首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The Distance Least Squares (DLS) structure modelling technique is used to determine the room-temperature structures of the sodalites Li8(Al6Si6O24)Cl2, Na8(Al6Si6O24)Cl2, K8(Al6Si6O24)Cl2, Na8(Al6Si6O24)Br2, and Na8(Al6Si6O24)I2. The technique is also used to calculate the thermal expansion behaviour of Na8(Al6Si6O24)I2 assuming that the discontinuity in its thermal expansion curve occurred either when the ideal fully-expanded state was achieved (case 1) or when the x-coordinate of the sodium atom became 0.25 (case 2). The results are given as plots of bond lengths and bond angles as a function of temperature. Case 2 was preferred and analysis of the results implied that the driving force for the untwisting of the partially-collapsed sodalite framework was in the framework bonds with the cavity ion bonds resisting the untwisting. Best estimates indicate that the expansion of the Na-O and Na-I bonds are 9% and 27.4% respectively, between room temperature and 810° C, and there is an apparent shortening of the framework bond distances of about 1.5%.  相似文献   

2.
A computer model for cubic sodalite structures, general formula M 8(T 12O24)X 2 where M, X and T are the cavity cation and anion and framework cation respectively, has been devised. It has been used to determine the effect of changing cavity cation and anion radii on the cell edge, tilt angle of the tetrahedra and T-O-T angle for the following sodalite frameworks: (Al6Si6O24)6?, (Be6Si6O24)12?, (Al12O24)12?, and (B12O24)12?. After fixing the T-O distance(s), the cavity cation-framework oxygen distance and taking a value of 1.4 Å for the radius of oxygen the model was used to calculate atomic coordinates and interatomic distances and angles for selected aluminosilicate-sodalites. The structure calculated for Na8(Al6Si6O24)Cl2 agrees closely with that determined for natural sodalite (Löns and Schulz, 1967). The model is also applied to the estimation of the effective radii of the tetrahedrally-coordinated cavity anions which can be accommodated in natural and synthetic sodalites: OH? 1.48–1.51, Cl? 1.78, Br? 1.93, I? 2.14–2.17, SO 4 2? 2.37–2.57, MoO 4 2? 2.70 and WO 4 2? 2.79 Å.  相似文献   

3.
4.
Natural nepheline, a synthetic Na-rich nepheline, and synthetic kalsilite were ion exchanged in molten MNO3 or MCl (M = Li, Na, K, Ag) at 220–800° C. Crystalline products were characterized by wet chemical and electron microprobe analysis, single crystal and powder X-ray diffraction, and transmission electron microscopy and diffraction. Two new compounds were obtained: Li-exchanged nepheline with a formula near (Li,K0.3,□)Li3[Al3(Al,Si)Si4O16] and a monoclinic unit cell with a = 951.0(6) b = 976.1(6) c = 822.9(5)pm γ = 119.15°, and Ag-exchanged nepheline with a formula near (K,Na,□)Ag3[Al3(Al,Si)Si4O16] and a hexagonal unit cell with a = 1007.4(8) c = 838.2(1.0) pm. Both compounds apparently retain the framework topology of the starting material. Ion exchange isotherms and structural data show that immiscibility between the end members is a general feature in the systems Na-Li, Na-Ag, and Na-K. For the system Na-K, a stepwise exchange is observed with (K,D)Na3[Al3(Al,Si)Si4O16] as an intermediate composition which has the nepheline structure and is miscible with the sodian end member (Na,□)Na3[Al3(Al,Si)Si4O16], but not with the potassian end member (K,□)4[Al3(Al,Si)Si4O16] which shows the kalsilite structure; there was no indication for the formation of trior tetrakalsilite (K/(K + Na)≈0.7) at the temperatures studied (350 and 800° C). The exact amount of vacancies □ on the alkali site depends upon the starting material and was found to be conserved during exchange, with ca 0–0.2 and 0.3–0.4 vacancies per 16 oxygen atoms for the synthetic and natural precursors, respectively. Thermodynamic interpretation of the Na-K exchange isotherms shows, as one important result, that the sodian end member is unstable with respect to the intermediate at K/(K+Na)≈0.25 by an amount of ca 45 kJ/mol Na in the large cavity at 800° C (52 kJ/mol at 350° C).  相似文献   

