ \end{gathered} $$ where $$\begin{gathered} + \int\limits_1^P {\Delta V_{T,P}^{\text{0}} dP} \hfill \\ = [0.013 + 3.34 \times 10^{ - 5} (T - 298) - 6.6 \times 10^{ - 7} P]P. \hfill \\ \end{gathered} $$ The data of Perkins et al. (1981) for the equilibrium of orthopyroxene with pyrope have been similarly fitted with the result: $$\begin{gathered} - RT{\text{ln(}}X_{{\text{MgTs}}} \cdot X_{{\text{En}}} {\text{) + 5,510}} - 88.91{\text{ }}T + 19{\text{ }}T^{1.2} \hfill \\ + \int\limits_1^P {\Delta V_{T,P}^{\text{0}} dP = 0,} \hfill \\ \end{gathered} $$ where $$\begin{gathered} + \int\limits_1^P {\Delta V_{T,P}^{\text{0}} dP} \hfill \\ = [ - 0.832 - 8.78{\text{ }} \times {\text{ 10}}^{ - {\text{5}}} (T - 298) + 16.6{\text{ }} \times {\text{ 10}}^{ - 7} P]{\text{ }}P. \hfill \\ \end{gathered} $$ The new parameters are in excellent agreement with measured thermochemical data and give the following properties of the Mg-Tschermak endmember: $$H_{f,970}^0 = - 4.77{\text{ kJ/mol, }}S_{298}^0 = 129.44{\text{ J/mol}} \cdot {\text{K,}}$$ and $$V_{298,1}^0 = 58.88{\text{ cm}}^{\text{3}} .$$ The assemblage orthopyroxene+spinel+olivine can be used as a geothermometer for spinel lherzolites, subject to a choice of thermodynamic mixing models for multicomponent orthopyroxene and spinel. An ideal two-site mixing model for pyroxene and Sack's (1982) expressions for spinel activities provide, with the present experimental calibration, a geothermometer which yields temperatures of 800° C to 1,350° C for various alpine peridotites and 850° C to 1,130° C for various volcanic inclusions of upper mantle origin.  相似文献   

5.
The free energy of the reaction: $$Co_3 O_4 \rightleftarrows 3C_O O + \tfrac{1}{2}O_2$$ has been studied between 890 and 1,240 K using an e.m.f. technique. There is a phase transition in Co3O4 at 1,120±20 K which is accompanied by a large change in entropy (~47 JK?1 mol?1 of Co3O4), and a rapid increase in unit cell volume and in electical conductivity. This is interpreted to be due to a partial change in electronic spin states in Co3 + from the spin-paired (low spin) configuration observed at room temperature to the spin-unpaired (high spin) state. The transition is probably not first order.  相似文献   

6.
Subsolidus phase relations on the join CaMgSi2O6-CaFe3+ AlSiO6-CaTiAl2O6 were studied by the ordinary quenching method at \(f_{O_2 } = 10^{ - 11} \) atm and 1,100°C. Crystalline phases encountered are clinopyroxeness (ss:solid solution) (Cpxss), melilite (Mel), perovskite (Pv), spinelss (Spss), magnetitess (Mtss) and anorthite (An). There is no Cpxss single phase field, and the following assemblages were found; Cpxss+Mel, Cpxss+Mel+Spss, Cpxss+Mel+Pv, Cpxss+Mel+Spss+Pv, Cpxss+Pv+Spss+An, Spss+Pv+Mel+An+Cpxss, Mel+Mtss+An+Spss+Cpxss+liquid and Mel+Mtss+An+Spss+Cpxss+Pv. Mössbauer spectral study revealed that Cpxss contains both Fe2+ and Fe3+ in the octahedral site, and it was confirmed that the CaFe3+ AlSiO6 content in the Cpxss at low \(f_{O_2 } \) is considerably less than that in the Cpxss crystallized in air, whereas the CaFe2+Si2O6 component increases. The maximum solubility of CaTlAl2O6 component in the Cpxss at low \(f_{O_2 } \) is higher than that in air. The decrease of CaFe3+ AlSiO6 in the Cpxss at low \(f_{O_2 } \) may cause increase of CaTial2O6 in the Cpxss.  相似文献   

