首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The applicability of the reflectance micro-Fourier Transform infra-red spectroscopy (FTIR) technique for analyzing the distribution of functional groups in coal macerals is discussed. High quality of spectra, comparable to those obtained using other FTIR techniques (KBr pellet and transmission micro-FTIR), indicate this technique can be applied to characterizing functional groups under most conditions. The ease of sample preparation, the potential to analyze large intact samples, and ability to characterize organic matter in areas as small as 20 μm are the main advantages of reflectance micro-FTIR. The quantitative aspects of reflectance micro-FTIR require further study.The exaples from the coal seams of the Mist Mountain Formation, British Columbia show that at high volatile bituminous rank, reflectance micro-FTIR provides valuable information on the character of aliphatic chains of vitrinite and liptinite macerals. Because the character of aliphatic chains influences bond disassociation energies, such information is useful from a hydrocarbon generation viewpoint. In medium volatile bituminous coal liptinite macerals are usually not detectable but this technique can be used to study the degree of oxidation and reactivity of vitrinite and semifusinite.  相似文献   

2.
The effect of petrographic composition on the methane sorption capacity has been determined for a suite of coals and organic-rich shales. Subbituminous and bituminous coals were separated into bright and dull lithotypes by hand-picking. The methane sorption capacities range between 0.5 and 23.9 cm3/g at a pressure of 6 MPa. The low volatile bituminous Canmore coal and the anthracite sample have the highest capacities with the “natural coke” having the lowest. For low-rank coals there is no significant difference between bright and dull samples except for one coal with the dull sample having a greater sorption capacity than its bright equivalent. For higher-rank coals, the bright samples have a greater methane capacity than the dull samples and the difference between sample pairs increases with rank. The boghead coal samples have the highest sorption capacities in the liptinite-rich coals suite and are higher than subbituminous to medium volatile bituminous samples. Pore size distribution indicates that methane is held as solution gas in liptinite-rich coals and by physical sorption in micropores in liptinite-poor coals. These contrasting processes illustrate that liptinite-rich samples need to be independently assessed. The positive relationship between reactive inertinite content and methane sorption capacity occurs within the subbituminous to medium volatile bituminous coals because the reactive inertinite is structurally similar to vitrinite and have a higher microporosity than non-reactive inertinite. Reactivity of inertinite should be assessed in CBM studies of dull coals to provide a better understanding of petrographic composition effects on methane capacity.  相似文献   

3.
Seams from the St. Rose and Chimmey Corner coalfields, Nova Scotia, Canada, were sampled and examined for petrographic and geochemical composition. Rank determinations indicate a rank of high volatile C-B bituminous. Seams show regular alternations of dull and bright microbanded lithotypes, with dull lithotypes predominant in the central portion of the main seam (No. 5 seam). Brighter lithotypes are dominated by vitrinite (>80%), with minor inertinite (avg. 12%) and minor liptinite. Duller lithotypes contain greater amounts of inertinite (up to 40%) and liptinite (primarily sporinite). Mineral matter consists of epigenetic pyrite, with lesser amounts of clay and quartz. Cabonates are common in the Chimney Corner seams. Elemental composition of the seams is similar to other Canadian coals and fall within world coal ranges, with the exception of high concentrations of Cl, Zn, Ni, Mo, Pb, Cu and As.Depositional environment of the seams as indicated by maceral composition, lithotypes and geology suggest a predominance of wet forest to reed moor conditions, in a fluvial-lacustrine setting. Periodic episodes of flooding and drying are indicated by lithotype, maceral and mineral variations.  相似文献   

