首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal expansion and crystal structure of FeSi has been determined by neutron powder diffraction between 4 and 1173?K. No evidence was seen of any structural or magnetic transitions at low temperatures. The average volumetric thermal expansion coefficient above room temperature was found to be 4.85(5)?×?10?5?K?1. The cell volume was fitted over the complete temperature range using Grüneisen approximations to the zero pressure equation of state, with the internal energy calculated via a Debye model; a Grüneisen second-order approximation gave the following parameters: θD=445(11)?K, V 0=89.596(8)?Å3, K 0′=4.4(4) and γ′=2.33(3), where θD is the Debye temperature, V 0 is V at T=0?K, K 0′ is the first derivative with respect to pressure of the incompressibility and γ′ is a Grüneisen parameter. The thermodynamic Grüneisen parameter, γth, has been calculated from experimental data in the range 4–400?K. The crystal structure was found to be almost invariant with temperature. The thermal vibrations of the Fe atoms are almost isotropic at all temperatures; those of the Si atoms become more anisotropic as the temperature increases.  相似文献   

2.
The lattice parameter of magnesiowüstite (Mg0.6Fe0.4)O has been measured up to a pressure of 30 GPa and a temperature of 800 K, using an external heated diamond anvil cell and diffraction using X-rays from a synchrotron source. The experiments were conducted under quasi-hydrostatic condition, using neon as a pressure transmitting medium. The experimental P-V-T data were fitted to a thermal-pressure model with the isothermal bulk modulus at room temperature K T0 = 157 GPa, (?K TO /?P) T =4, (?K T /?T) P =-2.7(3) × 10-2 GPa/K, (?K T /?T) v =-0.2(2) × 10-2 GPa/K and the Anderson-Grüneisen parameter δ T =4.3(5) above the Debye temperature. The data were also fitted to the Mie-Grüneisen thermal equation of state. The least-squares fit yields the Debye temperature θ DO = 500(20) K, the Grüneisen parameter γ 0=1.50(5), and the volume dependence q=1.1(5). Both thermal-pressure models give consistent P-V-T relations for magnesiowüstite to 140 GPa and 4000 K. The P-V-T relations for magnesiowüstite were also calculate by using a modified high-temperature Birch-Murnaghan equation of state with a δ t of 4.3. The results are consistent with those calculated by using the thermal-pressure model and the Mie-Grüneisen relation to 140 GPa and 3000 K.  相似文献   

3.
The second-order elastic constants up to 30 GPa, which encompass the stability field of the spinel forms, their pressure derivatives and the third-order elastic constants of both hydrous and anhydrous -Mg2SiO4 have been obtained theoretically. A combination of deformation theory and finite strain elasticity theory has been employed to arrive at the expressions for second-order and third-order elastic constants from the strain energy of the lattice. The strain energy is calculated by taking into account the interactions up to second nearest neighbours in the -Mg2SiO4 lattice. This is then compared with the strain-dependent lattice energy from continuum model approximation to obtain the expression of elastic constants. The second-order elastic constants Cij compare favourably with the measurements in the case of anhydrous as well as hydrous -Mg2SiO4 and with other calculations on the anhydrous phase. All the third-order elastic constants of both the compounds are negative. The third-order elastic constant C144(–52.41 and –45.07 GPa for anhydrous and hydrous -Mg2SiO4, respectively) representing the anisotropy of shear mode has a smaller value than C111 (–2443.94 and –2101.25 GPa for anhydrous and hydrous phases, respectively), which corresponds to the longitudinal mode. The pressure-induced variations in the longitudinal elastic constants (i.e.,dC11/dp) are relatively large (4.08 and 4.09 for dry and hydrous ringwoodite, respectively) compared with those for the shear (0.22 and 0.32 for dry and hydrous ringwoodite, respectively) and off-diagonal constants (1.40 and 1.41 for dry and hydrous ringwoodite, respectively). The variation of the shear moduli Cs and anisotropy factor A with pressure have also been studied. The average value of elastic anisotropy is 0.835 in the case of anhydrous -Mg2SiO4 and 0.830 in the hydrous phase. The reversal of sign of the Cauchy pressure C12 – C44, which describes the angular character of atomic bonding in metals and other compounds, at around 21 GPa for both the compounds may be a precursor to the phase transition from ringwoodite to periclase and perovskite at an elevated temperature. The aggregate elastic properties like the adiabatic bulk modulus K (175.4 and 150.2 GPa for anhydrous and hydrous phases, respectively), and the isotropic compressional (P) and shear (S) wave velocities were calculated and the mode Grüneisen Parameters (GPs) of the acoustic waves were determined based on the quasi-harmonic approximation. The low temperature limit of both hydrous and anhydrous phases of -Mg2SiO4 are positive (1.69 and 1.78, respectively, for hydrous and anhydrous phases) and hence we expect the thermal expansion to be positive down to absolute zero. The Anderson–Grüneisen parameter obtained for hydrous as well as anhydrous phases of -Mg2SiO4 from the second-order and third-order elastic constants are 2.30 and 2.29, respectively.  相似文献   