5.
Wadeite-type K2Si4O9 was synthesized with a cubic press at 5.4 GPa and 900 °C for 3 h. Its unit-cell parameters were measured by in situ high-T powder X-ray diffraction up to 600 °C at ambient P. The TV data were fitted with a polynomial expression for the volumetric thermal expansion coefficient (αT = a 0 + a 1 T), yielding a 0 = 2.47(21) × 10?5 K?1 and a 1 = 1.45(36) × 10?8 K?2. Compression experiments at ambient T were conducted up to 10.40 GPa with a diamond-anvil cell combined with synchrotron X-ray radiation. A second-order Birch–Murnaghan equation of state was used to fit the PV data, yielding K T = 97(3) GPa and V 0 = 360.55(9) Å3. These newly determined thermal expansion data and compression data were used to thermodynamically calculate the PT curves of the following reactions: 2 sanidine (KAlSi3O8) = wadeite (K2Si4O9) + kyanite (Al2SiO5) + coesite (SiO2) and wadeite (K2Si4O9) + kyanite (Al2SiO5) + coesite/stishovite (SiO2) = 2 hollandite (KAlSi3O8). The calculated phase boundaries are generally consistent with previous experimental determinations.  相似文献   

6.
The molar volume of glaucophane [Na2Mg3Al2Si8O22(OH)2] has been determined in this study by correcting synthetic glaucophane-rich amphiboles made in the system Na2O–MgO–Al2O3–SiO2–H2O for very small deviations from ideal glaucophane composition using recent volume data on key amphibole components. The derived unit-cell volume for end-member glaucophane is 862.7±1.6 Å3, which gives a molar volume of 259.8±0.5 cm3/mol and a calculated density of 3.016±0.006 g/cm3. This value has been corroborated through an essentially independent method by correcting the volumes of natural sodic amphiboles reported in the literature for non-glaucophane components, particularly including calcium-rich components, to yield a value of 861.2±1.9 Å3. The unit-cell volume derived from the synthetic amphiboles, which is considered here to be more reliable, is somewhat smaller than that reported previously in the literature. A thermal expansion (αV) at 298 K of 1.88±0.06×10?5/K was derived from unit-cell volumes measured in the range of 25–500°C for a synthetic glaucophane sample, which is noticeably smaller than previously reported.  相似文献   

7.
The Fe-rich Li-bearing magnesionigerite-6N6S occurs in the Xianghualing tin-polymetallic ore field, Linwu County, Hunan Province, Peoples Republic of China. It was found near the outer contact zone of the Laizhiling granite body and in the Middle-Upper Devonian carbonate rocks of Qiziqiao Formation. The mineral formed during the skarn stage. Its empirical formula is Sn1.81Li0.67(Fe1.43Zn1.19 Mn0.41)Σ3.03(Al14.89Mg1.46 Ti0.11Si0.01)Σ16.47O30(OH)2. The structure for magnesionigerite-6N6S was solved and refined in space group R-3?m, with a?=?5.7144(8), c?=?55.446(11) Å, V?=?1568.0(4) Å3, to R1?=?0.0528. Based on the structural refinement of single crystal diffraction data the formula of magnesionigerite-6N6S is Sn1.80Li0.97(Fe1.89Zn0.91) Σ2.80 (Al14.60Mg1.63 Ti0.20)Σ16.43O30(OH)2 with Z?=?3. Fe-rich Li-bearing magnesionigerite-6N6S contains 0.74 wt.% Li2O. The idealized charge-balanced composition of magnesionigerite-6N6S may be expressed by bivalent and trivalent cations: (Mg2+)4(Al3+)18O30(OH)2. The simplified general formula for the 6N6S polysomes in the nigerite and högbomite groups can be given as A x B18-x O30(OH)2, x?=?~4, where A?=?Mg2+, Fe2+, Zn2+; B?=?Al3+, Sn4+, Ti4+, Li+, □.  相似文献   

