首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study focuses on the development of a farm of tidal turbines in the Khuran Channel. The important factors include the location of turbines and their hydrodynamic effects on the environment. A three-dimensional circulation model for the Persian Gulf is employed for the comprehensive evaluation of the tidal energy potential throughout the study area. The model is validated by using in situ observations of water level and current data.The appropriate potential points for extracting the tidal e...  相似文献   

2.
基于FVCOM(Finite Volume Coast and Ocean Model)模型,建立北印度洋海域(31°~102°E,16°S~31°N)的M2和S2分潮潮波数值模式,研究北印度洋半日潮潮汐、潮流分布特征。对底摩擦系数进行数值试验,利用代价函数梯度下降法,得到分潮调和常数向量均方根偏差(RMSE)的变化曲线,逼近并确定最优的底摩擦系数。将采用该系数的模拟结果与TOPEX/Poseidon卫星高度计交叉点的调和常数数据、国际海道测量组织(IHO)及部分文献中的验潮站数据进行比较与验证,一致性较好。其中对比卫星数据的振幅偏差为2~4 cm、迟角偏差为7°~8°,与验潮站数据的振幅偏差为3~6 cm、迟角偏差为8°~9°。根据模拟结果,分析了北印度洋海域M2和S2分潮潮波传播特征和潮流椭圆的空间分布特征等。M2分潮潮波在阿拉伯海南部有1个无潮点,在波斯湾内有2个无潮点,最大振幅超过80 cm;潮流在西北印度洋和孟加拉湾中部大多为顺时针旋转,其余海域大多为逆时针旋转;流速在阿拉伯海东北部、安达曼海、波斯湾和孟加拉湾北部较大,最大流速为160 cm/s,其他海域较小。S2分潮的潮波传播特征、无潮点的位置和潮流椭圆的空间分布特征等都与M2分潮类似,但潮波振幅和潮流流速等都相对M2分潮较小。研究完善了北印度洋海域2个主要半日分潮M2和S2的整体特征。  相似文献   

3.
黄海、渤海TOPEX/Poseidon高度计资料潮汐伴随同化   总被引:1,自引:0,他引:1  
首先将大约10a的TOPEX/Poseidon(T/P)高度计资料沿星下轨迹点做潮汐调和分析,提取得到各分潮的调和常数,利用伴随同化方法,同化到二维非线性潮汐数值模式中,模拟了黄海、渤海区域M2,S2,O1,K1等4个潮汐分潮,并根据计算结果给出了各分潮的同潮图.将计算值与观测值的进行偏差统计,结果表明计算值与验潮站资料符合良好.研究过程中做了两类试验:一类试验是针对不同的参数进行优化,一类试验是针对不同的资料进行同化.第一类试验表明:将开边界条件和底摩擦系数同时作为模型优化的控制参数,其结果明显优于单独优化开边界条件;第二类试验表明:同时同化高度计资料与验潮站资料,比单独同化其中任一种资料,对模式计算结果都有较好的改进.研究结果表明,采用伴随同化方法,利用T/P高度计资料和验潮站资料作为同化数据能有效改进模拟结果,用来反演黄海、渤海的潮波系统是可行的.  相似文献   

4.
Satellite altimetry observations and tide gauge data are invaluable tools to diagnose and resolve tidal constituents over the Oceans and Seas. The aim of this study is to introduce a new purely empirical tide model named TM-IR01 in the Persian Gulf, Oman Sea, and North Indian Ocean. The observations of three altimeter sensors including TOPEX/POSIDON, JASON1, and JASON2 and 13 coastal tide gauge (TG) stations are processed and analyzed in this research. First of all, the least square spectral analysis is utilized to recover the significant tide components and consequently the amplitude and phases of the constituents are found during the tide modeling. Finally, the analysis results are interpolated into a grid of 1/4° using the Kriging method. TM-IR01 model is validated by comparing with TG stations and global tide models. It is shown that for main tidal frequencies M2, S2, K1, and O1 the root mean square error (RMSE) between TM-IR01 and TG stations results are 0.372, 0.130, 0.141, and 0.084?m, respectively, and also the RMSE between TM-IR01 and FES2004 models are 0.231, 0.087, 0.027, and 0.042?m, respectively. Validating with FES2012 and Tpxo7.2, the results obtained are close to the above values.  相似文献   