4.
The elastic moduli of a single-crystal calcium oxide, CaO, are measured in the temperature range from 300 to 1200 K (1.8 times of the Debye temperature) by the resonant sphere technique (RST). The lowest 18 modes are identified in the frequency range from 0.6 to 1.4 MHz for the vibrating spherical specimen, which is 5.6564 mm in diameter and 3.3493 g/cm3 in density at room temperature, and the resonant frequencies are traced as a function of temperature. The adiabatic elastic moduli are determined in the present temperature range from the observed frequencies by inversion calculations. Most of the elastic moduli, except forC 12 modulus, decrease as temperature increases. The temperature curves ofC s andC 44 moduli cross at 372 K. This means that the CaO specimen has an isotropic elasticity at the temperature. The temperature derivatives (?C 11/?T) P and (?C s/?T) P become slightly less negative with temperature increase and (?C s /?T) P and (?C 44/?T) P are almost constant. Combining the present elastic data with thermal expansion and specimen heat capacity data of CaO, we present the temperature dependence of thermodynamic parameters important in the studies of earth's interior.  相似文献   

5.
The single-crystal elastic constants of natural alunite (ideally KAl3(SO4)2(OH)6) were determined by Brillouin spectroscopy. Chemical analysis by electron microprobe gave a formula KAl3(SO4)2(OH)6. Single crystal X-ray diffraction refinement with R 1 = 0.0299 for the unique observed reflections (|F o| > 4σ F) and wR 2 = 0.0698 for all data gave a = 6.9741(3) Å, c = 17.190(2) Å, fractional positions and thermal factors for all atoms. The elastic constants (in GPa), obtained by fitting the spectroscopic data, are C 11 = 181.9 ± 0.3, C 33 = 66.8 ± 0.8, C 44 = 42.8 ± 0.2, C 12 = 48.2 ± 0.5, C 13 = 27.1 ± 1.0, C 14 = 5.4 ± 0.5, and C 66 = ½(C 11C 12) = 66.9 ± 0.3 GPa. The VRH averages of bulk and shear modulus are 63 and 49 GPa, respectively. The aggregate Poisson ratio is 0.19. The high value of the ratio C 11/C 33 = 2.7 and of the ratio C 66/C 44 = 1.6 are characteristic of an anisotropic structure with very weak interlayer interactions along the c-axis. The basal plane (001) is characterized by 0.1% longitudinal acoustic anisotropy and 0.9–1.1% shear acoustic anisotropy, which gives alunite a characteristic pseudo-hexagonal elastic behavior, and is related to the pseudo-hexagonal arrangement of the Al(O,OH)6 octahedra in the basal layer. The elastic Debye temperature of alunite is 654 K. The large discrepancy between the elastic and heat capacity Debye temperature is also a consequence of the layered structure.  相似文献   