4.
Chars produced by the combustion of a set of three coals from Alberta, Canada, were classified morphologically using reflected light microscopy. Produced chars are different in morphological features, pore thickness, anisotropy and degree of reactivity, because of differences in the vitrinite and inertinite contents.The subbituminous A coal produced the highest percentage of unreactive or slightly reactive components due to its high inertinite content (20.0%), followed by isotropic cenospheres. Isotropic cenospheres, both thin- and thick-walled, and exploded cenospheres are the characteristic chars produced by the high-voltile bituminous B coal, whereas the low-volatile bituminous coking coal produced cenospheres with granular anisotropy (mosaic) on the walls and abundant coke fragmentsOptical microscopy is useful in differentiating the performance of a series of coals during combustion based on petrographic composition and rank and can aid in understanding the relationship between ‘reactive’ and ‘non-reactive’ coal macerals to burnout performance.  相似文献   

5.
The coal deposits of Meghalaya occur in the Lakadong Sandstone (25–250 m thick) of Eocene age. The coal-bearing formations are understood to have been deposited over platform areas in estuarine and lagoonal environments and subjected to recurrent marine transgressions and regressions during the Eocene period. There are three major groups of coalfields in Meghalaya, viz. Garo Hills (West Daranggiri and Siju Coalfields), Khasi Hills (Langrin and Mawlong–Shella Coalfields) and minor coalfields (Laitryngew, Cherrapunji and Bapung Coalfields). Pillar coal samples have been collected from 10 seams at 15 locations and have been subjected to a detailed petrographic examination for their characterization. An effort has been made to trace the path of their evolution based on coal petrography-based models. The quantitative petrographic analysis shows that these coals are vitrinite rich (45.0–92.9%, mean 73.4% mmf basis) with low concentration of inertinite (0.0–13.8%, mean 3.0% mmf basis), whereas the liptinite occurs in appreciable concentration (5.5–53.1%, mean 22.5% mmf basis). Further, these coals are rich in vitrite (51.6–100%, mean 78.3% mmf basis). The volatile matter (from 38.5% to 70.0%, d.a.f.) and vitrinite reflectance (Rom from 0.37% to 0.68%) characterize these coals, as per German (DIN) and North American classification, approximately as sub-bituminous ‘C' to high volatile ‘C' bituminous. The occurrence of teleutospore (single, double and triple celled) suggests that these coals have originated from a characteristic Tertiary flora. The maceral and microlithotype composition in the coal petrography-based depositional models suggest that the coals of Garo Hills were formed in reed to open water swamps in telmatic to limnic conditions. The coals of Khasi Hills were dominated by forest swamps and telmatic to limno-telmatic conditions. In addition, the occurrence of large-size resins suggests prolific growth of conifers in the swamps.  相似文献   

6.
A unique Upper Permian coal, Leping coal, is widely distributed in South China. The coal samples studied in the paper were collected from two mines in the Shuicheng coalfield of Guizhou Province, southwest China. The geochemical works including coal petrography, maceral content, Rock–Eval pyrolysis, and kinetic modelling of hydrocarbon-generating have been carried out on whole coal and individual macerals. The higher contents of volatile matter, elemental hydrogen, and tar yield, and the high hydrocarbon generation potential of the Leping coals are attributed to their high content of “barkinite”, a special liptinite maceral.The hydrocarbon generation potential of “barkinite” (S2=287 mg/g, hydrogen index (HI)=491 mg/g TOC) is greater than that of vitrinite (S2=180 mg/g, HI=249 mg/g TOC), and much higher than that of fusinite (S2=24 mg/g, HI=35 mg/g TOC). At the same experimental conditions, “barkinite” has a higher threshold and a narrower “oil window” than those of vitrinite and fusinite, and consequently, can generate more hydrocarbons in higher coalification temperature and shorter geological duration. Data from the activation energy distributions indicate that “barkinite” has a more homogenous chemical structure than that of vitrinite and fusinite. The above-mentioned characteristics are extremely important for exploring hydrocarbon derived from the Leping coals in South China.  相似文献   

7.
There are five workable coal beds in the Tikak Parbat Formation of the Barail Group in the Makum coalfield, Tinsukia District, Assam. Two of these beds, 18 and 6 m thick, are persistent across the field. The coal is high volatile bituminous B/C, has excellent coking properties, and is of great importance as a blending coal to improve the coking properties of the lower-quality Gondwanan coals.These coals are bimacerites as vitrinertite or trimacerites as duroclarite. Virtrinite predominates with minor amounts of other macerals and minerals. The high percentage of vitrinite indicates that the bark and woody tissues were the dominant contributors to the precursor peat. These peats were strongly decomposed under anaerobic conditions as indicated by the abundance of the collinite type of vitrinite.  相似文献   