5.
INTRODUCTIONInearly 1 96 0’s,thetideandtidalcurrentintheBeibuGulfwereobservedandanalysedbyChinaincooperationwithVietnam1) .ThesystematicstudiesoftideandtidalcurrentintheBeibuGulfwerefirstcarriedoutbyFang (1 986 ) .Thehistoryofnumericalstudyoftideandtidalcurrent…  相似文献   

6.
Expressions derived for the friction coefficient in an oscillatory rotating turbulent bottom boundary layer (BBL) over rough, incompletely rough (smoothly rough), and smooth underlying surfaces are incorporated as an individual module into a two-dimensional nonlinear tidal model, and the standard version of the model and its modified analogue are used to discuss the titular subject. It is established that the dynamics of tides in the Taylor basin can change noticeably under the effect of hydrodynamic properties of the sea bottom. Such changes occur mainly in the influence domains of amphidromies. In the remaining parts of the basin, relative changes in the amplitudes and phases of tidal sea-surface level elevations do not exceed ±10% and ±10°, respectively. The largest discrepancies of tidal characteristics take place in the cases of the incompletely rough and smooth sea bottoms; the smallest discrepancies, in the case of the rough sea bottom. Estimates for the changes in tidal characteristics that are caused by the usually neglected effects of rotation and phase difference between the bottom friction and the tidal velocity at the upper BBL boundary are presented as well.  相似文献   

7.
A numerical model is developed to examine tidal properties of the Bay of Fundy and Gulf of Maine. The model is run with a pure M2 tidal input on the open boundary, and calibrated by adjusting the friction coefficient to achieve good agreement with inshore observations. An examination of aspects of the tidal regime is made, with particular attention paid to the upper reaches of the bay. Mean energy and work values are computed. The fundamental period of the system is estimated. The effects of tidal power plants on the tidal regime are examined.  相似文献   

8.
潮流能发电装置支撑结构对水轮机水动力学性能影响研究   总被引:1,自引:0,他引:1  
水平轴潮流能水轮机在工作过程中,由于支撑结构的存在,会使水轮机周围流场中的潮流流向、流速等参数发生不同程度的改变,进而影响水轮机的性能和发电装置的稳定性。为了研究支撑结构对水轮机水动力学性能的影响规律,以某100 k W单立柱座底式潮流能发电装置的支撑结构为研究对象,采用CFD方法,分别在正、反向来流时采用不同支撑结构的共六种工况下,对潮流能水轮机模型的获能和受力进行数值模拟。通过水槽模型试验,验证数值模拟的可靠性。研究结果表明:支撑结构对水轮机的水动力学性能的影响不容忽视,针对所研究的支撑结构,在正向来流时水轮机的获能系数降幅约30%,轴向力系数降幅约28%;反向来流时的降幅更大,分别约为63%和41%。  相似文献   

9.
北部湾潮汐潮流的三维数值模拟   总被引:9,自引:1,他引:9  
基于二阶湍流闭合模型计算涡动粘性系数的POM三维水动力模式,采用细网格,考虑6个岛屿、海底摩擦系数进行划片取值,模拟北部湾潮汐潮流.所得潮汐调和常数与81个实测站比较,绝对平均误差:K1分潮振幅为46cm,迟角为9°;O1分潮振幅为56cm,迟角为7°;M2分潮振幅为62cm,迟角为15°.由模拟结果分析出该海区潮汐、潮流、余水位和潮余流,以及水平速度垂直分布等特征.  相似文献   