6.
High temperature elasticity of single crystal potassium chloride has been studied by the Rectangular Parallelepiped Resonance (RPR) method up to 870 K (? 3.8 times the Debye temperature, ?). The elastic stiffness moduli, C 11 and C 44, decrease linearly with temperature while C 12 increases slightly with temperature. The RPR method is particularly suited to measurements of elasticity at high temperatures, since no glues (which decompose at high temperature) are used to connect the transducers to a specimen. As a consequence, the measured spectrum closely approximates the theoretical spectrum of a specimen freely suspended in space with no external contact. The present elasticity data permits the investigation of the thermodynamic properties of potassium chloride far above the Debye temperature when used together with the previous zero-pressure data on thermal expansivity and heat capacity. The equation of state of potassium chloride is virtually unaffected by anharmonicity, even at T/?=3.8. One result is that the thermal pressure for KCl above the Debye temperature linearly increases with temperature. There is also small dependence on volume, in contrast to NaCl where there is no dependence on volume.  相似文献   

7.
The Grüneisen ratio, γ, is defined as γy=αK TV/Cv. The volume dependence of γ(V) is solved for a wide range in temperature. The volume dependence of αK T is solved from the identity (? ln(αK T)/? ln V)Tδ T-K′. α is the thermal expansivity; K T is the bulk modulus; C V is specific heat; and δ Tand K′ are dimensionless thermoelastic constants. The approach is to find values of δ T and K′, each as functions of T and V. We also solve for q=(? ln γ/? ln V) where q=δ T -K′+ 1-(? ln C V/? ln V)T. Calculations are taken down to a compression of 0.6, thus covering all possible values pertaining to the earth's mantle, q=? ln γ/? ln V; δ T=? ln α/? ln V; and K′= (?K T/?P)T. New experimental information related to the volume dependence of δ T, q, K′ and C V was used. For MgO, as the compression, η=V/V 0, drops from 1.0 to 0.7 at 2000 K, the results show that q drops from 1.2 to about 0.8; δ T drops from 5.0 to 3.2; δ T becomes slightly less than K′; ? ln C V/? In V→0; and γ drops from 1.5 to about 1. These observations are all in accord with recent laboratory data, seismic observations, and theoretical results.  相似文献   

8.
High pressure in situ synchrotron X-ray diffraction experiment of strontium orthophosphate Sr3(PO4)2 has been carried out to 20.0 GPa at room temperature using multianvil apparatus. Fitting a third-order Birch–Murnaghan equation of state to the PV data yields a volume of V 0 = 498.0 ± 0.1 Å3, an isothermal bulk modulus of K T  = 89.5 ± 1.7 GPa, and first pressure derivative of K T ′ = 6.57 ± 0.34. If K T ′ is fixed at 4, K T is obtained as 104.4 ± 1.2 GPa. Analysis of axial compressible modulus shows that the a-axis (K a  = 79.6 ± 3.2 GPa) is more compressible than the c-axis (K c  = 116.4 ± 4.3 GPa). Based on the high pressure Raman spectroscopic results, the mode Grüneisen parameters are determined and the average mode Grüneisen parameter of PO4 vibrations of Sr3(PO4)2 is calculated to be 0.30(2).  相似文献   