8.
Upper Triassic to Middle Jurassic coals from the Alborz region of northern Iran were analyzed by reflected light-fluorescence microscopy and Rock Eval 6® pyrolysis to evaluate their regional rank variation, degree of hydrothermal alteration, and petroleum generative potential. The coal ranks in the region range from a low of 0.69%RoR in the Glanddeh-Rud area to a high of 1.02%RoR in the Gajereh area. Tmax (°C) values (Rock Eval 6 pyrolysis) also increase progressively with increasing vitrinite %Ro values, however Tmax is suppressed lower than would be expected for each rank ranging from 428 °C for the Glandeeh coal to 438 °C for the Gajereh coal. Tmax suppression may be caused by maceral composition and soluble organics within the coal. Moderately high hydrogen indices, persistent and oily exudations from the coals during UV exposure, and traces of hydrocarbon fluid inclusions suggest that liquid petroleum was likely generated within some of the coals.  相似文献   

9.
Two thermal parameters, initial volatilization temperature (IVT) and average volatilization rate (AVR), have been determined by thermogravimetric analysis in argon for 38 coal samples ranging in rank from lignite to low-volatile bituminous. Both IVT and AVR are correlated with percent volatile matter and vitrinite reflectance.The IVT values increase gradually from about 250 to 445°C with increasing rank; however, a change in slope is observed in the region of high-volatile bituminous coals (from about 340°C to about 380°C) when IVT's are plotted against percent volatile matter or percent fixed carbon. The changes in slope near 340°C and near 380°C occur at “coalification jumps” recognized on the basis of changes in the optical and chemical character of the macerals. In general, AVR values decrease gradually with increasing rank for the lignite and sub-bituminous coals and for the medium- and low-volatile bituminous coals; however, a sharp increase in AVR occurs in high-volatile bituminous coals. The change in slope of the IVT curves and sharp increase in the AVR values for high-volatile bituminous coals reflect the development of new, higher vapor pressure organic compounds produced during this stage of the coalification process.A plot of AVR vs IVT reveals three regions which correspond to: (1) lignite and sub-bituminous coals; (2) high-volatile bituminous coals; and (3) medium- to low-volatile bituminous coals.  相似文献   

10.
Thermally metamorphosed Tertiary age coals from Tanjung Enim in South Sumatra Basin have been investigated by means of petrographic, mineralogical and chemical analyses. These coals were influenced by heat from an andesitic igneous intrusion. The original coal outside the metamorphosed zone is characterized by high moisture content (4.13–11.25 wt.%) and volatile matter content (> 40 wt.%, daf), as well as less than 80 wt.% (daf) carbon and low vitrinite reflectance (VRmax = 0.52–0.76%). Those coals are of subbituminous and high volatile bituminous rank. In contrast the thermally metamorphosed coals are of medium-volatile bituminous to meta-anthracite rank and characterized by low moisture content (only < 3 wt.%) and volatile matter content (< 24 wt.%, daf), as well as high carbon content (> 80 wt.%, daf) and vitrinite reflectance (VRmax = 1.87–6.20%). All the studied coals have a low mineral matter content, except for those which are highly metamorphosed, due to the formation of new minerals.The coalification path of each maceral shows that vitrinite, liptinite and inertinite reflectance converge in a transition zone at VRmax of around 1.5%. Significant decrease of volatile matter occurs in the zone between 0.5% and 2.0% VRmax. A sharp bend occurs at VRmax between 2.0% and 2.5%. Above 2.5%, the volatile matter decreases only very slightly. Between VRr = 0.5% and 2.0%, the carbon content of the coals is ascending drastically. Above 2.5% VRr, the carbon content becomes relatively stable (around 95 wt.%, daf).Vitrinite is the most abundant maceral in low rank coal (69.6–86.2 vol.%). Liptinite and inertinite are minor constituents. In the high rank coal, the thermally altered vitrinite composes 82.4–93.8 vol.%. Mosaic structures can be recognized as groundmasss and crack fillings. The most common minerals found are carbonates, pyrite or marcasite and clay minerals. The latter consist of kaolinite in low rank coal and illite and rectorite in high rank coal. Change of functional groups with rank increase is reflected most of all by the increase of the ratio of aromatic C–H to aliphatic C–H absorbances based on FTIR analysis. The Oxygen Index values of all studied coals are low (OI < 5 mg CO2/g TOC) and the high rank coals have a lower Hydrogen Index (< 130 mg HC/g TOC) than the low rank coals (about 300 mg HC/g TOC). Tmax increases with maturity (420–440 °C for low rank coals and 475–551 °C for high rank coals).Based on the above data, it was calculated that the temperature of contact metamorphism reached 700–750 °C in the most metamorphosed coal.  相似文献   