10.
Tidal eddies in a semi-enclosed basin: a model study   总被引:1,自引:0,他引:1  
A modeling study has been carried out to support a Marine Management Plan for the Gulf of Kachchh, India and here the hydrodynamic part of the programme is described. The hydrodynamic model accurately predicts the tides and tidal currents present in the Gulf and these have been validated with the measured data, albeit at only a few locations. The time averaged residual currents obtained from the model for one lunar cycle clearly reproduce the complex, small-scale, topographically induced flows with several eddies. The existence of a dynamic barrier along Sikka-Mundra section, which divides the Gulf into two distinct dynamic systems, is very evident. The model is further used to predict the movement of surface floating particles launched at different locations in the Gulf, as an aid to determining floating pollutants. The results indicate that industries discharging wastes upstream of the barrier should use extreme caution, as these will remain in the vicinity for at least one lunar cycle.  相似文献   

11.
Based on the theory of characteristics, this research elaborates on the numerical treatment of two types of seaward boundary conditions for modelling long-wave dynamics in truncated estuarine and coastal domains. These seaward boundary conditions are devised for the solution of the fully non-linear shallow water equations in the time domain. The first type is the clamped boundary, at which the water level variation is given and the velocity is computed along the characteristic line going out of the domain. The second type is the non-reflecting boundary, where the incident wave information is introduced and the reflected waves from inside the computational domain are allowed to escape at the same time. The essence of its numerical implementation is to distinguish the inward and outward characteristics and to disconnect the incoming characteristic relation from the actual flow inside the domain. Compared with previous techniques, the present method includes extra terms in the derivation to account for the effects of the uneven bed, bottom friction and shape of the characteristic lines. A shock-capturing finite difference method is used to solve the shallow water equations in the deviatoric format, but the seaward boundary algorithms constructed herein are generic and applicable to other solvers. The necessity of these refinements is highlighted by simulating the tidal oscillation in the Persian/Arabian Gulf, periodic wave runup on the coastline and the wave resonance in a narrow harbour. It is found that neglecting the bed slope at the boundary may result in biased mean water levels in the prediction.  相似文献   

12.
《Coastal Engineering》2001,43(1):25-40
Video-based swash motions from three studies (on two separate beaches) were analyzed with respect to theoretical swash trajectories assuming plane beach ballistic motions under quadratic friction. Friction coefficient values for both the uprush and backwash were estimated by comparing measured swash space–time trajectories to these theoretical expectations given an initial velocity and beach slope. Observations were made spanning high tides, and in one case, during a light rain. Analysis of over 4500 individual swash events showed that the uprush friction coefficient was nearly constant during all three studies with a mean value of roughly 0.007 and showed no trends over a tidal cycle. In contrast, backwash friction coefficient values varied over the tidal cycles ranging between 0.01 and 0.07 with minimum values corresponding to the highest tides. Although these values are close to the theoretical estimates based on a Law of the Wall formulation and values commonly referenced in the literature, these observations show a consistent tendency for backwash friction estimates to greatly exceed uprush friction estimates. The disparity between uprush and backwash friction coefficients can be partially attributed to the exclusion of a pressure gradient term in the ballistic model. However, results indicate that backwash friction coefficients adjusted to account for this effect may be three times larger than the uprush friction values during lower tides. This tidal dependence for backwash friction coefficients is attributed to a complex interaction between swash infiltration and entrained sediment loads. These findings imply that friction estimates (necessary for sediment transport calculations and hydrodynamic predictions) based solely on grain roughness may not be correct for backwash flows.  相似文献   

13.
Many observed data show that the near-bed tidal velocity profile deviates from the usual logarithmic law. The amount of deviation may not be large, but it results in large errors when the logarithmic velocity profile is used to calculate the bed roughness height and friction velocity (or shear stress). Based on their investigation, Kuo et al. (1996) indicate that the deviation amplitude may exceed 100%. On the basis of fluid dynamic principle, the profile of the near-bed tidal velocity in estuarine and coastal waters is established by introducing Prandtl' s mixing length theory and Von Kannan selfsimilarity theory. By the fitting and calculation of the near-bed velocity profde data observed in the west Solent, England, the results are compared with those of the usual logarithmic model, and it is shown that the present near-bed tidal velocity profile model has such advantages as higher fitting precision, and better inner consistency between the roughness height and friction velocity. The calculated roughness height and friction velocity are closer to reality. The conclusions are validated that the logarithmic model underestimates the roughness height and friction velocity during tidal acceleration and overestimates them during tidal deceleration.  相似文献   

