首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca-poor pyroxene ceases to crystallise towards the end of fractionation in tholeiitic intrusions and is usually replaced by Fe-rich olivine. Using the data of Nicholls et al. (1971), the \(a_{{\text{SiO}}_2 }\) at which olivine and pyroxene can coexist has been calculated at different temperatures and pressures. From these calculations it is clear that the Fe/Mg ratio of the last Ca-poor pyroxene to crystallise from a melt is increased by raising the temperature or pressure of crystallisation. The Ca-poor pyroxene-Fe-rich olivine relationship is also dependent on the \(a_{{\text{SiO}}_2 }\) of the melt. In magmas which crystallise Fe-rich olivine before quartz, inicreasing their \(a_{{\text{SiO}}_2 }\) will raise the Fe/Mg ratio of the last Ca-poor pyroxene to crystallise. If the \(a_{{\text{SiO}}_2 }\) of the magma is so high that SiO2 saturation is reached before the appearance of cumulus Fe-rich olivine, any further increase in the \(a_{{\text{SiO}}_2 }\) of the melt will not influence the stability field of Ca-poor pyroxene. The replacement of Ca-poor pyroxene by Fe-rich olivine requires the magma to reach a high level of a FeO late in its fractionation. If a magma fractionates with an FeO depletion trend, Ca-poor pyroxene is replaced by Ca-rich pyroxene. The reaction is initiated by the appearance of cumulus K-feldspar which results in a marked reduction in the amount of anorthite crystallising from the magma. This increases the a CaO of the melt so that Ca-poor pyroxene is replaced by Ca-rich pyroxene.  相似文献   

2.
Five different refraction formulas were applied to SiO2 polymorphs in order to determine the most suitable refractive index-density relation. 13 SiO2 polymorphs with topological different tetrahedral frameworks are used in this study including eight new low density SiO2 polymorphs — so called “guest free porosils”. These SiO2 polymorphs cover a density range from 1.76 to 2.92 g/cm3. The mean refractive indices (ovn) of the porosils have been determined by the immersion method, the densities (ρ) were calculated from the unit cell parameters. Assuming the polarizability (α) of all SiO2 polymorphs to be constant the general refractivity formula $$\{ 2\overline {11} 0\} \langle 0001\rangle $$ turned out to be the most suitable for SiO2 polymorphs. Regression analysis yields an electronic overlap parameter b=1.2(1).  相似文献   

3.
Oxygen Fugacity measurements were carried out on chromites from the Eastern Bushveld Complex (Maandagshoek) and are compared with former measurements on chromites from the western Bushveld Complex (Zwartkop Chrome Mine). These results together with those of Hill and Roeder (1974) yield the following conditions of formation for the massive chromitite layers: Western Bushveld Complex (Zwartkop Chrome Mine) $$\begin{gathered} Layer{\text{ }}T(^\circ C) p_{O_2 } (atm) \hfill \\ LG3{\text{ 1160}} - {\text{1234 10}}^{ - {\text{5}}} - 10^{ - 7.6} \hfill \\ LG4{\text{ 1175}} - {\text{1200 10}}^{ - 6.35} - 10^{ - 7.20} \hfill \\ LG6{\text{ 1162}} - {\text{1207 10}}^{ - 6.20} - 10^{ - 7.50} \hfill \\ \hfill \\ \end{gathered} $$ Eastern Bushveld Complex (Farm Maandagshoek) $$\begin{gathered} {\text{LXI 1115}} - {\text{1150 10}}^{ - 7.80} - 10^{ - 8.80} \hfill \\ ( = {\text{Steelpoort Seam)}} \hfill \\ {\text{LX 1125 10}}^{ - 8.25} \hfill \\ {\text{V 1120 10}}^{ - 8.55} \hfill \\ {\text{LII 1120 10}}^{ - 8.0} - 10^{ - 8.60} \hfill \\ \end{gathered} $$ The comparison of the data shows, that the chronitite layers within each particular sequence were formed under approximately identicalp o 2- andT-conditions. The chromites from the western Bushveld Complex, however, were formed at higher temperatures and higher oxygen fugacities than the chromites from the eastern Bushveld Complex. Fromp o 2-T-curves of disseminated chromites and the temperatures derived above, the following conditions of formation for the host rocks were obtained: Western Bushveld Complex $$T = 1200^\circ {\text{C; }}p_{{\text{o}}_{\text{2}} } = 10^{ - 7.25} - 10^{ - 7.50} $$ Eastern Bushveld Complex $$T = 1125^\circ {\text{C; }}p_{{\text{o}}_{\text{2}} } = 10^{ - 8.50} - 10^{ - 9.25} $$ Consequently, the host rocks in the Zwartkop-Chrome-Mine, were formed under higher temperatures and higher oxygen fugacities than the host rocks at Maandagshoek. The rock sequence in the Zwartkop-Chrome-Mine therefore originated in an earlier stage of the differentiation of the Bushveld magma. Comparison of the chromites from the host rocks with the chromites from massive layers supports Ulmer's (1969) thesis that an increase of the oxygen fugacity is responsible for the formation of massive chromitite layers. The values in this investigation show that increases of only about 0.5–1.0 log units are necessary to enhance chromitite layer formation.  相似文献   