9.
The nine adiabatic elastic stiffness constants of synthetic single-crystal fayalite, Fe2SiO4, were measured as functions of pressure (range, 0 to 1.0 GPa) and temperature (range, 0 to 40° C) using the pulse superposition ultrasonic method. Summary calculated results for a dense fayalite polycrystalline aggregate, based on the HS average of our single-crystal data, are as follows: Vp = 6.67 km/s; Vs = 3.39km/s; K= 127.9 GPa; μ = 50.3 GPa; (?K/?P)T = 5.2; (?μ/?P)T=1.5;(?K/?T)P= ?0.030 GPa/K;and,(?/?T)P =-0.013 GPa/K (the pressure and temperature data are referred to 25° C and 1 atm, respectively). Accuracy of the single-crystal results was maintained by numerous cross and redundancy checks. Compared to the single-crystal elastic properties of forsterite, Mg2SiO4, the fayalite stiffness constants, as well as their pressure derivatives, are lower for each of the on-diagonal (C ij for which i=j) values, and generally higher for the off-diagonal (C ij for which i≠j) data. As a result, the bulk moduli (K) and dK/dP for forsterite and fayalite are very similar, but the rigidity modulus (μ) and dμ/dP for polycrystalline fayalite are much lower than their forsterite counterparts. The bulk compression properties derived from this study are very consistent with the static-compression x-ray results of Yagi et al. (1975). The temperature dependence of the bulk modulus of fayalite is somewhat greater (in a negative sense) than that of forsterite. The rigidity dependencies are almost equivalent. Over the temperature range relevant to this study, the elastic property results are generally consistent with the data of Sumino (1978), which were obtained using the RPR technique. However, some of the compressional modes are clearly discrepant. The elastic constants of fayalite appear to be less consistent with a theoretical HCP model (Leibfried 1955) than forsterite, reflecting the more covalent character of the Fe-O bonding in the former.  相似文献   

10.
 Physical properties including the equation of state, elasticity, and shear strength of pyrite have been measured by a series of X-ray diffraction in diamond-anvil cells at pressures up to 50 GPa. A Birch–Murnaghan equation of state fit to the quasihydrostatic pressure–volume data obtained from laboratory X-ray source/film techniques yields a quasihydrostatic bulk modulus K 0T =133.5 (±5.2) GPa and bulk modulus first pressure derivative K 0T =5.73 (±0.58). The apparent equation of state is found to be strongly dependent on the stress conditions in the sample. The stress dependency of the high-pressure properties is examined with anisotropic elasticity theory from subsequent measurements of energy-dispersive radial diffraction experiments in the diamond-anvil cell. The calculated values of K 0T depend largely upon the angle ψ between the diffracting plane normal and the maximum stress axis. The uniaxial stress component in the sample, t3−σ1, varies with pressure as t=−3.11+0.43P between 10 and 30 GPa. The pressure derivatives of the elastic moduli dC 11/dP=5.76 (±0.15), dC 12/dP=1.41 (±0.11) and dC 44/dP=1.92 (±0.06) are obtained from the diffraction data assuming previously reported zero-pressure ultrasonic data (C 11=382 GPa, C 12=31 GPa, and C 44=109 GPa). Received: 21 December 2000 / Accepted: 11 July 2001  相似文献   

11.
In order to examine pressure–volume–temperature (PVT) relations for CaSiO3 perovskite (Ca-perovskite), high-temperature compression experiments with in situ X-ray diffraction were performed in a laser-heated diamond anvil cell (DAC) to 127 GPa and 2,300 K. We also employed an external heating system in the DAC in order to obtain PV data at a moderate temperature of 700 K up to 113 GPa, which is the reference temperature for constructing an equation of state. The PV data at 700 K were fitted to the second-order Birch–Murnaghan equation of state, yielding K 700,1bar = 207 ± 4 GPa and V 700,1bar = 46.5 ± 0.1 Å3. Thermal pressure terms were evaluated in the framework of the Mie–Grüneisen–Debye model, yielding γ 700,1bar = 2.7 ± 0.3, q 700,1bar = 1.2 ± 0.8, and θ 700,1bar = 1,300 ± 500 K. A thermodynamic thermal pressure model was also employed, yielding α700,1bar = 5.7 ± 0.5 × 10?5/K and (?K/?T) V  = ?0.010 ± 0.004 GPa/K. Computed densities along a lower mantle geotherm demonstrate that Ca-perovskite is denser than the surrounding lower mantle, suggesting that Ca-perovskite-rich rocks do not rise up through the lower mantle. One of such rocks might be a residue of partial melting of subducted mid-oceanic ridge basalt (MORB) at the base of the mantle. Since the partial melt is FeO-rich and therefore denser than the mantle, all the components of subducted MORB may not return to shallow levels.  相似文献   