7.
Boron is known to interact with a wide variety of protonated ligands(HL) creating complexes of the form B(OH)2L-.Investigation of the interaction of boric acid and bicarbonate in aqueoussolution can be interpreted in terms of the equilibrium $B(OH)_3^0 + HCO_3^ - \rightleftharpoons B(OH)_2 CO_3^ - + H_2 O$ The formation constant for this reaction at 25 °C and 0.7 molkg-1 ionic strength is $K_{BC} = \left[ {B(OH)_2 CO_3^ - } \right]\left[ {B(OH)_3^0 } \right]^{ - 1} \left[ {HCO_3^ - } \right]^{ - 1} = 2.6 \pm 1.7$ where brackets represent the total concentration of each indicatedspecies. This formation constant indicates that theB(OH)2 $CO_3^ - $ concentration inseawater at 25 °C is on the order of 2 μmol kg-1. Dueto the presence of B(OH)2 $CO_3^ - $ , theboric acid dissociation constant ( $K\prime _B $ ) in natural seawaterdiffers from $K\prime _B $ determined in the absence of bicarbonate byapproximately 0.5%. Similarly, the dissociation constants of carbonicacid and bicarbonate in natural seawater differ from dissociation constantsdetermined in the absence of boric acid by about 0.1%. Thesedifferences, although small, are systematic and exert observable influenceson equilibrium predictions relating CO2 fugacity, pH, totalcarbon and alkalinity in seawater.  相似文献   

8.
Single crystals of two novel calcium oxotellurate(IV) nitrates were grown under hydrothermal conditions and were structurally characterized by X-ray diffraction. Ca $_5$ Te $_4\text {O}_{12}$ (NO $_3$ ) $_2$ (H $_2$ O) $_2$ [ $Cc$ , $Z=4$ , $a=25.258(3)$ Å, $b=5.7289(7)$ Å, $c=17.0066(19)$ Å, $\beta =124.377(2)^{\circ}$ , $R[F^2 > 2\sigma (F^2)]=0.043$ , 4083 $F^2$ data, 281 parameters] can be described as a non-classic order/disorder (OD) structure, which fulfills the basic principle of OD theory, viz. local equivalence of polytypes, but does not strictly follow the vicinity condition (VC) of OD theory. The structure is made up from an alternating stacking of non-polar layers composed of isolated [TeO $_3$ ] units and Ca $^{2+}$ ions and polar layers containing NO $_3^-$ ions and water molecules. The electron lone-pairs of the [TeO $_3$ ] units protrude into the free space of the anion/water layers. The crystal under investigation was a non-classic OD-twin of domains of a maximum degree of order (MDO). At the twin plane a fragment of the second MDO polytype is located. The main building blocks of Ca $_6$ Te $_5\text {O}_{15}$ (NO $_3$ ) $_2$ [ $P2_1/c$ , $Z=4$ , $a=15.494(2)$ Å, $b=5.6145(7)$ Å, $c=39.338(4)$ Å, $\beta =142.480(5)^{\circ}$ , $R[F^2 > 2\sigma (F^2)]=0.043$ , 3026 $F^2$ data, 307 parameters] are isolated [TeO $_3$ ] units and Ca $^{2+}$ ions which are connected to a three-dimensional framework perforated by channels in which the N atoms of the nitrate anions are located and the electron lone-pairs of the [TeO $_3$ ] units protrude. The structure can topologically be derived from the structure of Ca $_5$ Te $_4\text {O}_{12}$ (NO $_3$ ) $_2$ (H $_2$ O) $_2$ by removing the water molecules and connecting the CaTeO $_3$ layers with additional [TeO $_3$ ] units and Ca $^{2+}$ ions.  相似文献   