11.
In the Leão-Butiá Coalfield, Rio Grande do Sul the coal seams occur in the Rio Bonito Formation, Guatá Group, Tubarão Supergroup of the Paraná Basin, Brazil and are of Permian (Artinskian–Kungurian) age.This study is the first detailed investigation on the coal petrographic characterization of the coal-bearing sequence in relation to the depositional settings of the precursor mires, both in terms of whole seam characterization and in-seam variations. The study is based on the analyses of nine coal seams (I2, CI, L4, L3, L2, L1, S3, S2, S1), which were selected from core of borehole D-193, Leão-Butiá and represent the entire coal-bearing sequence.The interpretation of coal facies and depositional environment is based on lithotype, maceral and microlithotype analyses using different facies-critical petrographic indices, which were displayed in coal facies diagrams. The seams are characterized by the predominance of dull lithotypes (dull, banded dull). The dullness of the coal is attributed to relatively high mineral matter, inertinite and liptinite contents. The petrographic composition is dominated by vitrinite (28–70 vol.% mmf) and inertinite (> 30 vol.% mmf) groups. Liptinite contents range from 7 to 30 vol.% (mmf) and mineral matter from 4–30 vol.%. Microlithotypes associations are dominated by vitrite, duroclarite, carbominerite and inertite. It is suggested that the observed vertical variations in petrographic characteristics (lithotypes, microlithotypes, macerals, vitrinite reflectance) were controlled by groundwater level fluctuations in the ancient mires due to different accommodation/peat accumulation rates.Correlation of the borehole strata with the general sequence-stratigraphical setting suggests that the alluvial fan system and the coal-bearing mudstone succession are linked to a late transgressive systems tract of sequence 2. Based on average compositional values obtained from coal facies diagrams, a deposition in a limno-telmatic to limnic coal facies is suggested.  相似文献   

12.
The Arauco Sedimentary basin of Chile (37° −37° 45′S, 73° 08′ −73° 41′W) contains the most important reserves of bituminous coals of Chile. These are concentrated in two Formations: Curanilahue (Lower Eocene) and Trihueco (Middle Eocene). Five coal seams from the Lota Member of the Curanilahue Formation have been studied from the stratigraphic, palynologic and geochemical point of view. These coals were formed during a regressive stratigraphic episode; the palynological assemblage indicates that the climatic conditions prevailing at the time were of high humidity and temperature. These coals from a geochemical point of view are characterized by high sulphur (2.02%), ash (11.9%) and Ge (67.5 ppm; 1224.3 ppm in ash).  相似文献   