4.
Electrical conductivities of Ni2SiO4, Fe2SiO4, and MgSiO3 were measured on synthetic powders in the temperature range 340° to 1,100° C and at pressures up to 20 kbars. For ternary compounds such as olivines and pyroxenes the control of two further variables, like the chemical activities of two components are needed, besides temperature and pressure. The activities of the corresponding binary oxides were controlled by equilibrating the samples with their neighbour-phases. Control of the oxygen partial pressure was achieved by buffer techniques. From the slopes of the lg σ vs. 1/T lines the activation energies were calculated for 10 kbar: 0.56 eV and 2.7 eV for Ni2SiO4 in equilibrium with SiO2 and Ni/NiO-buffer for the temperature range 500°–800°C and 800°–1,000°C resp. 0.52 eV for Fe2SiO4 in equilibrium with SiO2 and metallic iron, and 0.38 eV in equilibrium with SiO2 and magnetite; 1.11 eV for MgSiO3 in equilibrium with SiO2, and 1.25 eV in equilibrium with Mg2SiO4.  相似文献   

5.
Most of the Al3+ entering the pyroxenes does so by substituting for tetrahedral Si4+. This creates a charge imbalance that requires the simultaneous entry of Cr3+, Ti4+, Fe3+ or Al3+ into octahedral sites. Cr3+, because of its high crystal field stabilisation energy (CFSE), is the most important of these elements to enter the early-formed pyrosenes but it is replaced by Ti4+ later in fractionation when the Cr3+ content of the melt becomes depleted. The dependence of Cr3+ and Ti4+ on charge balance controls their partition between coexisting pyroxenes and olivines. Ca-rich pyroxene which contains more Al3+ than Ca-poor pyroxene also has more Ti4+ and Cr3+ whereas olivine, which contains negligible Al3+, has low Cr3+ and Ti4+. The Al3+ content of pyroxenes is influenced by changes in P, T, \(a_{{\text{SiO}}_{\text{2}} }\) and \(a_{{\text{Al}}_{\text{2}} {\text{O}}_{\text{3}} }\) of the magma and by the nature of the ion providing charge balance in the octahedral site. Of these \(a_{{\text{SiO}}_{\text{2}} }\) is dominant and variations in the Al3+ content of the Jimberlana pyroxenes correspond closely with the expected changes in the \(a_{{\text{SiO}}_{\text{2}} }\) of the melt. The substitution of divalent ions, such as Mn2+ and Ni2+, in the pyroxene lattice is by replacement of Fe2+ or Mg2+ in the octahedral M 3 and M 2 sites and is therefore independent of charge balance. If there are no size restrictions, the principal factor to be considered is the CFSE the ion receives in octahedral co-ordination. Ni2+, which receives a high CFSE, partitions strongly between the early-formed pyroxenes and olivines and therefore becomes depleted in the magma with fractionation. Conversely Mn2+, which receives zero CFSE, concentrates in the magma with fractionation and becomes a more important substitute in the later-formed pyroxenes. Its geochemical behaviour is controlled by its size. The narrow miscibility gap of the Jimberlana pyroxenes and the high En content of the Ca-poor pyroxenes at the bronzite pigeonite changeover suggest that these pyroxenes crystallised at a higher temperature than pyroxenes of comparable composition from other intrusions.  相似文献   