9.
The high-grade assemblage Cd-Ga-Si-Qz can be thermodynamically modelled from available calorimetric data on the metastable reaction: (I) $$3 MgCd \rightleftarrows 2 Py + 4 Si + 5 Qz$$ naturalK D Fe-Mg between garnet and cordierite and experimental results on cordierite hydration. In the system SiO2-Al2O3-MgO-H2O, reaction (I) becomes (II) $$3 MgCd \cdot nH_2 O \rightleftarrows 2 Py + 4 Si + 5 Qz + 3 nH_2 O$$ . However, hydrous cordierite is neither a hydrate nor a solid solution between water and anhydrous cordierite and when nH2O (number of moles of H2O in Cd) is plotted against \(P_{H_2 O} \) , the resulting isotherms are similar to adsorption isotherms characteristic of zeolitic minerals. Reaction (II) can thus be considered as a combination of reaction (I) with a physical equilibrium of the type nH2O (in Cd)?nH2O (in vapor phase). Starting from a point on equilibrium (I), introduction of H2O into anhydrous Mg-cordierite lowers the chemical potential of MgCd and hence stabilizes this mineral to higher pressure relative to the right-hand assemblage in reaction (I). The pressure increment of stabilization,ΔP, above the pressure limit of anhydrous cordierite stability at constantT, has been calculated using the standard thermodynamics of adsorption isotherms. Cordierite is regarded as a mixture of Mg2Al4Si5O18 and H2O. The activity of H2O in the cordierite is evaluated relative to an hypothetical standard state extrapolated from infinite H2O dilution, by using measured hydration data. The activity of Mg2Al4Si5O18 in the cordierite is then obtained by integration of the Gibbs-Duhem equation, and the pressure stabilization increment,ΔP, computed by means of the relation: $$\Delta V_s \Delta P \cong - RT\ln a_{MgCd}^{MgCd \cdot nH2O} \left( {\Delta V indepentdent of P and T} \right)$$ . Thus, one may contour theP-T plane in isopleths of nH2O=constant within the area of Mg-cordierite stability allowed by the hydration data for \(P_{H_2 O} = P_{total} \) . The present model indicates greater stabilization of cordierite by H2O than the model of Newton and Wood (1979) and the calculated curve for metastable breakdown of hydrous MgCd is consistent with experimental data on cordierite breakdown at \(P_{H_2 O} = P_{total} \) . Mg/(Mg+Fe) isopleths have been derived for cordierites of varying nH2O in the SiO2-Al2O3-MgO-FeO-H2O system using the additional assumptions that (Fe, Mg) cordierite and (Fe, Mg) garnet behave as ideal solutions, and that typical values of the distribution coefficient of Fe and Mg between coexisting garnet and cordierite observed in natural parageneses can be applied to the calculations. The calculated stable breakdown curve of Fe-cordierite under conditions of \(P_{H_2 O} = P_{total} \) to almandine, sillimanite, quartz and vapor has a positive slope (dP/dT) apparently in contrast to the experimental negative slope. This may be explained by hydration kinetics, which could have allowed systematic breakdown of cordierites of metastable hydration states in the experiments. The bivariant Cd-Ga fields calibrated from the present model are, potentially, good petrogenetic indicators, as, given the iron-magnesium ratio of garnet and cordierite and the hydration number of cordierite, the temperature, pressure and water fugacity are uniquely determined. As this geothermobarometer is in part based on the water content of cordierite, it can be used only if there is some assurance that the actual hydration is inherited from high-grade metamorphic conditions. Such conditions could be realised if the slope of unloading-cooling retrograde metamorphism is more or less parallel to a cordierite isohydron.  相似文献   