12.
P-V-T data of MgSiO3 orthoenstatite have been measured by single-crystal X-ray diffraction at simultaneous high pressures (in excess of 4.5 GPa) and temperatures (up to 1000 K). The new P-V-T data of the orthoenstatite, together with previous compression data and thermal expansion data, are described by a modified Birch-Murnaghan equation of state for diverse temperatures. The fitted thermoelastic parameters for MgSiO3 orthoenstatite are: thermal expansion ?α/?P with values of a=2.86(29)×10-5 K-1 and b=0.72(16)×10-8 K-2; isothermal bulk modulus K T o =102.8(2) GPa; pressure derivative of bulk modulus K′=?K/?P=10.2(1.2); and temperature derivative of bulk modulus K=?K/?T=-0.037(5) GPa/K. The derived thermal Grüneisen parameter is γ th=1.05 for ambient conditions; Anderson-Grüneisen parameter is δ T o =11.6, and the pressure derivative of thermal expansion is ?α/?P=-3.5×10-6K-1 GPa-1. From the P-V-T data and the thermoelastic equation of state, thermal expansions at two constant pressures of 1.5 GPa and 4.0 GPa are calculated. The resulting pressure dependence of thermal expansion is Δα/ΔP=-3.2(1)× 10-6 K-1 GPa-1. The significantly large values of K′, K, δ T and ?α/?P indicate that compression/expansion of MgSiO3 orthoenstatite is very sensitive to changes of pressure and temperature.  相似文献   

13.
We use Kieffer’s model to represent the vibrational density of states (VDoS) and thermodynamic properties of pure substances in pressure–temperature space. We show that this model can be simplified to a vibrational model in which the VDoS is represented by multiple Einstein frequencies without significant loss of accuracy in thermodynamic properties relative to experimental data. The resulting analytical expressions for thermodynamic properties, including the Gibbs energy, are mathematically simple and easily accommodated in existing computational software for making thermodynamic databases. We show for aluminium, platinum, orthoenstatite and forsterite that thermodynamic properties can be represented with comparable accuracy as with Kieffer’s model with the same number of fitting parameters as in the Mie–Grüneisen–Debye model. We demonstrate that the method enables to achieve thermodynamic properties with superior accuracy relative to the Mie–Grüneisen–Debye method. The method is versatile in the sense that it allows incorporating dispersion of Grüneisen parameters. It is possible to extend the formalism to include other physical effects, such as intrinsic anharmonicity in the same way as in vibrational models based on Kieffer’s formalism.  相似文献   

14.
The elastic moduli (c) of single crystal KMgF3 have been determined by the ultrasonic pulse superposition technique as a function of temperature from T=298?550 K, and as a function of pressure from P=1 bar?2.5 kbar. Room temperature values of the elastic moduli and their temperature derivatives are consistent with Reshchikova's (1969) values. Comparison with the data for SrTiO3 indicates that, for most of the moduli, 1/c(?c/?T) P and (?c/?P) T are very similar for the fluoride-oxide analogue pair, KMgF3-SrTiO3. Values of (?c/?P) T for KMgF3 are calculated from a simple central force model using parameters determined for KF and are in good agreement with the measured values. The bulk sound velocity-mean atomic weight relationship, v ф M 1/2=constant, is well obeyed by the fluoroperovskites; comparison with the perovskite oxide data on a log-log plot of v ф versus M leads to a value of 70% for the relative effective charge of the oxides with respect to the fluorides.  相似文献   