6.
Infrared absorption spectra of the high-pressure polymorphs β-Mg2SiO4 and β-Co2SiO4 have been measured between 0 and 27 GPa at room temperature. Grüneisen parameters determined for 11 modes of β-Mg2SiO4 (frequencies of 300 to 1,050 cm?1) and 5 modes of β-Co2SiO4 (490 to 1,050 cm?1) range between 0.8 and 1.9. Averaging the mid-infrared spectroscopic data for β-Mg2SiO4 yields an average Grüneisen parameter of 1.3 (±0.1), in good agreement with the high-temperature thermodynamic value of 1.35. Similarly, we find a value of 1.05 (±0.2) for the average spectroscopic Grüneisen parameter of β-Co2SiO4.  相似文献   

7.
This work is one of the stages of study of the deep C-O-H fluid and investigates the behavior of polycyclic aromatic hydrocarbons (PAHs) under conditions of the Earth’s mantle. The composition of the C-O-H fluid in the upper mantle is estimated as a mixture of H2O and CH4 with a minor amount of H2 and heavier hydrocarbons. Some theoretical calculations show that the stability of heavy hydrocarbons (alkanes, alkenes, and PAHs) increases with an increase in temperature. This paper presents the results of an XRD study of PAHs stability in multianvil presses on a Spring-8 accelerator (Japan). The primary compositions were chosen according to the abundance of PAHs in nature. In situ diffraction spectrums were recorded to determine the PAHs stability field. It was established that the PAHs become unstable at a pressure of 6–9 GPa and a temperature of 873–1073 K.  相似文献   

8.
X-ray structure refinements of Ni2SiO4 and Fe2SiO4 spinels have been made as a function of temperature and heating duration by intensity measurements at high temperatures and room pressure. The lattice parameters of Ni2SiO4 spinel linearly increased with temperature up to 1,000° C. However, Fe2SiO4 spinel exhibited a nonlinear thermal expansion and was converted to a polycrystalline mixture of spinel and olivine by heating of less than one-hour at 800° C. The ratios between the octahedral and tetrahedral bond lengths D oct/D tetr and between the shared and unshared edge distances (O-O)sh/(O-O)unsh in Fe2SiO4 spinel were both much larger than those in Ni2SiO4. These ratios increase with temperature. The Fe2SiO4 spinel more readily approached a activation state which facilitated the transition to the olivine structure than the Ni2SiO4 spinel. The lattice parameter of Ni2SiO4 spinel decreased with heating period at constant temperatures of 700° C and 800° C. The parameter of the quenched sample after heating for 52 h at 700° C was smaller than that of the nonheated sample. The refinements of the site occupancies at each heating duration indicated an increase in the cation deficiency in both tetrahedral and octahedral sites. Electron microprobe analysis, however, proved no significant difference in the chemical compositions between the quenched and nonheated samples. Si and Ni atoms displaced from normally occupied spinel lattice sites are assumed to settle in vacant sites defined by the cubic close packed oxygen sublattice in a manner which preserves the electric neutrality of the bulk crystal.  相似文献   

9.
As a basis for eventual control of the vicious anthropophilic and ornithophilic simuliid females of the Marquesas Islands, a taxonomic revision of Polynesian Simuliidae is in progress. Cytotaxonomic studies reveal two simuliid species in Rarotonga, Cook Islands; nine species in Tahiti, Society Islands, and two in the Marquesas Islands. A cytophylogeny is now available. Polynesian Simuliidae are unique in possessing heterogametic females. A reconstructed phylogeny, based mainly on morphological character states of larvae and pupae, agrees well with the cytophylogeny. One of the new species which is closely related to Simulium oviceps Edwards has larvae with highly reduced, non-functional cephalic fans. Ages of the Polynesian islands are discussed in relation to possible dispersal of Simuliidae into Polynesia.  相似文献   