13.
The coal seam No. 207 was a subject of palynological and petrographic studies. According to the results of the vitrinite random reflectance measurements supplemented by moisture and calorific value determinations, the rank of this coal is matching the boundary between sub-bituminous and bituminous coals. The aim was to reconstruct the environmental conditions during the biochemical stage of seam formation, as well as the facies development throughout the seam profile. The maceral (incident and fluorescence mode) and microlithotype compositions (incident light) supplemented by palynological analyses, show that there were two main facies developments. In the authors opinion, they correspond with a phase of ombrogenous, raised bog marked by the presence of crassidurite with Densosporites variabilis and a wet-forest swamp phase represented by vitrite and clarite with more diverse spore assemblage including densospores. Other minor but distinctive sediments, a cannel layer and a reeds facies, both occurring in the lower part of the seam. Above the tonstein horizon, a dry forest type of sedimentation is recognized.  相似文献   

14.
Pulverized coals from eleven power plants burning Central Appalachian coal blends and eight power plants burning Illinois Basin coal blends were studied in order to assess the petrographic nature of industrial-scale coal grinding. All coals were high volatile bituminous. Coals were wet screened at 100 (150 μ), 200 (75 μ), 325 (about 40 μ), and 500 (about 25 μ) mesh. Petrographic analysis of the whole coals and size fractions consisted of a combined maceral and microlithotype analysis. Microlithotype analysis, in particular, provides a reasonable approximation of the whole-particle composition at the scale of utility coal pulverization. In the size fractions, duroclarite, the most abundant trimaceral microlithotype, is most abundant in the coarsest fraction and least abundant in the finest fraction. Vitrite, the most abundant monomaceral microlithotype, exhibits the opposite trend. Duroclarite becomes more enriched in vitrinite towards the finer sizes. The partitioning of microlithotypes and the partitioning of macerals within the microlithotypes is indicative of the relative brittle nature of vitrite compared to the hard-to-grind trimaceral microlithotypes. Increased vitrinite in duroclarite is an indication that the microlithotype within the particular size fraction is more brittle than relatively vitrinite-depleted duroclarite in coarser fractions. The relative grindability of microlithotypes will, in turn, impact combustion efficiency.  相似文献   

15.
The effect of coal composition, particularly the organic fraction, upon gas sorption has been investigated for Bowen Basin and Sydney Basin, Australia coals. Maceral composition influences on gas retention and release were investigated using isorank pairs of hand-picked bright and dull coal in the rank range of high volatile bituminous (0.78% Ro max) to anthracite (3.01% Ro max). Adsorption isotherm results of dry coals indicated that Langmuir volume (VL) for bright and dull coal types followed discrete, second-order polynomial trends with increasing rank. Bright coals had a minimum VL at 1.72% Ro max and dull coals had a minimum VL at 1.17% Ro max. At low rank, VL was greater in bright coal by about 10 cm3/g, but as rank increased, the bright and dull trends converged and crossed at 1.65% Ro max. At ranks higher than 1.65% Ro max, both bright and dull coals followed similar trends. These competing trends mean that the importance of maceral composition on VL varies according to rank. In high volatile bituminous coals, increases in vitrinite content are associated with increases in adsorption capacity. At ranks higher than medium to low volatile bituminous, changes in maceral composition may exert relatively little influence on adsorption capacity. The Langmuir pressure (PL) showed a strong relationship of decreasing PL with increasing rank, which was not related to coal type. It is suggested that the observed trend is related to a decrease in the heterogeneity of the pore surfaces, and subsequent increased coverage by the adsorbate, as coal rank increases. Desorption rate studies on crushed samples show that dull coals desorb more rapidly than bright coals and that desorption rate is also a function of rank. Coals of lower rank have higher effective diffusivities. Mineral matter was found to have no influence on desorption rate of these finely crushed samples. The evolution of the coal pore structure with changing rank is implicated in diffusion rate differences.  相似文献   