15.
The first pressure derivatives of the second-order elastic constants have been calculated for brucite, Mg(OH)2 from the second- and third-order elastic constants. The deformation theory and finite strain elasticity theory have been used to obtain the second- and third-order elastic constants of Mg(OH)2 from the strain energy of the lattice. The strain energy ϕ is calculated by taking into account the interactions up to third nearest neighbors in the Mg(OH)2 lattice. ϕ is then compared with the strain dependent lattice energy from continuum model approximation to obtain the expressions of elastic constants. The complete set of six second-order elastic constants C IJ of brucite exhibits large anisotropy. Since C 33 (= 21.6 GPa), which corresponds to the strength of the material along the c-axis direction, is less than the longitudinal mode C 11 (= 156.7 GPa), the interlayer binding forces are weaker than the binding forces along the basal plane of Mg(OH)2. The 14 nonvanishing components of the third-order elastic constants, C IJK , of brucite have been obtained. All the C IJK of brucite are negative except the values of C 114 (= 230.36 GPa), C 124 (= 75.45 GPa) and C 134 (= 36.98 GPa). The absolute values of the C IJK are, in general, one order of magnitude greater than the C IJ ’s in the Mg(OH)2 system as usually expected for a crystalline material. To our knowledge, no previous data are available to compare the pressure derivatives of brucite. The pressure derivatives of the two components viz., C 14 and C 33 become negative indicating an elastic instability in brucite while under pressure. This may be related to the phase transition of brucite largely involving rearrangements of H atoms revealed in the Raman spectroscopic, powder neutron diffraction and synchrotron X-ray diffraction studies.  相似文献   

16.
Thermal expansion properties of synthetic orthopyroxenes (Fe0.20Mg0.80)SiO3, (Fe0.40Mg0.60)SiO3, (Fe0.50Mg0.50)SiO3, (Fe0.75Mg0.25)SiO3 and (Fe0.83Mg0.17)SiO3 were systematically studied by means of single-crystal x-ray diffraction in the temperature range from 296 to 1300 K. The measurements of unit cell dimensions as a function of temperature reveal that the a and c dimensions and the unit cell volume V increase nonlinearly with a positive curvature with rising temperature, whereas the b dimension behaves differently, depending on the total Fe content. For Mg-rich orthopyroxenes (Fe/(Fe+Mg)<30%), the b dimension expands similarly as the a and c dimensions, but it exhibits a nonlinear increase with a negative curvature for orthopyroxenes with Fe/(Fe+Mg)>30%. Together with the high temperature neutron diffraction data on enstatite (MgSiO3) (McMullan, Haga and Ghose, unpublished) and x-ray diffraction data on ferrosilite (FeSiO3) (Sueno et al. 1976), the measured unit cell dimensions were analyzed in terms of the Grüneisen theory of thermal expansion. The linear thermal expansion coefficients α a and α c both increase as temperature is elevated, with α c increasing faster, while α b changes gradually from increasing for Mg-rich orthopyroxenes to decreasing for Fe-rich orthopyroxenes. The relative magnitudes of linear thermal expansion coefficients are always in the order α b c a between 300 and 500 K, but at higher temperatures, the order changes to α c b a for Mg-rich orthopyroxenes and α c a b for Fe-rich ones. The linear thermal expansion behavior is interpreted on the basis of the structural mechanical model of Weidner and Vaughan (1982). The anomalous behavior of α b is mainly attributed to the changes in the Fe2+ population at the M2 site and the relative stiffness of the M2(Fe2+)-O bonds compared to the M2(Mg2+)-O bonds. The volume thermal expansion coefficients are nonlinear functions of temperature and lie between 23 and 49×10?6/K. The previously reported results of mean volume thermal expansion coefficients appear to represent the α V values characteristic of higher temperatures compared to our results. The thermal Debye temperatures are composition-dependent, decreasing linearly from 812 (MgSiO3) to 561 K (FeSiO3), and are systematically higher than the corresponding acoustic Debye temperatures. The Grüneisen parameters range from 0.85 to 0.89 and do not seem to vary with composition. The linear compressibilities derived from thermal expansion and elastic moduli data agree very well. The pressure derivatives of the isothermal bulk modulus (dK0/dP) are also composition-dependent and decrease from 11.2 (MgSiO3) to 8.77 (FeSiO3). Such large values indicate possible anomalous elastic behavior of orthopyroxenes at high pressures in the Earth's upper mantle.  相似文献   