14.
A vertically integrated model has been used to study the tidal circulation and currents in the Gulf of Kachchh along the west coast of India. The model is fully nonlinear and uses a semiexplicit finite difference scheme to solve the basic hydrodynamic equations on a staggered grid. The model is forced by prescribing the tides along the open boundary of the model domain. The flow is simulated both with and without the presence of the proposed tidal barrage across the Hansthal Creek in the Gulf of Kachchh. The results show a considerable change in the behavior of the tidal flow in the presence of the barrage.  相似文献   

15.
A vertically integrated model has been used to study the tidal circulation and currents in the Gulf of Kachchh along the west coast of India. The model is fully nonlinear and uses a semiexplicit finite difference scheme to solve the basic hydrodynamic equations on a staggered grid. The model is forced by prescribing the tides along the open boundary of the model domain. The flow is simulated both with and without the presence of the proposed tidal barrage across the Hansthal Creek in the Gulf of Kachchh. The results show a considerable change in the behavior of the tidal flow in the presence of the barrage.  相似文献   

16.
Persian Gulf is a semi-enclosed sea located in the Middle East and is connected to oceans through the narrow 55-km Strait of Hormuz. The Persian Gulf holds an estimated 57–66% of the world's known reserves of oil. The occurrence of three major battles in the Gulf region during the past three decades has created an atmosphere of commotion and uncertainty. Because of its marine geology, geographical location, and geopolitical sensitivity, coastal management in the Gulf region cannot be considered independently of its vast oil and natural gas reserves and environmentally related matters. The Regional Organization for Protection of Marine Environment (ROPME) forum was established in Kuwait in 1979 and quickly ratified by seven new member states (Bahrain, Iran, Iraq, Oman, Qatar, Saudi Arabia and the United Arab Emirates). Rapid growth of ROPME and shared coastal and marine environmental issues among littoral States have resulted in numerous successful plans laying the basis for future coastal management and development in the Persian Gulf region.Different plans were investigated to reach sustainable coastal management and environmental pollution prevention programmes in the Persian Gulf region and it was concluded that such plans could only be implemented when littoral states prioritize the management schemes in the Persian Gulf region and incorporate them into their own national legislation.Similar to many Regional Sea Programmes, ROPME has faced many drawbacks since its inception. Military conflicts, poor enforcement of protocols, lack of adequate coordination, disharmony among littoral states and lack of sufficient funding have put many coastal management programmes on hold.Demilitarization, enforcement of ROPME resolutions, and implementation of long-term economical growth planning are all part of an integrated coastal management programme that can bring about significant changes in the Persian Gulf area. Despite all existing differences and difficulties, many important tasks have been accomplished in the past two decades. Coastal management issues have been analyzed and well documented by ROPME. With the existing situation in the Gulf region, ROPME can effectively coordinate and implement the following tasks: monitor water quality and coastal habitat, develop and implement a comprehensive pollution prevention scheme, educate the public in terms of coastal preservation, train technical staff, put in place an effective pollution prevention and waste management programme, and establish the basis for an integrated regional coastal zone management plan.  相似文献   