10.
Sm-Nd geochronology may be used to bracket the age of metamorphism in rocks which are difficult to date by other methods. By coupling whole rock Sm-Nd analyses of the principal members of the South Harris Igneous Complex, with Sm-Nd mineral isochrons on two anothositic gabbros, the age of granulite facios metamorphism has been defined. Whole rock analyses of three pairs of closely spaced samples of the anorthosite give consistent ages averaging 2.18±0.06 Gyr, but in general the data from the anorthosite do not define an isochron as a result of variable contamination of the evolving magma chamber. Whole rock data on the tonalite indicate that it is younger than 2.06 Gyr; its mean TCHUR age is 1.86±0.05 Gyr. Garnet-pyroxene-amphibole-plagioclase mineral isochrons on two anorthosite samples give identical 1.87±0.04 Gyr ages which date cooling after the high pressure granulite facies metamorphism. Together with the tonalite whole rock data this defines the age of that metamorphism and confirms Dearnley's original assignment of an early Laxfordian age.  相似文献   

11.
The decomposition of fayalite (Fe2SiO4) in oxygen potential gradients is studied at T=1,418 K. The compound will be decomposed into its component oxides wüstite, Fe1?δO, and silica, SiO2, by the simultaneous action of two different oxygen partial pressures, exceeding a critical ratio, despite the fact that fayalite is stable at both the lower and the higher oxygen potential. A quantitative analysis of the decomposition process caused by defect fluxes within the bulk Fe2SiO4 is given.  相似文献   

12.
The solubility mechanism of fluorine in quenched SiO2-NaF and SiO2-AlF3 melts has been determined with Raman spectroscopy. In the fluorine abundance range of F/(F+Si) from 0.15 to 0.5, a portion of the fluorine is exchanged with bridging oxygen in the silicate network to form Si-F bonds. In individual SiO4-tetrahedra, one oxygen per silicon is replaced in this manner to form fluorine-bearing silicate complexes in the melt. The proportion of these complexes is nearly linearly correlated with bulk melt F/(F+Si) in the system SiO2-AlF3, but its abundance increases at a lower rate and nonlinearly with increasing F/(F+Si) in the system SiO2-NaF. The process results in the formation ofnonbridging oxygen (NBO), resulting in stabilization of Si2O 5 2? units as well as metal (Na+ or Al3+) fluoride complexes in the melts. Sodium fluoride complexes are significantly more stable than those of aluminum fluoride.  相似文献   

13.
In Southwestern Mediterranean Europe (NE Spain, Sardinia and NW Apennines e. g. Monti Pisani and Punta Bianca) the Middle-Triassic transgression on a margin of an intracratonic basin appears to be controlled by the different morphology and tectonic activity of the margin itself. The analysis of some sequences leads to recognize three different kinds of margins:
  1. margin with a narrow shelf sloping toward a very shallow restricted basin (Central and Southwestern Sardinia);
  2. margin with a broad shelf gently sloping toward a shallow basin (NE Spain, Monti Pisani, NW Sardinia);
  3. margin with a narrow shelf and steep slope marked by tectonic and volcanic activity (Punta Bianca).
  相似文献   

14.
Subsolidus phase relations on the join CaMgSi2O6-CaFe3+ AlSiO6-CaTiAl2O6 were studied by the ordinary quenching method at \(f_{O_2 } = 10^{ - 11} \) atm and 1,100°C. Crystalline phases encountered are clinopyroxeness (ss:solid solution) (Cpxss), melilite (Mel), perovskite (Pv), spinelss (Spss), magnetitess (Mtss) and anorthite (An). There is no Cpxss single phase field, and the following assemblages were found; Cpxss+Mel, Cpxss+Mel+Spss, Cpxss+Mel+Pv, Cpxss+Mel+Spss+Pv, Cpxss+Pv+Spss+An, Spss+Pv+Mel+An+Cpxss, Mel+Mtss+An+Spss+Cpxss+liquid and Mel+Mtss+An+Spss+Cpxss+Pv. Mössbauer spectral study revealed that Cpxss contains both Fe2+ and Fe3+ in the octahedral site, and it was confirmed that the CaFe3+ AlSiO6 content in the Cpxss at low \(f_{O_2 } \) is considerably less than that in the Cpxss crystallized in air, whereas the CaFe2+Si2O6 component increases. The maximum solubility of CaTlAl2O6 component in the Cpxss at low \(f_{O_2 } \) is higher than that in air. The decrease of CaFe3+ AlSiO6 in the Cpxss at low \(f_{O_2 } \) may cause increase of CaTial2O6 in the Cpxss.  相似文献   