10.
Large crystals of boron-free kornerupine occurring in MgAl-rich inclusions within meta-anorthosites are partially replaced by symplectitic pseudomorphs consisting essentially of the assemblage sapphirine-cordieritegedrite. The highly magnesian, hydrous kornerupines (F= 0.10–0.14) have compositions close to the oxide ratio (Mg, Fe) O· Al2O3· SiO2. Sapphirines (F=0.09) show decreasing Al-contents with continued grain growth and equilibration. Gedrite (F=0.15) contains sodium in amounts near the limit of solid solution, although the kornerupine starting material is free of this element and it is very rare in the enclosing rock. Cordierite (F=0.05) is also free from sodium.For conditions of P H2O = P tot the appearance of boron-free kornerupine requires relatively high temperatures (> 700 °C) and a minimum pressure near 4 kb within this zone of the Limpopo Belt. The subsequent replacement reaction occurred nearly isochemically except for Na and probably H2O, which were introduced into the symplectite. Textural features suggest that the breakdown reaction of kornerupine is actually governed by the magnitude of sodium activity: Relatively low values would favor the appearance of boron-free kornerupine, whereas higher values lead to the more common assemblage sapphirine-cordierite-gedrite.  相似文献   

11.
Given the direction cosines a i = (a 1 i , a 2 i , a 3 i )corresponding to a set of pspherically projected fabric poles, an initial estimate x′ = (x1, x2, x3, x4)for the angular radius x4,and direction cosines of the center of the least-squares small circle which minimizes the sum of the squares of the angular residuals $$r = \sum\limits_p {\left[ {x_4 - \cos ^{ - 1} \left( {a_1^i x_1 + a_2^i x_2 + a_3^i x_3 } \right)} \right]} ^2 $$ can be iteratively improved by taking xj+1 = xj + Δxwhere xj is the value of xat the jth iteration and $$\Delta x = - H_j^{ - 1} \left[ {q_j + x_j \left( {x'_j H_j^{ - 1} x_j } \right)\left( {q_j - x'_j H_j^{ - 1} q_j } \right)} \right],$$ where As an initial approximation for xwe have found it convenient to ignore the fact that the data are constrained to lie on the surface of the reference sphere and to use the parameters of a least-squares plane through the given poles. Generalization of this approach to fitting variously constrained great and small circles is easily made. The relative merits of differently constrained fits to the same data can be tested approximately if it is assumed that the errors in the location of the poles are isotropic and normally distributed. It is thus possible to statistically assess the relative significance of conflicting structural models which predict different geometrical patterns of fabric elements.  相似文献   

12.
Mn3+-bearing piemontites and orthozoisites, Ca2(Al3-pMn3+ p)-(Si2O7/SiO4/O/OH), have been synthesized on the join Cz (p = 0.0)-Pm (p = 3.0) of the system CaO-Al2O3-(MnO·MnO2)-SiO2-H2O atP = 15 kb,T= 800 °C, and \(f_{O_2 } \) of the Mn2O3/MnO2 buffer. Pure Al-Mn3+-piemontites were obtained with 0.5≦p≦1.75, whereas atp=0.25 Mn3+-bearing orthozoisite (thulite) formed as single phase product. The limit of piemontite solid solubility is found near p=1.9 at the above conditions. Withp>1.9, the maximum piemontite coexisted with a new high pressure phase CMS-X1, a Ca-bearing braunite (Mn 0.2 2+ Ca0.8)Mn 6 3+ O8(SiO4), and quartz. Al-Mn3+-piemontite lattice constants (LC),b 0,c 0,V 0, increase with increasingp:
  相似文献   