17.
Complex process of turbulent mixing in Persian Gulf that is a semi-closed sea makes it a good media to test the performance of different turbulence schemes. In this research, we used the 3D ocean model COHERENS (COupled Hydrodynamical Ecological model for REgioNal Shelf seas) for the Persian Gulf with the open boundary in the Hormuz Strait. Of the turbulence schemes for the vertical diffusion available in the COHERENS, we tested four models to investigate the hydrodynamic characteristics of the Persian Gulf. The results show that all of the schemes presented the sea surface salinity (SSS) distribution rather accurately but the k-l and flow-dependent models results have better agreements with observations. The most noticeable difference between the results of four schemes is the differences found in the simulation of turbulent parameters. The turbulent closure schemes generally provide better results, but the algebraic schemes show turbulent parameters far from reality and they do not show substantial changes with time. Generally, the vertical structures of turbulence in the water basins and parameterization of turbulence in water column is very sensitive to the selection of the type of the turbulence scheme. However, large-scale structures that take place within the inflow and outflow area are approximately quasi-horizontal, and the vertical small-scale turbulence does not affect them as much. As a result, they show less sensitivity to the performance of various turbulence schemes.  相似文献   

18.
The systems of diurnal tidal wave (K1) and semi-diurnal tidal wave (M2) in the Beibu Gulf are studied with numerical method. Also discussed in this paper are the influences of the Qiongzhou Strait, the bottom friction term, the horizontal turbulent friction term and the inertial (acceleration) term in dynamic equations on the tidal system. The calculated results show that there is an independent left-handed tidal system in the diurnal tidal wave of the gulf, the amphidromic point being roughly located at Taigeli Island; that the semi-diurnal wave constitutes no tidal system, generating a small tidal range in the region near Feizhulong Islands; and that the influence of the tidal wave from the strait on the tidal system of the K1 is not evident, but its effect on the system of the M2 component tide is quite obvious. The bottom friction term, the horizontal turbulent friction term, and the inertial term have effects upon the tidal system in the gulf.  相似文献   

19.
A vertically integrated two‐dimensional (2‐D) and a five‐layer three‐dimensional (3‐D) numerical models were developed to compute the tides in the Gulf of Suez, Egypt. The computational grid used to schematize the Gulf has a horizontal resolution of 3 × 3 km and consists of a lattice of 23 × 100 points in the 2‐D model and five such lattices in the 3‐D model. Both 2‐D and 3‐D simulations clearly revealed the Kelvin wave nature of the tide with partial reflection. The M2 simulations also showed a strong tidal signature in the southern sector as compared to the northern part. For the 3‐D simulations, the horizontal and vertical eddy viscosity coefficients and the coefficient of bottom friction were respectively set to 3 × 106 cm2/s, 200 cm2/s, and 0.001. The tidal range decreases from the entrance of the Gulf of Suez toward the Bank of Tor where it reaches a small value and then increases again to about 1.5 m at Suez. A difference of six hours exists between the times of high water at the southern and northern ends of the Gulf. Quantitatively the agreement between the observed and computed tide is better in the 2‐D simulation than in the 3‐D simulation. However, the counterclockwise gyres in the top three layers of the 3‐D model (upper 30 m) during slack water following the flood tide do not appear in the 2‐D simulation.  相似文献   

20.
A 3D,time-dependent,baroclinic,hydrodynamic and salinity model was implemented and applied to the Oujiang River estuarine system in the East China Sea.The model was driven by the forcing of tidal elevations along the open boundaries and freshwater inflows from the Oujiang River.The bottom friction coefficient and vertical eddy viscosity were adjusted to complete model calibration and verification in simulations.It is demonstrated that the model is capable of reproducing observed temporal variability in the water surface elevation and longitudinal velocity,presenting skill coefficient higher than 0.82.This model was then used to investigate the influence of freshwater discharge on residual current and salinity intrusion under different freshwater inflow conditions in the Oujiang River estuary.The model results reveal that the river channel presents a two-layer structure with flood currents near the bottom and ebb currents at the top layer in the region of seawater influenced on north shore under high river flow condition.The river discharge is a major factor affecting the salinity stratification in the estuarine system.The water exchange is mainly driven by the tidal forcing at the estuary mouth,except under high river flow conditions when the freshwater extends its influence from the river’s head to its mouth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号