首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At four intertidal sites near the island of Sylt (eastern North Sea), 13 metazoan parasite taxa were found in 1400 cockles investigated, with digenean trematodes being dominant. Almost all cockles were infected by parasites and most individuals harboured more than one parasite species. We observed four conspicuous patterns: (1) Adult cockles harboured a two times higher species richness (2003: 6.1 ± 0.7 species/host; 2004: 7.1 ± 0.7) than juveniles (2003: 2.9 ± 0.8; 2004: 3.4 ± 0.8) and total parasite community composition significantly differed between age groups. (2) Infection levels were 2–52 times higher in adult cockles than in juveniles both in trematode species and in non-trematode species. In the dominant trematodes, species utilising cockles as first intermediate host (Gymnophallus choledochus, Labratrema minimus, Monorchis parvus) only occurred in adult cockles, and prevalences were low (2–12%). Prevalences of up to 100% were reached by trematodes using cockles as second intermediate host (Himasthla elongata, H. continua, H. interrupta, Renicola roscovita, Psilostomum brevicolle, Meiogymnophallus minutus, Gymnophallus gibberosus). Metacercariae of these species were segregated between body parts within cockles. (3) High spatial heterogeneity in parasite community composition and infection levels occurred between sampling sites. However, communities in juveniles were more similar than communities in adults. (4) Temporal variation in parasite community composition was low between two consecutive years, especially for adult cockles. The omnipresence of parasites in this dominant bivalve species has important implications for sampling designs and as a potentially confounding variable in e.g. physiological studies. It suggests strong and cumulative negative effects on the cockle hosts.  相似文献   

2.
A total of 219 deep-sea fishes belonging to five families were examined for the parasite fauna and stomach contents. The demersal fish Macrourus berglax, bathypelagic Bathylagus euryops, and mesopelagic Argentina silus, Borostomias antarcticus, Chauliodus sloani, and Lampanyctus macdonaldi were caught at 243–708 m trawling depth in the Greenland and the Irminger Sea in 2002. A total of 21 different parasite species, six Digenea, one Monogenea, two Cestoda, seven Nematoda, one Acanthocephala, and four Crustacea, were found. The parasite diversity in the meso- and bathypelagic environment was less diverse in comparison to the benthal. Macrourus berglax had the highest diversity (20 species), usually carrying 4–10 different parasite species (mean 7.1), whereas Bathylagus euryops harbored up to three and Argentina silus, Borostomias antarcticus, Chauliodus sloani and Lampanyctus macdonaldi each up to two species. Most Digenea, Cestoda, Nematoda, Acanthocephala, and Crustacea are known from a wide host range. Several of the encountered parasites occurred at a very low prevalence (<10%), indicating that the studied deep-sea fishes are most probably not instrumental to complete the parasite life cycles in the area of investigation. It is suggested that the lack of nutrients in the meso- and bathypelagial limits the abundance of potential first intermediate hosts of nematodes and cestodes, resulting in low infestation rates even of widely distributed, non-specific species. In contrast, the higher biomass in the benthic deep-sea environment increases the availability of potential intermediate hosts, such as molluscs for the digeneans, resulting in increased parasite diversity. Because many deep-sea fish have a generalistic feeding behavior, the observed different parasite diversity reflects a different depth range of the fish and not necessarily a specific fish feeding ecology.  相似文献   

3.
4.
Different estimates were used to assess the diversity of the total macrofauna and its major taxonomic groups separately from a broad bathymetric range at a site in the NE Atlantic. In the Goban Spur region, a transect was sampled from the shelf to the abyssal plain over a depth range from 200 to 4500 m and in the Porcupine Sea Bight two stations were sampled (at 3670 m and 4115 m). Species diversity (the number of species per number of individuals) increased with increasing water depth, both when expressed as Hurlbert's E(Sn) and as Shannon's H′log e. The expected number of species in a 100-individual sample E(S100) of total macrofauna increased from 30 on the shelf to 68 on the abyssal plain. Evenness (the proportional abundance of species), estimated with Shannon's J′, also increased with water depth from 0.66 to 0.91, whereas dominance (Simpson's D) decreased from 0.09 to 0.01. Species richness (the number of species per unit of area), however, showed a parabolic pattern with a peak at the upper slope. The largest number of species was found at the slope station at 1425 m (232 species within 0.66 m2). It is argued that species richness is not a synonym of species diversity, but that species richness depends both on species density (which decreases with increasing water depth) and on species diversity. Across the whole bathymetric range (200 to 4500 m) a total of 696 species within 8327 specimens in a total sampled area of 4.12 m2 were counted, yielding mean values of 12 individuals per species and 169 species per m2. Different communities were found to exist on the shelf, slope and abyss. It is suggested that this could have been caused by different selection processes. Differences in life-history strategies and organic-matter supply could (at least partly) explain the different community structures and diversity patterns found along the depth gradient.  相似文献   

5.
6.
Since the advent of Global Navigation Satellite Systems, it has been possible to perform hydrographic survey reductions through the ellipsoid, which has the potential to simplify operations and improve bathymetric products. This technique requires a spatially continuous separation surface connecting chart datum (CD) to a geodetic ellipsoid. The Canadian Hydrographic Service (CHS), with support from the Canadian Geodetic Survey, has developed a new suite of such surfaces, termed Hydrographic Vertical Separations Surfaces, or HyVSEPs, for CD and seven tidal levels. They capture the spatial variability of the tidal datum and levels between tide gauges and offshore using semiempirical models coupling observations at tide stations with relative sea-level rise estimates, dynamic ocean model solutions, satellite altimetry, and a geoid model. HyVSEPs are available for all tidal waters of Canada, covering over seven million square kilometers of ocean and more than 200,000 kilometers of shoreline. This document provides an overview of the CHS's modeling approach, tools, methods, and procedures.

The HyVSEP for CD defines the new hydrographic datum for the tidal waters of Canada. HyVSEPs for other tidal levels are fundamental for coastal studies, climate change adaptation and the definition of the Canadian shoreline and offshore boundaries. HyVSEPs for inland waters are not discussed.  相似文献   


7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号