13.
Forty-six reversed determinations of the Al2O3content of enstatite in equilibrium with garnet were made in the P/T range 15–40 kbar/900–1,600° C in the MgO-Al2O3-SiO2 system. Starting materials were mixtures of synthetic pyrope+Al-free enstatite and pyrope+enstatite (5–12% Al2O3). Al2O3 contents in reversal run pairs closely approached common values from both the high- and low-Al sides. Most experiments were done in a piston-cylinder device using a NaCl medium; some runs at very high temperatures were made in pyrex/NaCl or pyrex/talc assemblies. The measured enstatite compositions, expressed as mole fractions of Mg2(MgAl)(AlSi3)O12(X Opy En ) were fitted by a Monte-Carlo method to the equilibrium condition: $$\begin{gathered} \Delta H_{970}^0 - 970\Delta S_{970}^0 \hfill \\ + \mathop \smallint \limits_1^P \Delta V_{970}^0 dP - \mathop \smallint \limits_{970}^T \Delta S_T^0 dT + RT\ln X_{Opy}^{En} = 0 \hfill \\ \end{gathered}$$ where the best fit parameters of ΔH, ΔS and ΔV (1 bar, 970 K) for the reaction pyrope=opy are 2,040 cal/mol, 2.12 eu and 9.55 cc/mol. In addition to the determination of Al2O3 contents of enstatite, the univariant reaction pyrope+forsterite=enstatite+spinel was reversibly located in the range 1,100–1,400°C. A “best-fit” line passes through 22, 22.5 and 25 kbar at 1,040, 1,255 and 1,415°C, respectively. Our results for the univariant reaction are in agreement with previous studies of MacGregor (1974) and Haselton (1979). However, comparison of the experimentally determined curve with thermochemical calculations suggests that there may be a small error in the tabulated ΔH f(970,1) 0 value for enstatite. A value of?8.32 rather than?8.81 kcal/mole (Charlu et al. 1975) is consistent with the present data. Application of garnet-enstatite-spinel-forsterite equilibria to natural materials is fraught with difficulties. The effects of nonternary components are poorly understood, and the low solubilities of Al2O3 in enstatite under most geologically reasonable conditions make barometric or thermometric calculations highly sensitive. More detailed studies, including reversed determinations in low-friction assemblies, are sorely needed before the effects of important diluents such as Fe, Ca and Cr can be fully understood.  相似文献   

14.
Experimental tests of garnet peridotite oxygen barometry   总被引:1,自引:0,他引:1  
We have performed experiments aimed at testing the calibration of oxygen barometers for the garnet peridotite [garnet (Gt)-olivine (Ol)-orthopyroxene (Opx)] phase assemblage. These involved equilibrating a thin layer of garnet sandwiched between layers of olivine and orthopyroxene at 1300°C and 23–35 kbar for 1–7 days. Oxygen fugacity was controlled (but not buffered) by using inner capsules of Fe?Pt alloy or graphitc or molybdenum sealed in welded Pt outer capsules. Post-experiment measurement of fO2 was made by determining the compositions of Pt-Fe alloy sensors at the interface between garnet and olivine + orthopyroxene layers. The composition of alloy in equilibrium with olivine + orthopyroxene was approached from Fe-oversaturated and Fe-undersaturated conditions in the same experiment with, in general, excellent convergence. Product phase compositions were determined by electron microprobe and a piece of the garnet layer saved for 57Fe Mössbauer spectroscopy. The latter gave the Fe3+ content of the garnet at the measured P-T-fO2 conditions. Approach to equilibrium was checked by observed shifts in Fe3+ content and by the approach of garnet-olivine Fe?Mg partitioning to the expected value. The compositions of the phases were combined with mixing properties and thermodynamic data to calculate an apparent fO2 from two possible garnet oxybarometers:- (1) $\begin{gathered} 2Ca_3 Fe_2 Si_3 O_{12} + 2Mg_3 Al_2 Si_3 O_{12} + 4FeSiO_3 = 2Ca_3 Al_2 Si_3 O_{12} \hfill \\ Gt Gt Opx Gt \hfill \\ + 8FeSi_{0.5} O_2 + 6MgSiO_3 + O \hfill \\ Ol Opx \hfill \\ \end{gathered} $ and (2) $\begin{gathered} 2Fe_3 Fe_2 Si_3 O_{12} = 8FeSi_{0.5} O_2 + 2FeSi_3 O_2 \hfill \\ Gt Ol Opx \hfill \\ \end{gathered} $ Comparison of calculated fO2s with those measured by the Pt-Fe sensors demonstrated that either barometer gives the correct answer within the expected uncertainty. Data from the first (Luth et al. 1990) has an uncertainty of about 1.6 logfO2 units, however, while that from equilibrium (2) (Woodland and O'Neill 1993) has an error of +/- 0.6 log units, comparable to that of the spinel peridotite oxybarometer. We therefore conclude that equilibrium (2) may be used to calculate the fO2 recorded by garnet peridotites with an uncertainty of about +/- 0.6 log units, providing the potential to probe the oxidation environment of the deep continental lithosphere. Preliminary application based on data from Luth et al. (1990) indicates that garnet peridotite xenoliths from Southern Africa record oxygen fugacities about 3.0 log units below the FMQ (fayalite-magnetite-quartz) buffer. These are substantially more reducing conditions than those recorded by continental spinel lherzolites which typically give oxygen fugacities close to FMQ (Wood et al. 1990).  相似文献   