15.
The temperature dependence of the Mn-Mg distribution between garnet and clinopyroxene, originally proposed by Carswell, was confirmed by Shimizu and Allègre (1978) using ion microprobe and electron microprobe data. High precision electron microprobe analyses of a larger set of 52 Iherzolites from S. Africa and Malaita, Solomon Islands show considerable scatter in the temperature dependence of this distribution, and correlation with the CaO content of the garnet is indicated. A new distribution coefficient is based on the reaction: $$\begin{gathered} \operatorname{Mn} _{\text{2}} \operatorname{Si} _2 \operatorname{O} _6 {\text{ + }}\operatorname{CaAl} _{2/3} \operatorname{SiO} _4 {\text{ + }}\operatorname{MgAl} _{2/3} \operatorname{SiO} _4 \hfill \\ {\text{Mn - pyroxene grossular pyrope}} \hfill \\ {\text{ }} \rightleftharpoons \operatorname{CaMgSi} _2 \operatorname{O} _6 {\text{ + }}2\operatorname{MnAl} _{2/3} \operatorname{SiO} _4 \hfill \\ {\text{ diopside spessartine}} \hfill \\ \end{gathered} $$ It was calibrated against temperature determined from two independent thermometers (Wells pyroxene and O'Neill-Wood garnet-olivine) for Iherzolitic assemblages, and shown to to be sensitive to within + 50 °C for most specimens in the range 900 °– 1,300 ° C. This distribution coefficient appears independent of pressure within the uncertainty of the available data, and has the potential to be a third independent thermometer for use in garnet Iherzolites and possibly eclogites.  相似文献   

16.
Liquidus and subliquidus phase relations of a leucite-lamproite (wolgidite) from the West Kimberley area, Australia have been studied experimentally under the volatile conditions of 3.22 wt.% H2O ( \(X_{CO_2 }\) =0.11) and 13.0 wt.% H2O ( \(X_{CO_2 }\) =0.03) between 10 to 40 kbar. Under these conditions, liquids are vapour undersaturated. In experiments with 13.0 wt.% H2O, olivine is the liquidus phase up to 24 kbar and orthopyroxene above 24 kbar. Phlogopite and rutile occur close to the liquidus above 16 kbar. Crystallization temperatures of clinopyroxenes are 50–120° C below the liquidus. Based on these results, wolgidite magma is unlikely to be a partial melt of a garnet- or spinel-lherzolite mantle but could be derived from phlogopite+rutile±olivine±or-thopyroxene assemblages occurring as metasomatized mantle.  相似文献   

17.
The amorphous phase of SiO2 produced upon recovery of shock-compressed quartz demonstrates a wide range of refractive indices which can be correlated to the shock state. Both infra-red absorption spectra and X-ray diffraction patterns indicate that the shock-produced amorphous SiO2 has a statistically more-random atomic distribution and longer Si-O and shorter Si-Si separation than does fused silica. By accounting for phase transformation, the calculated values of the shock and residual temperature are much higher than those obtained by Wackerle (1962) to a pressure of 700 kbar. Our results are consistent with experimental ones.  相似文献   

18.
Itaipu Lake, which includes the Itaipu hydroelectric power plant, is one of the largest dams in the world and has a strong relationship with its surroundings. The flooded area has multiple uses such as navigation, recreation, water abstraction for industrial, urban and agricultural irrigation. The lake is located at the frontier between Brazil, Argentina and Paraguay. In this study, superficial sediments collected from nine sampling sites were analysed for grain size, organic matter and 16 priority polycyclic aromatic hydrocarbons (PAHs) using high-performance liquid chromatography (HPLC) with fluorescence detector. The total concentration of PAHs in the dry sediment ranged from 35.21 to 685.37 µg kg?1. Diagnostic ratios showed that the possible source of PAHs in the Itaipu Lake could be pyrolitic and petrogenic. The potential toxicity of sediment of PAHs varied from not detected to 127.70 µg g?1, suggesting that some adverse ecological effects would arise due to PAHs in these sediments.  相似文献   