8.
A new superstructure was found in bafertisite [(Ba0.98Na0.02)1.00(Fe1.71Mn0.26Mg0.01)1.98 TiO[(Si1.82Ti0.04Al0.03Cr0.01)1.90O7](OH1.40F0.53Cl0.03)1.96] from Donghai County, Jiangsu Province, China. The occurrence of the superstructure reflections were observed by single crystal diffraction using a SMAR APEX CCD. The a*, b*and c* axis directions revealed extra weak reflection spots of the superstructure. The apparent 2a, 2b and 2c superstructure is monoclinic with unit cell a=10.6502(15)?, b=13.7233(19)?, c=21.6897(3)?, α=90o, β=94.698(3)o, γ=90o,space group Cm,Z=16. If c* extra weak reflections are ignored, the secondary supercell gave a cell a=10.6548(15)?, b=13.7284(19)?, c=11.6900(17)?, α=90o, β=112.322(28)o, γ=90o,space group Cm,Z=8. The basic subcell was obtained by ignoring all extra weak reflection spots and gave: a=5.3249(17)?, b=6.8669(22)?, c=10.8709(36)?, α=90o, β=94.740(62)o, γ=90o,space P21/m,Z=2. The superstructure has been refined to R = 0.063 for 7805 [R(int) = 0.0266] unique reflections I>2δ(I). The structure consists of an octahedra (O) sheet sandwiched between two heteropolyhedral (H) sheets. These sheets consist of Ti–octahedra and twin tetrahedral disilicate groups [Si2O7]. The O sheet comprises (Fe,Mg)O4 octahedra. The large Ba cation is located in the interlayer area. The refined structure shows Fe, Mg are partly ordered. The shifting of the TiO6 octahedron and SiO4 tetrahedron sites in the sheet may be a consequence of the superstructure.  相似文献   

9.
Fluoro-sodalite was synthesized for the first time at temperatures of 400–800°C and H2O pressures of 1–2 kbar in the Si–Al–Na–H–O–F system. X-ray diffraction and infrared spectroscopic investigations showed that fluorine is incorporated in the sodalite structure as anionic octahedral groups, [AlF6]3–, the number of which can vary from 0 to 1. Correspondingly, the end-members of the F-sodalite series are Na7(H2O)8[Si5Al7O24] and Na8(AlF6)(H2O)4[Si7Al5O24]. Depending on the composition of the system, F-sodalite associates at 500–650°C with nepheline, albite, cryolite, and villiaumite, which are joined by analcime below 500°C and aluminosilicate melt above 650°C. Fluorine-bearing sulfate–chlorine-sodalite was found for the first time in a pegmatite sample from the Lovozero massif. The highest fraction of the fluorine end-member in natural sodalite is 0.2. The incorporation of F into the sodalite structure requires much more energy compared with Cl and SO 4 2- , because it is accompanied by a structural rearrangement and a transition from tetrahedral Al to octahedral Al.  相似文献   

10.
Subsolidus phase relations for a K-doped lherzolite are investigated in the model system K2O–Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O at 1.5–6.0 GPa and 680–1,000°C. Phlogopite is ubiquitous and coexists with Ca-amphibole up to 3.2 GPa and 900°C. High-pressure phlogopites show a peculiar mineral chemistry dependent on pressure: e.g., at 5.5 GPa and 680°C, excess of Si (up to 3.4 apfu) coupled with deficiency in Al (as low as 0.58 apfu) and K + Na (as low as 0.97 apfu), suggest a significant amount of a talc/10 Å phase component ([v]XIISi1K?1Al ?1 IV , where [v]XII is interlayer vacancy). Mixed layering or solid solution relations between high-pressure phlogopites and the 10 Å phase, Mg3Si4O10(OH)2 nH2O, are envisaged. Phlogopite modal abundance, derived by weighted least squares, is maximum at high-pressure and relative low-temperature conditions and therefore along the slab–mantle interface (10.3 ± 0.7 wt.%, at 4.8 GPa, 680°C). In phlogopite-bearing systems, Ca-amphibole breaks down between 2.5 and 3.0 GPa, and 1,000°C, through the water conservative reaction 5(pa + 0.2 KNa?1) + 17en + 15phl = (10di + 4jd) + 5py + 12fo + 20(phl + 0.2 talc), governed by bulk composition and pressure-dependent variations of K/OH in K-bearing phases and as a result, it does not necessarily imply a release of fluid.  相似文献   