15.
Thermodynamic parameters for the reaction: $$\begin{gathered} Mg_2 Si_2 O_6 = Mg_2 Si_2 O_6 \hfill \\ enstatite clinopyroxene \hfill \\ \end{gathered} $$ in the system CaO-MgO-SiO2 have been deduced from phase equilibrium and enthalpy of solution data. From the regular solution theory, the seventeen currently available reversed experimental compositions of coexisting enstatite and clinopyroxene, presumed to be ordered diopside, lead, by a statistical regression, to the following best fit parameters: ΔH o=6.80 kJ ΔS o=2.75 J/K W H Cpx =24.47 kJ (regular solution enthalpy parameter) W V Cpx =0.105 J/bar (regular solution volume parameter). The derived parameters are not significantly affected by the (necessary) choice of W Opx in the range 20–50 kJ. The above values are in very good agreement with deductions from the solution calorimetry on synthetic CaMgSi2O6-Mg2Si2O6 clinopyroxenes of Newton et al. (1979), which also places bounds on possible departures from the optimal values of these parameters. The calorimetric data may also be interpreted in terms of a Bragg-Williams cooperative-disordering model (Navrotsky and Loucks, 1977), in which diopside-structure clinopyroxene and a ‘relaxed’ low-Ca clinopyroxene (‘Fe-free pigeonite’) approach each other in composition, structural state, and stability with increasing temperature. The ΔH o parameter deduced from the regular solution theory is reinterpreted as the enthalpy change of enstatite to Mg2Si2O6 pigeonite; the ΔH o of the transformation of enstatite to the diopside structure would, in this case, be considerably larger than 6.8 kJ. The curvature of the enthalpy of solution data, explained by the regular solution theory in terms of M2-site energetics (involving W H cpx ), is reinterpreted as due to disordering and ‘relaxation’ in the Navrotsky-Loucks model. Although the regular solution theory with the best-fit parameters accounts for all of the reversed enstatite and diopside compositions to within 18 ° C, and is a convenient representation of the phase equilibria for purposes of geothermometry, the disordering model is, at the present level of knowledge, equally valid and allows for a region of stability of two coexisting clinopyroxenes.  相似文献   

16.
The thermodynamic calculation of dehydration reacton suggests very low activity of H2O during metamorphic peak of the Archaean granulite complex in the region studied.The αH2O values for Al-rich gneiss and hypersthene biotite gneiss-granulite in the Taipingzhai region are usually between 0.10 and 0.20,and those in the Louzishan region are 0.15-0.25.The fugacity of O2 in terms of lgf O2 in whole region ranges form-8to-14.The average coefficients of (δμH2O/δHMg^Bt)and(δμO2/δXMg^Bt)in the Taipingzhai region are-0.293 and-1.60 respectively,and those in the Louzishan region are-0.364and-1.420.The activity of H2O is very low in the whole region,but its values and other data mentioned above are considerably constant from place to place within a given region,even in rocks of dirrerent lithological characters.However,they show a certain gradient between different regions.Such characteristics are compatible with the genetic mechanism known as“carbonic metamorphism” put forward by Newton et al.,i.e.,the α H2O during the peak stage is controlled by permeation of pervasive CO2 influx of the mantle source,and shows features of external buffering.  相似文献   