17.
A simplest equation within the framework of the Mie-Grüneisen–Einstein approach is considered. Pressure estimation values are presented that are derived by conventional arithmetic and algebraic calculations as a function of temperature and volume. The equation under consideration complies with the Mie-Grüneisen–Debye model at high temperature. Different versions of an equation of state (EoS) of MgO proposed by Speziale et al. (J Geophys Res 106B:515–528, 2001) as a pressure standard at high temperatures are subject to analyses. In the literature, at least four versions of Speziale et al. EoS of MgO are discussed; the discrepancy between them reaching a few GPa at T > 2,000 K and P > 100 GPa. Our analyses of these equations suggest that the volume dependence of the Debye temperature is accepted arbitrarily and does not agree with the definition of the Grüneisen parameter, γ = −(∂lnΘ/∂lnV) T . Pressure as a function of temperature and volume in the Mie-Grüneisen–Einstein approach or the Gao pressure calculator can be used to estimate true pressure at compression x = V/V 0 < 1 with the Speziale et al. EoS of MgO.  相似文献   

18.
The Raman spectra of bixbyite, Mn2O3, were measured up to 40 GPa at room temperature. Mn2O3 undergoes a phase transition from the C-type rare earth structure to the CaIrO3-type (post-perovskite) structure at 16–25 GPa. The transition pressure measured in Raman spectroscopy is significantly lower than the pressure reported previously by an X-ray diffraction study. This could be due to the greater polarizability in the CaIrO3-type structure, consistent with high-pressure observation on the CaIrO3 type in MgGeO3, although it is still possible that experimental differences may cause the discrepancy. Unlike the change at the perovskite to CaIrO3-type transition, the spectroscopic Grüneisen parameter does not decrease at the C-type to CaIrO3-type transition. The spectroscopic Grüneisen parameter of the low-pressure phase (C type) is significantly lower than thermodynamic Grüneisen parameter, suggesting significant magnetic contributions to the thermodynamic property of this material. Our Raman measurements on CaIrO3-type Mn2O3 contribute to building systematic knowledge about this structure, which has emerged as one of the common structures found in geophysically important materials.  相似文献   

19.
Using the rectangular parallelepiped resonance method we measured the temperature dependence of the adiabatic elastic moduli of single-crystal MgO over the temperature range 300–1800 K. The high temperature limit of our measurements extends by 500 K the upper limit over which elasticity data on MgO are now available. Although our measured temperature dependence of C ij s are generally in good agreement with previous measurements over a more narrow range in temperature, we found that C 44 s decreases more rapidly with temperature, for T > 1000 K, than previous studies suggest. We also found that each of the slopes (?C 11 s /?T)p, (?Ks/?T)p, and (C 44 s /?T)p become less negative with increasing temperature for T > 1400 K. From our measurements on elasticity we are able to confirm that the Grüneisen parameter at zero pressure is nearly constant with temperature up to 1800 K, with only a slight decrease above 1000 K. Utilizing our new data we present calculations showing the temperature dependence of thermodynamic parameters important in studies of earth's interior.  相似文献   

20.
Thermal expansion of single-crystal fayalite has been measured by a dilatometric method at temperatures between 25 °C and 850 °C. The results show the presence of anomalous expansion in the b axis, which is correlated to the anomalous variation of elastic moduli with temperature. Grüneisen's parameter is 1.10 and the thermal Debye temperature is 565 K, which is close to the acoustic Debye temperature of 511 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号