11.
The electrostatic lattice energies of expanded and unexpanded micas are calculated starting from a “generic” structure the ionic charges of which are varied. The mode of expansion is to move the layers apart perpendicular to (001), the K+ ions remaining midway between the layers. The energy required for expansion is a quadratic function of the layer charge. It is larger when the layer charge is in the octahedral sites (K x Al2?x Mg x Si4O10(OH)2) than when it is in the tetrahedral sites (K x Mg3Si4?x Al x O10(OH)2). Fluormicas have a slightly larger expansion energy than OH-micas. With the tetrahedral layer charge, dioctahedral micas have a slightly larger expansion energy than trioctahedral micas. This mode of expansion is less favourable than the mode usually adopted, viz. an expansion whereby the K ions divide themselves between the layers. The energy difference increases with the separation distance and is about 60 kJ mol?1 at 2.5 Å expansion. An intercalated water layer would be necessary to stabilize the K ions in positions midway between the layers.  相似文献   

12.
Electron spin resonance of allowed (Δm=0) and forbidden (Δm=±1) hyperfine transitions of Mn2+ in sodalite, Na8(Al6Si6O24)Cl2, is reported. No fine structure other than the central M=∣+1/2>?∣?1/2> transition is observed. From intensity ratios of forbidden to allowed transitions and doubling of allowed lines in powder spectra the crystal field parameter |D| was estimated as equal to (8±5) 10?3 cm?1. The g-value for the spectrum was obtained as equal to 2.0033±0.0005. The hyperfine structure constant |A| was 83±1 gauss, equal to (77±1) 10?4 cm?1.  相似文献   

13.
Polarized Raman spectra were collected for single crystal buergerite (NaFe3Al6(BO3)3Si6O18(O0.92(OH)0.08)3F) from room temperature to near 1,375°C. Vibrational assignments to features in the room temperature spectra were determined by lattice dynamics calculations, where internal BO3 motions dominate modes near 1,300 cm−1, internal SiO4 displacements dominate modes between 900 and 1,200 cm−1, while less localized displacements within the isolated Si6O18 ring mix with motions within Na, Fe, Al, F, and BO3 environments for fundamental modes below 780 cm−1. At elevated temperatures, most buergerite Raman features broaden and shift to lower frequencies up to 900°C. Above this temperature, the lattice mode peaks evolve into broad bands, while OH stretch modes near 3,550 cm−1 disappear. According to Raman spectroscopy, X-ray diffraction, differential thermal analysis, and scanning electron microscopy, buergerite undergoes a complex transition that starts near 700°C and extends over a 310°C interval, where initially, Al and Fe probably become disordered within the Y- and Z-sites, and most F and all OH are later liberated. A reversible crystal-to-amorphous transition is seen by Raman for buergerite fragments heated as high as 930°C. Buergerite becomes permanently altered when heated to temperatures greater than 930°C; after cooling to room temperature, these altered fragments are comprised of mullite and Fe-oxide crystals suspended in an amorphous borosilicate matrix.  相似文献   