17.
The non-ferroic triclinic to triclinic \(I\bar 1 - P\bar 1\) phase transition in anorthite is described in terms of the spontaneous onset of an order parameter η. A triclinic to triclinic phase transition can be driven by order parameters (representations) arising from the Γ, Z, X, U, V, R, Y, and T points of symmetry of the Brillouin zone. Each point leads to a set of two inequivalent representations and thus there is a total of sixteen inequivalent order parameters. However, only the R 1 + representation is consistent with the change from the body-centered to primitive cell (increase of primitive cell size of two) and also with the origin of the two space groups (inversion center) being at the same position. The R 1 + order parameter of the high symmetry triclinic phase \(P\bar 1_0\) (or equivalently \(I\bar 1\) ) causes a reciprocal lattice change and, in terms of the lower symmetry reciprocal lattice, the order parameter corresponds to the b* point. This is consistent with experimentally observed x-ray diffuse scattering. Using induced representation theory, microscopic distortions compatible with the R 1 + order parameter are obtained. Assuming a distortion in an arbitrary direction at the general 2(i) Wyckoff position (x0,y0,z0) of \(P\bar 1_0\) (the higher symmetry phase) induced representation theory demands an opposite displacement at the position (x0, y0, z0), an opposite displacement at (x0+1,y0+1,z0+1), and the same displacement at ( \(\bar x\) 0+1, \(\bar y\) 0+1, \(\bar z\) 0+1) of \(P\bar 1_0\) . This is also consistent with experiment. The presence of the weak c-type reflections above the transition is attributed to the fluctuating lower symmetry antiphase domains related by the translation (1/2, 1/2, 1/2).  相似文献   

18.
A new determination of the equilibrium reaction: $$\begin{gathered} 2{\text{ Mg}}_{\text{2}} [{\text{SiO}}_{\text{4}} ] + 3{\text{ H}}_{\text{2}} {\text{O}} \rightleftharpoons {\text{1 Mg}}_{\text{3}} [({\text{OH)}}_{\text{4}} |{\text{Si}}_{\text{2}} {\text{O}}_{\text{5}} ] + 1{\text{ Mg(OH)}}_{\text{2}} \hfill \\ \hfill \\ {\text{ forsterite serpentine brucite}} \hfill \\ \end{gathered} $$ yielded equilibrium temperatures which lie (at identical H2O-pressures) about 60° C lower than all previously published data (Bowen and Tuttle, 1949; Yoder, 1952; Kitahara et al., 1966; Kitahara and Kennedy, 1967). It has been shown that the above authors have determined not the stable equilibrium curve but instead a metastable “synthesis boundary”. The actual (stable) equilibrium curve is located at 0,5 kb and 350° C 2,0 kb and 380° C 3,5 kb and 400° C 5,0 kb and 420° C 6,5 kb and 430° C.  相似文献   

19.
The \(\mu _{O_2 } \) defined by the reaction 6 MnO+O2 =2 Mn3O4 has been determined from 917 to 1,433 K using electrochemical cells (with calcia-stabilized zirconta, CSZ) of the type: Steady emfs were achieved rapidly at all temperatures on both increasing and decreasing temperature, indicating that the MnO-Mn3O4 oxygen buffer equilibrates relatively easily. It therefore makes a useful alternative choice in experimental petrology to Fe2O3-Fe3O4 for buffering oxygen potentials at oxidized values. The results are (in J/mol, temperature in K, reference pressure 1 bar); \(\mu _{O_2 } \) (±200)=-563,241+1,761.758T-220.490T inT+0.101819T 2 with an uncertainty of ±200 J/mol. Third law analysis of these data, including a correction for the deviations in stoichiometry of MnO, impliesS 298.15 for Mn3O4 of 166.6 J/K · mol, which is 2.5 J/K · mol higher than the calorimetric determination of Robie and Hemingway (1985). The low value of the calorimetric entropy may be due to incomplete ordering of the magnetic spins. The third law value of Δ r H 298.15 0 is-450.09 kJ/mol, which is significantly different from the calorimetric value of-457.5±3.4 kJ/mol, calculated from Δ f H 298.15 0 of MnO and Mn3O4, implying a small error in one or both of these latter.  相似文献   