19.
The effects of the addition of Al2O3 on the large stable two liquid field in the SiO2-TiO2-CaO-MgO-FeO system were experimentally determined. The increase of Al2O3 content in the starting composition results in the decrease of critical temperature, phase separation and liquidus temperature of the two liquid field until it is rendered completely metastable. The shrinkage of the two liquid field indicates that Al2O3 is acting in the role of a network former and homogenizes the structure of the two melts. In this alkali-free system Al+3 utilizes the divalent cations, Ca+2 and Mg+2, for local charge balance with a preference for Ca+2 over Mg+2. Thus, AlO4 tetrahedra combine with SiO4 tetrahedra to form an aluminosilicate framework which polymerizes the SiO2-poor melt and makes it structurally more similar to the SiO2-rich melt. However, Ca+2 and Mg+2 are not as efficient in a charge balancing capacity as the monovalent K+ and Na+ cations. The lack of alkalis in this system limits the stability of AlO4 tetrahedra in the highly polymerized SiO2-rich melt and results in the preference of Al2O3 for the SiO2-poor melt. The partitioning systematics of Ti are virtually identical to those of Al. It is concluded that Ti occurs in tetrahedral coordination as a network forming species in both the high — and low — SiO immiscible melts.  相似文献   

20.
Experiments on the join Al2SiO5-“Mn2SiO5” of the system Al2O3-SiO2-MnO-MnO2 in the pressure/temperature range 10–20 kb/900–1050° C with gem quality andalusite, Mn2O3, and high purity SiO2 as starting materials and using /O2-buffer techniques to preserve the Mn3+ oxidation state had following results: At 20 kb/1000°C orange-yellow kyanite mixed crystals are formed. The kyanite solid solubility is limited at about (Al1.88Mn 0.12 3+ )SiO5 and, thus, equals approximately that on the join Al2SiO5-“Fe2SiO5” (Langer and Frentrup, 1973) indicating that there is no Jahn-Teller stabilisation of Mn3+ in the kyanite matrix. 5 mole % substitution causes the kyanite lattice constants a o, b o, c o, and V o to increase by 0.015, 0.009, 0.014 Å, and 1.6 Å3, resp., while α, β, γ, remain unchanged. Between 10 and 18 kb/900°C, Mn3+-substituted, strongly pleochroitic (emeraldgreen-yellow) andalusitess (viridine) was obtained. At 15 kb/900°C, the viridine compositional range is about (Al1.86Mn 0.14 3+ )SiO5-(Al1.56Mn 0,44 3+ )SiO5. Thus, Al→Mn3+ substitutional degrees are appreciably higher in andalusite than in kyanite, proving a strong Jahn-Teller effect of Mn3+ in the andalusite structure, which stabilises this structure type at the expense of kyanite and sillimanite and, thus, enlarges its PT-stability range extremely. 17 mole % substitution cause the andalusite constants a o, b o, c o, and V o to increase by 0.118, 0.029, 0.047 Å and 9.4 Å3, resp. At “Mn2SiO5”-contents smaller than about 7 mole %, viridine coexists with Mn-poor kyanite. At “Mn2SiO5”-concentrations higher than the maximum kyanite or viridine miscibility, braunite (tetragonal, ideal formula Mn2+Mn3+[O8/Si04]), pyrolusite and SiO2 were found to coexist with the Mn3+-saturated ky ss or and ss, respectively. In both cases, braunites were Al-substituted (about 1 Al for 1 Mn3+). Pure synthetic braunites had the lattice constants a o 9.425, c o, 18.700 Å, V o 1661.1 Å3 (ideal compn.) and a o 9.374, c o 18.593 Å3, V o 1633.6 Å3 (1 Al for 1 Mn3+). Stable coexistence of the Mn2+-bearing phase braunite with the Mn4+-bearing phase pyrolusite was proved by runs in the limiting system MnO-MnO2-SiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号