14.
The diffusivities of network-forming cations (Si4+, Al3+, Ge4+ and Ga3+) in melts of the jadeitic composition NaAl(Si, Ge)2O6 and Na(Al, Ga)Si2O6 have been measured at pressures between 6 and 20 kbar at 1400°C. The rates of interdiffusion of Si4+-Ge4+ and Al3+-Ge3+ increase with increasing pressure at constant temperature. The results are consistent with the ion-dynamics computer simulations of Jadeite melt by Angellet al. (1982, 1983). The coefficient measured for the Si4+-Ge4+ interdiffusion is between 8 × 10?10 and 2.5 × 10?8cm2sec at 6 kbar, depending on the composition of the melt, whereas at 20 kbar it is between 7 × 10?9 and 2 × 10?7cm2sec. The effect of pressure is greater for more Si-rich compositions (i.e., closer to NaAlSi2O6 composition). The coefficient measured for the Al3+-Ga3+ inter- diffusion is between 9 × 10?10 and 3 × 10?9 cm2/sec at 6 kbar and between 3 × 10?9 and 1 × 10?8cm2sec at 20 kbar. The rate of increase in diffusivity with pressure of Al3+-Ga3+ (a factor of 3–4) is smaller than that of Si4+-Ge4+ (a factor of 7–17).The Si4+-Ge4+ interdiffusion in melts of Na2O · 4(Si, Ge)O2 composition has also been measured at 8 and 15 kbar for comparison. The effect of pressure on the diffusivity in this melt is significantly smaller than that for the jadeitic melts. The increase in diffusivity of the network-forming cations in jadeitic melts with increasing pressure may be related to the decrease in viscosity of the same melt. The present results, as well as the ion-dynamics simulations, suggest that the homogenization of partial melts and mixing of magmas would be more efficient at greater depths.  相似文献   

15.
Na2MgSiO4 crystals prepared hydrothermally at 700° C and 3,000 atm are related to carnegieite with SG Pmn21, a=7.015(2), b=10.968(2), and c=5.260(1). Na conductivity in Na2MgSiO4 is 3.0×10?5 (ohm-cm)?1 at 300° C but can be raised to 1.1×10?3 (ohm-cm)?1 by creating Na vacancies in the composition Na1.9Mg0.9Al0.1O4. Na4Mg2Si3O10 is also a cristobalite-related carnegieite with the orthorhombic cell a=10.584(7), b=14.328(7), and c=5.233(5). The Na conductivity of Na4Mg2Si3O10 is 4.8×10?3 (ohm-cm)?1 at 300° C.  相似文献   

16.
Batisivite has been found as an accessory mineral in the Cr-V-bearing quartz-diopside metamorphic rocks of the Slyudyanka Complex in the southern Baikal region, Russia. A new mineral was named after the major cations in its ideal formula (Ba, Ti, Si, V). Associated minerals are quartz, Cr-V-bearing diopside and tremolite; calcite; schreyerite; berdesinskiite; ankangite; V-bearing titanite; minerals of the chromite-coulsonite, eskolaite-karelianite, dravite-vanadiumdravite, and chernykhite-roscoelite series; uraninite; Cr-bearing goldmanite; albite; barite; zircon; and unnamed U-Ti-V-Cr phases. Batisivite occurs as anhedral grains up to 0.15–0.20 mm in size, without visible cleavage and parting. The new mineral is brittle, with conchoidal fracture. Observed by the naked eye, the mineral is black and opaque, with a black streak and resinous luster. Batisivite is white in reflected light. The microhardness (VHN) is 1220–1470 kg/mm2 (load is 30 g), the mean value is 1330 kg/mm2. The Mohs hardness is near 7. The calculated density is 4.62 g/cm3. The new mineral is weakly anisotropic and bireflected. The measured values of reflectance are as follows (λ, nm—R max /R min ): 440—17.5/17.0; 460—17.3/16.7; 480—17.1/16.5; 500—17.2/16.6; 520—17.3/16.7; 540—17.4/16.8; 560—17.5/16.8; 580—17.6/16.9; 600—17.7/17.1; 620—17.7/17.1; 640—17.8/17.1; 660—17.9/17.2; 680—18.0/17.3; 700—18.1/17.4. Batisivite is triclinic, space group P \(\overline 1\); the unit-cell dimensions are: a = 7.521(1) Å, b = 7.643(1) Å, c = 9.572(1) Å, α = 110.20°(1), β = 103.34°(1), γ = 98.28°(1), V = 487.14(7) Å3, Z = 1. The strongest reflections in the X-ray powder diffraction pattern [d, Å (I, %)(hkl)] are: 3.09(8)(12\(\overline 2\)); 2.84, 2.85(10)(021, 120); 2.64(8)(21\(\overline 3\)); 2.12(8)(31\(\overline 3\)); 1.785(8)(32\(\overline 4\)), 1.581(10)(24\(\overline 2\)); 1.432, 1.433(10)(322, 124). The chemical composition (electron microprobe, average of 237 point analyses, wt %) is: 0.26 Nb2O5, 6.16 SiO2, 31.76 TiO2, 1.81 Al2O3, 8.20 VO2, 26.27 V2O3, 12.29 Cr2O3, 1.48 Fe2O3, 0.08 MgO, 11.42 BaO; the total is 99.73. The VO2/V2O3 ratio has been calculated. The simplified empirical formula is (V 4.8 3+ Cr2.2V 0.7 4+ Fe0.3)8.0(Ti5.4V 0.6 4+ )6.0[Ba(Si1.4Al0.5O0.9)]O28. An alternative to the title formula could be a variety (with the diorthogroup Si2O7) V8Ti6[Ba(Si2O7)]O22. Batisivite probably pertains to the V 8 3+ Ti 6 4+ [Ba(Si2O)]O28-Cr 8 3+ Ti 6 4+ [Ba(Si2O)]O28 solid solution series. The type material of batisivite has been deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.  相似文献   