20.
The system MgO-Al2O3-SiO2(MAS) comprises 88–90% of the bulk composition of an average peridotite. The MAS ternary is thus a suitable starting point for exploring peridotite phase relations in multicomponent natural systems. The basic MAS phase relations may be treated in terms of the reactions (see list of symbols etc).
  1. py (in Gt)=en (in Opx)+mats (in Opx),
  2. en (in Opx)+sp (in Sp)=mats (in Opx)+fo (in Ol), and
  3. py (in Gt)+fo (in Ol)=en (in Opx)+sp (in Sp).
Extensive reversed phase equilibria data on these three reactions by Danckwerth and Newton (1978), Perkins et al. (1981), and Gasparik and Newton (1984) employing identical experimental methods in the same laboratory have been used by us to deduce the following internally consistent thermodynamic data applying the technique of linear programming:ΔH 298(1) 0 = 2536 J, ΔS 298(1) 0 =? 6.064 J/K;ΔH 298(2) 0 = 29435 J, ΔS 298(2) 0 = 8.323 J/K; andΔH 298(3) 0 =?26899 J, ΔS 298(3) 0 =?14.388 J/K.These data are also found to be consistent with results of calorimetry. Figure 2 shows the calculated phase relations based on our thermodynamic data; they are consistent with the phase equilibria experiments. Successful extension of the MAS phase relations to multicomponent peridotites pivots on the extent to which the effects of the “non-ternary” (i.e. other than MAS) components can be quantitatively handled. Particularly hazardous in this context is Cr2O3, although it barely makes up 0.2 to 0.5 wt% of such rocks. This is because Cr+3 fractionates extremely strongly into Sp. This study focuses on the peridotite phase relations in the MgO-Al2O3-SiO2-Cr2O3 (MASCr) quaternary. Thermodynamic calculations of the MASCr phase relations have been accomplished by using ΔH 298 0 and ΔS 298 0 values for the reactions (1) through (3) indicated above, in conjunction with data on thermodynamic mixing properties of
  1. binary Sp (sp-pc) crystalline solution (Oka et al. 1984),
  2. ternary Opx (en-mats-mcts) crystalline solution (this study), and
  3. binary Gt (py-kn) crystalline solution (this study).
The results are shown in P-T projections (Figs. 3a and b) and isobaric-isothermal sections of MASCr in a projection through the component fo onto the SiO2-Al2O3-Cr2O3 ternary (Figs. 4a and b). The most important results of this work may be summarized as follows:
  1. With increasing incorporation of Cr+3 into Sp and Gt, the X mats isopleths of the reactions (1) and (2) are shifted to higher temperatures (Fig. 3a); simultaneously, the spinel-peridotite to garnet-peridotite phase transition is moved to higher pressures (Fig. 3b).
  2. At identical P and T, the X mats values of Opx coexisting in equilibrium with Ol and Sp is strongly dependent upon the X pc value in the latter phase (Figs. 4a and b). Accurate correction for the composition of Sp is, therefore, a necessary precondition for geothermometry of the spinelperidotites.
  3. The discrepant temperatures reported by Sachtleben und Seck (1981, Fig. 5) from the spinel-peridotites of the Eifel area (systematically too high temperatures as a function of X pc in Sp) are demonstrated to be the result of ignoring the nonideality in the chromian spinels.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号