16.
This paper attempts to characterize the coals of Satpura Gondwana basin using a large number of pillar coal samples drawn from the working coal mines of Pench, Kanhan, and Tawa (Pathakhera) Valley Coalfields of this basin. This westernmost Gondwana basin of Peninsular India is graben/half-graben type and occupies an area of 12 000 km2 with sedimentary fills (>5000 m) ranging in age from Permian to Cretaceous. The Barakar Formation (Permian) is exclusively coal-bearing with a total coal reserve of nearly 2000 Mt. The results show that the coals of this basin are equally rich in inertinite (22.8–58.7%, 24.5–62.0% mmf basis) and vitrinite (24.4–52.4%, 24.4–56.0% mmf basis). The concentration of liptinite ranges from 8.8% to 23.2% (9.0–26.0% mmf basis). The dominant microlithotypes of these coals are inertite and vitrite with comparatively low concentrations of vitrinertite and clarite. The vitrinite reflectance (Rom% values) suggests that the Pench Valley (0.30–0.58%) coals are subbituminous C to high volatile C bituminous in rank, while the Kanhan and Tawa Valley coals (0.52–0.92%) are subbituminous A to high volatile A bituminous in rank. The localized enhancement of rank in the latter two basins has been attributed to the extraneous heat flow from deep-seated igneous intrusions in the basin. The microlithotype composition of these coals is suggestive of their evolution in limno-telmatic zones, under fluvio-lacustrine control with the development of upper deltaic and lower deltaic conditions near the fresh water lacustrines. The floral input is characteristic of forest swamps with intermittent floods, leading to the development of reed moor and open moor facies, particularly in the Pench Valley basin. The Gelification Index (GI) and Tissue Preservation Index (TPI) are suggestive of terrestrial origin with high tree density. Further, moderately high GI and exceedingly high telovitrinite based TPI along with high ash content, particularly for the coals of Kanhan and Tawa Valley Coalfields, are indicative of the recurrence of drier conditions in the forested swamps. Furthermore, lateral variation in TPI values is indicative of increase in the rate of subsidence vis-à-vis depth of the basin from east to west (Pench to Tawa Valley Coalfield). The Ground Water Index (GWI) suggests that these coals have evolved in mires under ombotrophic to mesotrophic hydrological conditions. The Vegetation Index (VI) values are indicative of the dominance of herbaceous plants in the formation of Pench Valley coals and comparatively better forest input in the formation of Kanhan and Tawa Valley coals.  相似文献   

17.
The petrographic and palynologic compositions of coal seams of the acler formation (Upper Carboniferous, Westphalian A) from northwestern and southeastern part of the Lower Silesian Coal Basin (LSCB) were examined. Coals studied are highly volatile bituminous coal, where Ro ranges from 0.91% to 1.09%. Seam 430 from the northwestern part of the basin contains high vitrinite percentage with rather low inertinite and liptinite contents, while percentage of mineral matter is variable. This petrographic composition is associated either with a predominance of Lycospora in miospore assemblage, or with a miospore assemblage of mixed character. The abundance of Lycospora reflects vegetation composed of the arborescent lycopsids while the mixed miospore assemblage is connected with diverse palaeoplant communities, namely, arborescent lycopsids, calamites and ferns. Seams 409 and 412/413 from the southeastern part of the LSCB are rich in inertinite and liptinite, while the vitrinite content is moderate. Their characteristic feature is the occurrence of a diagnostic crassisporinite (densosporinite). Amount of the mineral components in these coals is very low. Densosporites and related crassicingulate genera are main components of these miospore assemblages and were produced by herbaceous and/or sub-arborescent lycopsids. These petrographic and palynologic features were the basis for distinguishing three maceral–miospore associations: an arborescent lycopsid and mixed associations, occurring in the seam 430 and a herbaceous and/or sub-arborescent lycopsid association which was recorded in seams 409 and 412/413. The first two assemblages are interpreted as having been deposited in a planar rheotrophic mire, whereas the herbaceous and/or sub-arborescent lycopsid association is thought to have developed in an ombrotrophic, domed mire.  相似文献   