17.
Jinshanjiangite (acicular crystals up to 2 mm in length) and bafertisite (lamellar crystals up to 3 × 4 mm in size) have been found in alkali granite pegmatite of the Gremyakha-Vyrmes Complex, Kola Peninsula. Albite, microcline, quartz, arfvedsonite, zircon, and apatite are associated minerals. The dimensions of a monoclinic unit cell of jinshanjiangite and bafertisite are: a = 10.72(2), b=13.80(2), c = 20.94(6) Å, β = 97.0(5)° and a = 10.654(6), b = 13.724(6), c = 10.863(8) Å, β = 94.47(8)°, respectively. The typical compositions (electron microprobe data) of jinshanjiangite and bafertisite are: (Na0.57Ca0.44)Σ1.01(Ba0.57K0.44)Σ1.01 (Fe3.53Mn0.30Mg0.04Zn0.01)Σ3.88(Ti1.97Nb0.06Zr0.01)Σ2.04(Si3.97Al0.03O14)O2.00(OH2.25F0.73O0.02)Σ3.00 and (Ba1.98Na0.04K0.03)Σ2.05(Fe3.43Mn0.37Mg0.03)Σ3.83(Ti2.02Nb0.03)Σ2.05 (Si3.92Al0.08O14)(O1.84OH0.16)Σ2.00(OH2.39F1.61)Σ3.00, respectively. The minerals studied are the Fe-richest members of the bafertisite structural family.  相似文献   

18.
The chemical composition and the crystal structure of pezzottaite [ideal composition Cs(Be2Li)Al2Si6O18; space group: ${\it{R}} \overline{\text{3}} $ c, a?=?15.9615(6) ?, c?=?27.8568(9) ?] from the type locality in Ambatovita (central Madagascar) were investigated by electron microprobe analysis in wavelength dispersive mode, thermo-gravimetric analysis, Fourier-transform infrared spectroscopy, single-crystal X-ray (at 298?K) and neutron (at 2.3?K) diffraction. The average chemical formula of the sample of pezzottaite resulted Cs1,Cs2(Cs0.565Rb0.027K0.017)Σ0.600 Na1,Na2(Na0.101Ca0.024)Σ0.125Be2.078Li0.922 Al1,Al2(Mg0.002Mn0.002Fe0.003Al1.978)Σ1.985 Si1,Si2,Si3(Al0.056Si5.944)Σ6O18·0.27H2O. The (unpolarized) IR spectrum over the region 3,800–600?cm?1 was collected and a comparison with the absorption bands found in beryl carried out. In particular, two-weak absorption bands ascribable to the fundamental H2O stretching vibrations (i.e. 3,591 and 3,545?cm?1) were observed, despite the mineral being nominally anhydrous. The X-ray and neutron structure refinements showed: (a) a non-significant presence of aluminium, beryllium or lithium at the Si1, Si2 and Si3 sites, (b) the absence (at a significant level) of lithium at the octahedral Al1, Al2 and Al3 sites and (c) a partial lithium/beryllium disordering between tetrahedral Be and Li sites.  相似文献   