18.
This paper discusses the result of the detailed investigations carried out on the coal characteristics, including coal petrography and its geochemistry of the Pabedana region. A total of 16 samples were collected from four coal seams d2, d4, d5, and d6 of the Pabedana underground mine which is located in the central part of the Central-East Iranian Microcontinent. These samples were reduced to four samples through composite sampling of each seam and were analyzed for their petrographic, mineralogical, and geochemical compositions. Proximate analysis data of the Pabedana coals indicate no major variations in the moisture, ash, volatile matter, and fixed carbon contents in the coals of different seams. Based on sulfur content, the Pabedana coals may be classified as low-sulfur coals. The low-sulfur contents in the Pabedana coal and relatively low proportion of pyritic sulfur suggest a possible fresh water environment during the deposition of the peat of the Pabedana coal. X-ray diffraction and petrographic analyses indicate the presence of pyrite in coal samples. The Pabedana coals have been classified as a high volatile, bituminous coal in accordance with the vitrinite reflectance values (58.75–74.32 %) and other rank parameters (carbon, calorific value, and volatile matter content). The maceral analysis and reflectance study suggest that the coals in all the four seams are of good quality with low maceral matter association. Mineralogical investigations indicate that the inorganic fraction in the Pabedana coal samples is dominated by carbonates; thus, constituting the major inorganic fraction of the coal samples. Illite, kaolinite, muscovite, quartz, feldspar, apatite, and hematite occur as minor or trace phases. The variation in major elements content is relatively narrow between different coal seams. Elements Sc,, Zr, Ga, Ge, La, As, W, Ce, Sb, Nb, Th, Pb, Se, Tl, Bi, Hg, Re, Li, Zn, Mo, and Ba show varying negative correlation with ash yield. These elements possibly have an organic affinity and may be present as primary biological concentrations either with tissues in living condition and/or through sorption and formation of organometallic compounds.  相似文献   

19.
The chemical composition of the organic matter in the principal macerals of high-volatile bituminous coals from the Gunnedah Basin, New South Wales (Rvmax of telocollinite between 0.6 and 1.1%) has been evaluated from polished section specimens using an electron microprobe technique. Highest proportions of carbon occur in the inertinite macerals, especially fusinite and secretinite (formerly resino-sclerotinite), as well as in sporinite; lowest proportions of carbon occur in the different macerals of the vitrinite group. Oxygen shows the reverse trend, being most abundant in vitrinite and least abundant in the inertinite components, whereas sulphur is lowest in the inertinites and highest in the liptinite (mainly sporinite) present. Evaluations of maceral composition, using the carbon content of telocollinite as a rank indicator, show that carbon is more abundant in both sporinite and semifusinite, relative to vitrinite, in low-rank high-volatile bituminous coals. The difference decreases with increasing rank, and the proportion of carbon in telocollinite becomes essentially the same as that in sporinite and semifusinite at carbon contents of about 89 and 91%, respectively. The carbon content of fusinite and secretinite, on the other hand, does not seem to vary appreciably with rank advance. No significant difference in composition occurs in the rank range studied between the three vitrinite varieties present, desmocollinite, telocollinite and a more highly reflecting telocollinite resembling pseudovitrinite. No evidence was found to indicate a higher hydrogen content, relative to telocollinite, for the vitrinite matrix of desmocollinite.  相似文献   

20.
The coal deposits of southern Africa (Botswana, Malawi, Mozambique, Namibia, South Africa, Swaziland, Tanzania, Zambia and Zimbabwe) are reviewed. The coal seams formed during two periods, the Early Permian (Artinskian–Kungurian) and the Late Permian (Ufimian–Kazanian). The coals are associated with non-marine terrestrial clastic sedimentary sequences, most commonly mudrock and sandstones, assigned to the Karoo Supergroup. The Early Permian coals are most commonly sandstone-hosted while the younger coals typically occur interbedded with mudstones. The sediments were deposited in varying tectono-sedimentary basins such as foreland, intracratonic rifts and intercratonic grabens and half-grabens. The depositional environments that produced the coal-bearing successions were primarily deltaic and fluvial, with some minor shoreline and lacustrine settings. Coals vary in rank from high-volatile bituminous to anthracite and characteristically have a relatively high inertinite component, and medium- to high-ash content. In countries where coal is mined, it is used for power generation, coking coal, synfuel generation, gasification and for (local) domestic household consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号