19.
The minerals ??hackmanite?? and tugtupite exhibit tenebrescence (reversible photochromism) and photoluminescence. These features are generally attributed to the presence of sulfide species within their structures. But how these optical properties might be affected by intercalating additional amounts of sulfur into their structures was until now unknown. Artificial ??hackmanite??, Na8[Al6Si6O24]Cl1.8S0.1, and ??sulfosodalite??, Na8[Al6Si6O24]S, were heated with sulfur in evacuated quartz-glass ampoules over the temperature range 450?C1,050°C. This work has shown that sulfur intercalation into Na8[Al6Si6O24]Cl1.8S0.1 destroys the tenebrescence and induces a permanently pale blue and, at higher temperature, a pale green coloration. The effect on Na8[Al6Si6O24]S induced similar colorations but of a deeper hue. Annealing tugtupite, Na8[Be2Al2Si8O24](Cl,S)2??? under a sulfur atmosphere over the range 600?C700°C, destroyed the tenebrescence and resulted in a colorless tugtupite; but did not effect the photoluminescence. This suggests that the chemical species responsible for the tenebrescence in tugtupite is unlikely to be the same as that for the luminescence.  相似文献   

20.
A new mineral depmeierite, the first cancrinite-group member with the species-forming extraframework anion PO 4 3? , has been found at Mt. Karnasurt in the Lovozero alkaline pluton on the Kola Peninsula in Russia. Natrolite and depmeierite are the major components of a hydrothermal peralkaline veinlet 1.5 cm thick, which cross cuts the foyaite-urtite-lujavrite complex. The associated minerals are steenstrupine-(Ce), vuonnemite, epistolite, sodalite, aegirine, serandite, natisite, and vitusite-(Ce). Depmeierite occurs as colorless transparent isometric grains up to 1 cm in size. Its luster is vitreous. The mineral is brittle, and its cleavage (100) is perfect. Its Mohs hardness is 5, and D(meas) = 2.321(1) and D(calc) = 2.313 g/cm3. Depmeierite is optically biaxial positive, ω = 1.493(2), and ? = 1.497(2). The IR spectrum is given. The chemical composition is as follows (wt %, the average of 10 microprobe analyses with the H2O and CO2 determined by selective sorption): 23.04 Na2O, 0.54 K2O, 0.03 Fe2O3, 29.07 Al2O3, 36.48 SiO2, 3.30 P2O5, 0.08 SO3, 0.97 CO2, and 5.93 H2O; the total is 99.44. The empirical formula based on (Si,Al)12O24 is (Na758K0.12)Σ7.70(Si6.19Al5.81O24)[(PO4)0.47(CO3)0.22(OH)0.02(SO4)0.01]Σ0.72 · 3.345H2O. The simplified formula is Na8[Al6Si6O24](CO3)1 ? x · 3H2O (x < 0.05). Depmeierite is hexagonal with space group P63, and the unit-cell dimensions are a = 12.7345(2), c = 5.1798(1), V = 727.46(2) Å3, and Z = 1. The strongest reflections of the X-ray powder pattern (d, Å (I, %) [hkl]) are as follows: 6.380(30) [110], 4.695(91) [101], 3.681(37) [300], 3.250(100) [211], 2.758 (33) [400], 2.596(31) [002], and 2.121(24) [330, 302]. The crystal structure was studied using a single crystal, and R hkl = 0.0362. Depmeierite differs from cancrinite in the development of wide channels containing Na cations, H2O molecules, prevailing PO 4 3? -anionic groups, and CO 3 2? . The mineral is named in honor of the German crystallographer Wulf Depmeier (born in 1944). The type specimen is deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences in Moscow. The cancrinite sensu stricto subgroup separated within the cancrinite group comprises six minerals with AB frameworks, the smallest unit cell is (a ≈ 12.55–12.75, c ≈ 5.1–5.4 Å), and the chain […Na…H2O…] exists in narrow channels: cancrinite, vishnevite, cancrisilite, hydroxycancrinite, kyanoxalite, and depmeierite. The P-bearing varieties of the cancrinite-group minerals are discussed, as well as the formation conditions of the noncarbonate members of the group related to intrusive alkaline complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号